高中数学抛物线课件
新教材2023版高中数学第二章平面解析几何2.7抛物线及其方程2.7.1抛物线的标准方程课件

答案: C
解析:如图所示,过点P作PM⊥准线l,垂足为M, 则|PF|=|PM|,当且仅当A,P,M三点共线时, |PF|+|PA|取得最小值|AM|=2+32=3.5.
(3)若位于y轴右侧的动点M到F(12,0)的距离比它到y轴的距离大12.求 点M的轨迹方程.
解析:设所求焦点在x轴上的抛物线的方程为y2=2px(p≠0),A(m,-3),
由抛物线定义得5=|AF|=
m
+
p 2
.
又(-3)2=2pm,∴p=±1或p=±9,
故所求抛物线方程为y2=±2x或y2=±18x.
题型2 抛物线定义的应用 【思考探究】
1.抛物线定义的实质可归结为“一动三定”,这句话的含义是什么? [提示] 抛物线定义的实质可归结为“一动三定”,一个动点,设为M; 一个定点F,即抛物线的焦点;一条定直线l,即为抛物线的准线;一个定 值,即点M与点F的距离和M到l的距离之比等于1.定点F不能在直线上,否 则,动点M的轨迹就不是抛物线. 2.如何通过抛物线定义实现距离转化? [提示] 根据抛物线的定义,抛物线上任意一点到焦点的距离等于它到准 线的距离,因此,由抛物线定义可以实现点点距与点线距的相互转化,从 而简化某些问题. 3.如何利用抛物线定义解决与抛物线有关的最值问题? [提示] 在抛物线中求解与焦点有关的两点间距离和的最小值时,往往用 抛物线的定义进行转化,即化折线为直线解决最值问题.
方向也随之确定.
基础自测
1.抛物线x=-18y2的焦点坐标是(
)
A.(-2,0) B.(2,0)
C.(0,312)
D.(0,-312)
答案:A
2.抛物线x2=4y的准线方程是( ) A.x=1 B.x=-1 C.y=1 D.y=-1
抛物线课件-2025届高三数学一轮复习

A. 2
B. 3
[解析]
2
C. 4
2
D. 8
由题意,知抛物线的焦点坐标为( ,0),椭圆的焦点坐标为(±
2
所以 = 2 ,解得 p =8,故选D.
D )
2 ,0),
5. 已知抛物线 y 2=2 px ( p >0)的焦点为 F ,点 M (2,2 2 )为抛物线上一点,则
|MF|=(
A. 2
2
即 p =2,所以A选项正确.
= − 3( − 1),
对于B,不妨设 M ( x 1, y 1), N ( x 2, y 2), x 1< x 2,联立方程得 2
= 4,
1
消去 y 并整理得3 x 2-10 x +3=0,解得 x 1= , x 2=3.由抛物线的定义得,| MN|=
x 1+ x 2+ p =
B )
B. 3
C. 4
D. 5
[解析] 因为点 M (2,2 2 )为抛物线上一点,所以将点 M 的坐标代入抛物线的方程
y 2=2 px ( p >0),可得 p =2,所以抛物线的方程为 y 2=4 x ,可得其准线方程为 x =
-1.根据抛物线的定义,得| MF |=2-(-1)=3.故选B.
三、知识点例题讲解及方法技巧总结
1
S △ AOB = ×| AB |× ×
2
2
由(2)的推导过程可得,
sin
1
||
2
+
= 2 ,
1−cos
1+cos
si
1
2
α= × 2 × ×
2
si
2
+
高中数学抛物线的几何性质总结课件

开口方向与开口大小的关系
开口方向与开口大小的相互影响
开口方向和开口大小是相互影响的,一般来说,向上开口的抛物线开口会逐渐变小,向下开口的抛物线开口会逐 渐变大。
特殊情况下的关系
当a=0时,抛物线退化为一条直线,此时开口方向和大小无法定义。
04 抛物线的对称性
抛物线的对称轴
抛物线关于其对称轴对称,对称轴是 一条垂直于x轴的直线。
对称轴是抛物线几何性质的一个重要 特征,它决定了抛物线的形状和位置 。
对于标准形式的抛物线 y=ax^2+bx+c,其对称轴的方程是 x=-b/2a。
抛物线的对称中心
抛物线的对称中心是其顶点的位 置,顶点坐标可以通过二次函数 的顶点式y=a(x-h)^2+k得到。
抛物线上的任意一点 到焦点的距离等于该 点到准线的距离。
抛物线的标准方程
开口向右的抛物线方程为 $y^2 = 2px$,其中 $p$ 是焦 距。
开口向左的抛物线方程为 $y^2 = -2px$,其中 $p$ 是 焦距。
ቤተ መጻሕፍቲ ባይዱ
抛物线的标准方程可以根据焦 点和准线的位置进行变换。
抛物线的几何性质
01
02
03
开口方向与函数值变化趋势
开口方向与函数值随x的变化趋势一致,向上开口时函数值随x增大而增大,向 下开口时函数值随x增大而减小。
抛物线的开口大小
开口大小与二次项系数的绝对值大小
开口大小由二次项系数的绝对值|a|决定,|a|越大,抛物线开口越小;|a|越小,抛 物线开口越大。
开口大小与函数值变化幅度的关系
2025届高中数学一轮复习课件《抛物线(一)》ppt

答案
高考一轮总复习•数学
第29页
解析:(1)∵抛物线方程为 y2=2px(p>0),∴准线为 x=-p2.
∵点 P(2,y0)到其准线的距离为 4,∴-p2-2=4. ∴p=4(负值舍去),∴抛物线的标准方程为 y2=8x.
(2)因为△FPM 为等边三角形,则|PM|=|PF|,由抛物线的定义得 PM 垂直于抛物线的准 线,设 Pm,m2p2,则点 Mm,-p2.因为焦点为 F0,p2,△FPM 是等边三角形,所以|PM|=4,
高考一轮总复习•数学
抛物线定义的应用策略
第17页
高考一轮总复习•数学
第18页
对点练 1 (1)(2024·陕西榆林模拟)如图 1,某建筑物的屋顶像抛物线,若将该建筑外形 弧线的一段按照一定的比例处理后可看成如图 2 所示的抛物线 C:x2=-2py(p>0)的一部分, P 为抛物线 C 上一点,F 为抛物线 C 的焦点.若∠OFP=120°,且|OP|= 221,则 p=( )
高考一轮总复习•数学
第10页
2.过抛物线 y2=4x 的焦点的直线 l 交抛物线于 P(x1,y1),Q(x2,y2)两点,如果 x1+x2 =6,则|PQ|=( )
A.9
B.8
C.7
D.6
解析:抛物线 y2=4x 的焦点为 F(1,0),准线方程为 x=-1.根据题意,得|PQ|=|PF|+ |QF|=x1+1+x2+1=x1+x2+2=8.故选 B.
即 px0=4.又 C 的准线方程为 x=-p2, 易知|FM|=x0+p2,显然|DM|=x0-p2.
由焦点联想准线.
因为 cos∠MFG=2 3 2,所以 sin∠MFG=13,因此||DFMM||=sin∠MFG=13,即xx00+-p2p2=13, 整理得 x0=p,与 px0=4 联立,解得 p=x0=2,
高中数学高二下册-12.8 抛物线的性质 课件

当把汽车的前灯开关从 亮转到暗时,就有数学 在起作用。具体地说, 是抛物线原理在玩花招。
例3,汽车前灯反射镜与轴截面的交线是抛物 线的一部分,灯口所在的圆面与反射镜的轴 垂直,灯泡位于抛物线的焦点处,已知灯口 直径是24cm, 灯深10cm,求灯泡离反射镜的顶 点的距离。
F
一建二设三列四解
解:取反射镜的轴即抛物线的 对称轴为x轴,抛物线的顶点 为原点,建立直角坐标系。
求以坐标原点为顶点,焦点在坐标轴上且 经过点 (3,-6)的抛物线的方程。
解:所求抛物线的方程y2=12x 或x2=-1.5y 。
例2,求过定点(0,-2)且与抛物线 y2=4x只有一个公共点的直线的方程。
思考:求直线l过定点(-2,0)且与 抛物线 y2=4x有两个公共点,求直线l的
斜率的范围方程。
课堂小结
1.掌握抛物线的性质,重点在于抓住 两点(一顶点一焦点) 两线(一准线一对称轴) 一方向(开口方向) 2.解抛物线等圆锥曲线的问题,借助
图形更加直观。 3.学会类比,提高学习效率
回家作业:
1.书本P125练习12.8中1~4 2.补充练习 3.思考题
能把在面前行走的机会抓住的人,十有八九都会成功。 世上所有美好的感情加在一起,也抵不上一桩高尚的行动。 读一本好书,就如同和一个高尚的人在交谈。——歌德 任何人都可以变得狠毒,只要你尝试过嫉妒。 连一个好朋友都没有的人,根本不值得活着。 战士的意志要象礁石一样坚定,战士的性格要象和风一样温柔。 当你劝告别人时,若不顾及别人的自尊心,那么再好的言语都没有用的。 坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 阅读一切好书如同和过去最杰出的人谈话。——笛卡儿 努力向上的开拓,才使弯曲的竹鞭化作了笔直的毛竹。 没有失败,只有暂时停止的成功。
人教A版高中数学选择性必修第一册3-3-1抛物线及其标准方程课件

|素养达成|
1.对抛物线定义的两点说明 (1)定直线l不经过定点F. (2)定义中包含三个定值,分别为一个定点、一条定直线及一个确定 的比值.
2.四种位置的抛物线标准方程的对比 (1)相同点:①原点在抛物线上; ②焦点在坐标轴上; ③焦点的非零坐标都是一次项系数的14.
(2)不同点:①焦点在x轴上时,方程的右端为±2px,左端为y2;焦 点在y轴上时,方程的右端为±2py,左端为x2.
这时点M的纵坐标为2,可设M(x0,2),代入抛 物线方程得x0=2,即M(2,2).
抛物线定义的两种应用 (1)实现距离转化.根据抛物线的定义,抛物线上任意一点到焦点的 距离等于它到准线的距离,因此,由抛物线定义可以实现“点点距”与 “点线距”的相互转化,从而简化某些问题. (2)解决最值问题.在抛物线中求解与焦点有关的两点间距离和的最 小值时,往往用抛物线的定义进行转化,即化折线为直线解决最值问 题.
为
()
A.圆
B.椭圆
C.双曲线
D.抛物线
【答案】D
【解析】依题意,点P到直线x=-2的距离等于它到点(2,0)的距
离,故点P的轨迹是抛物线.
微思考 定义中为什么要求直线l不经过点F? 【答案】提示:当直线l经过点F时,点的轨迹是过点F且垂直于直
线l的一条直线,而不是抛物线.
抛物线的标准方程
图形
标准方程 y_2_=__2_p_x(_p_>__0_)
焦点坐标
准线方程 p 的几何
意义
p2,0 x=-p2
_y2_=__-__2_p_x(_p_>__0_) _x_2=__2_p_y_(_p_>_0_)_ x_2_=__-__2_py_(_p_>__0)
-p2,0 x=2p
抛物线及其标准方程 课件

成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
[解析] (1)设所求的抛物线方程为 y2=-2px(p>0)或 x2= 2py(p>0),
∵过点(-3,2),∴4=-2p·(-3)或 9=2p·2. ∴p=23或 p=94. 故所求的抛物线方程为 y2=-43x 或 x2=92y, 对应的准线方程分别为 x=13,y=-98.
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
[方法规律总结] 利用抛物线的定义可以将抛物线上的点 到焦点的距离转化为到准线的距离,这一相互转化关系会给解 题带来方便.要注意灵活运用定义解题.
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
抛物线及其标准方程
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
抛物线的定义及标准方程 思维导航 1.我们已知二次函数的图象为抛物线,生产生活中我们 也见过许多抛物线的实例,如跳绳时绳子的弧线、探照灯的纵 截面,那么抛物线是怎样定义的?有什么特点?如何画出抛物 线?
__F__(0_,__-__p2_) __y_=__p2_____ x_2=__-__2_p_y_(_p_>_0_)
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
5.过抛物线焦点的直线与抛物线相交,被抛物线所截得的 线段,称为抛物线的__焦__点__弦____.
[分析] 图(2)是图(1)中位于直线O′P右边的部分,故O′B为 水池的半径,以抛物线的顶点为原点,对称轴为y轴建立平面 直角坐标系,则易得P点坐标,再由P在抛物线上求出抛物线方 程,再由B点纵坐标求出B点的横坐标即可获解.
高中数学课件-第7讲 抛物线

第7讲 抛物线1.理解抛物线的定义、几何图形和标准方程,以及它们的考试要求简单几何性质(范围、对称性、顶点、离心率).2.理解抛物线的简单应用.01聚焦必备知识知识梳理1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程和几何性质常用结论夯基诊断××√×2.回源教材(1)抛物线y 2=10x的焦点到准线的距离是________.答案:5抛物线的方程为y 2=10x ,则p =5,所以抛物线y 2=10x 的焦点到准线的距离是5.(2)过点P(-2,3)的抛物线的标准方程为________.(3)已知抛物线C:y2=4x的焦点为F,点A为抛物线C上一点,若|AF|=3,则点A的横坐标为________.答案:202突破核心命题例1 (1)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,点A 是抛物线C 上一点,AD ⊥l ,交l 于D .若|AF |=4,∠DAF =60°,则抛物线C 的方程为________.考 点 一 抛物线的方程与几何性质答案:y 2=4x(2)(2021·新高考Ⅰ卷)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为________.1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.2.应用抛物线的几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.训练1 (1)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )C答案:16例2 (2024·福州质检)在平面直角坐标系Oxy 中,动点P (x ,y )到直线x=1的距离比它到定点(-2,0)的距离小1,则P 的轨迹方程为( )A.y 2=2xB.y 2=4xC.y 2=-4xD.y 2=-8x考 点 二抛物线的定义及应用考向 1求轨迹方程DD 由题意知动点P(x,y)到直线x=2的距离与到定点(-2,0)的距离相等,由抛物线的定义知,P的轨迹是以(-2,0)为焦点,x=2为准线的抛物线,所以p=4,轨迹方程为y2=-8x.例3 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为__________.2最值问题与抛物线有关的最值问题的两个转化策略(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.反思感悟DA考 点 三抛物线的综合问题1.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.反思感悟训练3 过抛物线C:x2=2py(p>0)的焦点F作直线l与抛物线C交于A,B两点,当点A的纵坐标为1时,|AF|=2.(1)求抛物线C的方程;(2)若抛物线C上存在点M(-2,y0),使得MA⊥MB,求直线l的方程.03限时规范训练(六十三)A级 基础落实练1.(2023·临汾第一次适应性训练)已知抛物线C的焦点F关于其准线对B称的点为(0,-9),则C的方程为( )A.x2=6yB.x2=12yC.x2=18yD.x2=36y2.(2024·昆明一中月考)过抛物线y2=8x的焦点的直线l与抛物线相交于M,N两点.若M,N两点到直线x=-3的距离之和等于11,则这样的直线l( C )A.不存在B.有且仅有一条C.有且仅有两条D.有无穷多条C 由题意知M,N两点到准线x=-2的距离之和等于9,由抛物线定义得|MN|=9.又抛物线y2=8x的通径长为2p=8<|MN|=9根据过焦点的弦的对称性知,这样的弦有且仅有两条,故选C.图① 图②A.1 B.2C.3D.4ABB6.(多选)已知抛物线y2=2px(p>0)的焦点F到准线的距离为4,直线l过点F且与抛物线交于两点A(x1,y1),B(x2,y2),若M(m,2)是线段AB的中ACD点,则下列结论正确的是( )A.p=4B.抛物线方程为y2=16xC.直线l的方程为y=2x-4D.|AB|=10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学抛物线课件
高中数学抛物线课件
教学目标
1.抛物线的定义
2.抛物线的四种标准方程形式及其对应焦点和准线
教学重难点
教学重点:1.抛物线的定义和焦点与准线
2.抛物线的四种标准形式,以及p的意义。
教学难点:抛物线的四种图形,标准方程的推导及其焦点坐标和准线方程。
教学过程
一、知识回顾:
二次函数中抛物线的图象特征是什么?(平行于y轴,开口向上或者向下)
如果抛物线不平行于y轴,那么就不能作为二次函数的图象来研究了,今天我们来突破研究中的限制,从一般意义上来研究抛物线。
二、课堂新授:
(讲解抛物线的作图方法)
定义:平面内与一个定点F和一条定直线l 的距离相等的点的轨迹叫做抛物线。
点F叫做抛物线的焦点,直线l叫做抛物线的准线。
如图建立直角坐标系xOy,使x轴经过点F且垂直于直线l ,垂足为K,并使原点与线段
KF的中点重合。
结合表格完成下列例题:
1. 已知抛物线的标准方程是 y2=6x,求它的`焦点坐标和准线方程。
2. 已知抛物线的焦点坐标是F(0,-2),求它的标准方程。
解:1.∵抛物线的方程是 y2=6x,
∴p=3
∴焦点坐标是(,0),
准线方程是x=-
2.∵焦点在y轴的负半轴上,且,
∴p=4
∴所求的抛物线标准方程是 x2=-8y。
三、随堂练习:
1.根据下列条件写出抛物线的标准方程:
四、课堂小结:
由于抛物线的标准方程有四种形式,且每一种形式都只含有一个参数p,因此只要给出确定的p的一个条件就可以求出抛物线的标准方称。
当抛物线的焦点坐标或准线方程给定以后,它的标准方程就可以唯一的确定下来。
五、课后作业:P119 习题8.5 2、4。