区域信号协调控制

合集下载

区域交通信号控制系统课件

区域交通信号控制系统课件
TRANSYT使用了如下的周期流量图式: 〔1〕到达流量图式〔“到达〞图式〕 〔2〕驶出流量图式〔“驶出〞图式〕 〔3〕饱和驶出图式〔“满流〞图式〕
车流运行过程中的车队离散特性:
F a 1 bt
t 0.8T
式中:F 离散平滑系数
T 车队在连线上行驶时的平均行程时间(s)
a,b 曲线拟合参数
主要由仿真模型及优化两局部组成。
网络几何尺寸及网络交通流信息
新的信号配时
优化数据
初始信号配时
仿真模型
优化过程 最佳信号配时
网络内的延误及停车次数
性能指标PI 周期流量图
TRANSYT 基本原理图
TRANSYT仿真模型的几个主要环节
1〕交通网络构造图式:节点和连线来抽象网络 2〕周期流量变化图式 3〕车流在连线上运行状况的模拟 为描述车流在一条连线上运行的全过程,
SCATS在实行对假设干子系统的整体协 调控制的同时,也允许每个穿插口“各自 为政〞地实行车辆感应控制,前者称为 “战略控制〞,后者称为“战术控制〞。 这样可提高控制效率。
SCATS实际上是一种用感应控制对配时 方案可作局部调整的方案选择系统。
SCATS优选配时方案的各主要环 节
1.子系统的划分与合并 〔1〕子系统的划分由交通工程师根据交通流量
2. SCATS 参数优选算法简介:
SCATS把信号周期、绿信比及绿时差作为 各自独立的参数分别进展优化。优化过程中 使用的算法以所谓“综合流量〞及“饱和度〞 为主要依据。
〔1〕饱和度:SCATS所使用的饱和度指被 车流有效利用的绿灯时间与绿灯显示时间之 比。
〔2〕综合流量:为防止采用与车辆种类〔车身 长度〕直接相关的参量来表示车流流量, SCATS引入了一个虚拟的参量“综合流量来反 映通过停车线的混合车流的数量〞。

《道路交通控制技术》课程教学大纲

《道路交通控制技术》课程教学大纲

《道路交通控制技术》课程教学大纲一、课程目标通过《道路交通控制技术》的学习,帮助学生了解交通管理与控制相关课程之间的关系,交通管理与控制原则与基本内容,交通管理与控制的现状、发展趋势。

基于此本课程重点探究了道路交通控制和管理技术,在简要回顾道路交通控制技术发展历程的基础上,帮助学生了解交通信号控制的实施条件、单个路口交通信号控制、干道交通信号协调控制、区域交通信号协调控制、快速道路交通信号控制、行人与自行车交通信号控制、交通信号控制系统设备、交通信号控制系统的实施以及城市智能交通系统中与交通信号控制密切相关的一些应用,同时可以掌握一定的控制技能。

1.学生发现问题、分析问题和解决问题的能力,对道路交通控制有一个理性的认识,掌握城市交通信号控制的特点,能够规划交通控制线路,培养学生整体思维、融会贯通。

2.能够利用前期课程编程、PLC、单片机、制图与该课程的相关知识设计交通信号控制方案以及实现交通信号控制的优化。

二、课程教学的内容及学时分配1、课程理论教学内容及要求《道路交通控制技术》以讲授、讨论为方式,使学生对道路交通控制技术有了全面的了解,在获取新知识的技能的同时,提升了学生在道路交通控制方面的知识素养和专业运用能力,提高学生综合分析能力及处理信息的能力。

为毕业实习等专业课程学习奠定基础。

本教材较全面地介绍了道路交通控制的相关知识及实用技术。

1表1 课程目标、知识单元与学时分配2342、课程实验教学内容及要求5电路课程实验注重基础知识、基本技能的培养,以加强学生基本电工技术训练,着重于实验操作和实践技能的训练,以期达到用所学电路理论知识解决实际问题的能力,为学生适应社会各方面工程实际需要打下良好的基础,使学生初步具备验证电路、设计电路、处理实际线路的能力。

通过实验,使学生具备如下知识和能力:1)、学会设备操作、报告撰写基础知识,培养学生在实验中提出问题、分析问题、解决问题的能力和对实验数据的综合处理、归纳分析、得出实验结论的能力。

区域信号协调控制

区域信号协调控制

非机动车与行人的考虑
在多模式交通环境中,区域信号协调控制系 统还应充分考虑非机动车和行人的通行需求, 确保交通安全与效率。
智能化与自动化技术的应用
数据采集与分析
利用智能化与自动化技术,实时采集交通数 据并进行深度分析,为区域信号协调控制系 统提供ቤተ መጻሕፍቲ ባይዱ学决策依据。
动态调整信号灯控制策略
根据实时交通状况,动态调整信号灯控制策 略,实现自适应交通流控制,提高道路通行
铁路信号系统协调控制还可以与其他 铁路管理措施相结合,如列车调度、 车站管理等,以提高铁路运输的效率 和安全性。
通过铁路信号系统协调控制,可以实 现对列车运行状态的实时监测和调整, 确保列车按照预定的时刻表安全、准 时地运行。
水上交通信号协调控制
水上交通信号协调控制是确保水上交通 安全的重要手段之一。
优化交通信号灯控制能够降低车辆的 停车和加速次数,从而减少燃油消耗 和尾气排放,有利于节能减排和环境 保护。
合理的信号控制能够减少交通事故的 发生概率,保障交通安全。
区域信号协调控制的历史与发展
历史回顾
区域信号协调控制技术自20世纪60年代开始发展,经历了从简单到复杂、从局部到全面的发展过程 。
发展趋势
通过在高速公路沿线设置协调控制中心,对各路段的车流量、车速等信息进行实时 监测,并根据实际情况调整信号灯的配时方案,优化车辆的通行路径。
高速公路信号协调控制还可以与其他交通管理措施相结合,如限速管理、应急车道 管理等,以提高高速公路的交通安全和通行效率。
铁路信号系统协调控制
铁路信号系统协调控制是确保铁路运 输安全和高效的重要手段。
效率。
区域信号协调控制的标准化与规范化
要点一
统一的技术标准

智能运输系统第07讲 交通信号控制系统

智能运输系统第07讲 交通信号控制系统

期长度以及每个相位上的绿灯起止时间都是相对固定的,
亦即在某一确定的时间段上,上述配时参数保持不变。可 根据一天中交通量的波动情况,划分若干时间区段,对应
于每一时间区段的平均交通量制定相应的配时方案。
信号控制类别
2)半感应式信号控制
半感应式信号控制主要用在主次干道相交的交叉口,在这种
信号控制中,主干道总是保持绿灯。当埋设在次干道上的检 测器检测到车辆到达时,经过一个适当的信号转换间隔后,
3-2 泉中路-北大街
改造思路: 渠化改造 交通控制
停车线提前,并增加信
号灯控制-119s
信号控制类别
根据所采用的控制装置的不同,交通信号控制可以划分为
如下三种类型:
1)定周期信号控制 在定周期信号控制中,配时方案包括周期长度、相位次序、
绿信比和相位转换时间都是根据历史的交通数据事先确定 的。在事先确定的配时方案中,绿灯时间的长短、信号周
1928年,美国研制出世界上第一台感应式交通信号控制机,
这种信号控制机能够适应交通需求的变化,动态调整信号时 间。
1952年,美国科罗拉多州丹佛市首次利用模拟计算机和交通
检测器实现了对交通信号机网的配时方案选择式信号灯控制, 实现了交通网络协调控制雏形。
1963年,加拿大多伦多建立了世界上第一套由计算机控制的
特点
信号机以“固定配时”控制交通信号灯的周期变化。 信号机处理和控制功能有限,信号机之间的协作也较少。
3
感应式和协调式信号控制
1917年,美国盐湖城就开始使用联动式信号系统,把6个交
叉口作为一个系统,以手控协调方式进行集中控制。此后 1922年,休斯顿建立了一个同步系统,以一个交通亭为中心 控制12个相邻的交叉口。

交通信号控制(整理).ppt

交通信号控制(整理).ppt
目前,决定停车标志交叉口改为信号控制交叉 口时,主要应考察:停车标志交叉口的通行能力和 延误。
设置交通控制信号虽有理论分析的依据,但尚 未成为公认的有效方法,加上世界各国的交通条件 又各有差异,所以各国制订依据的具体数字不尽相 同,但原则上大多根据以上两条分析依据,考虑各 自的交通实际状况后制订出各自的标准。
s so N f f f f f f f f f
W
HV
g
p
bb
a
RT
LT
b
演示课件
二、单个交叉口交通信号控制
(四) 饱和流量的确定
其中,s ——车道组饱和流率;
so ——车道组在理想条件下的饱和流率;
N ——车道组中车道数; f w——车道宽度修正系数; f HV ——交通流中大---中型修正系数; f g ——引道坡度修正系数; f p——停车修正系数;
演示课件
二、单个交叉口交通信号控制
(三) 确定设计交通量
无最高15min流率的实测数据时,可按下 式估算:
q Q PHF
式中:Q-配时时段中,某进口道某流向的实际 高峰小时交通量(pcu/h) PHF-配时时段中,某进口道某流向的高 峰小时系数;主要进口道可取0.75,次要进口 道可取0.8。
演示课件
(3)有左转专用车道时,根据左转流向设计交 通量计算的左转车每周期平均流量达到一定程 度,以致完全不能利用冲突车流(对向直行车 流)的间隙完成左转时,宜设左转专用相位; (4)同一相位各相关进口道左转车每周期平均 到达量相近时,宜用双向左转专用相位,否则 宜用单向左转专用相位。
演示课件
二、单个交叉口交通信号控制
演示课件
一、交通信号控制概论
(三)信号控制类别

01 信号基础---交通信号控制基础概念分享

01 信号基础---交通信号控制基础概念分享

38、最小绿灯时间 相位绿灯信号允许开启的最短时间。 39、最大绿灯时间 相位绿灯信号允许开启的最长时间。 40、全红状态 所有信号灯组灯色均显示为红色的信号状态。 41、绿冲突 规定不允许同时放行的信号灯组的绿色信号灯同时点亮称为绿冲突。 42、冲突点 在交叉路口内两股不同方向的交通流其行驶轨迹的相交点。
5、车辆检测器 检测车辆的存在及通过状态的装置,并能实时采集通过检测点的车辆交通信息(交通量)。常用的有感应线圈检 测、地磁检测、微波检测及视频检测。
交通信号控制系统
地磁检测器
微波检测器
6、交通信号控制系统 由路口信号设备、检测设备、通信设备、控制计算机及相关软件所组成的用于城市道路交通控制的 系统。
7、自适应控制 根据交通流的状况,在线实时地调整 信号控制参数以适应交通流变化的控 制方式。
感应控制
8、感应控制 交叉路口信号机根据车辆检测器测得 的交通流数据来调节信号显示时间的 控制方式。
➢全感应控制 交叉路口所有相位均有感应请求的感 应控制方式。
➢半感应控制 交叉路口仅部分相位有感应请求的感 应控制方式。
11、交通阻塞 由于交通需求增加,或交通事故、工程施工、违章行为和自然等原因,导致车辆过度密集而增加延误和排队长度,
车辆只能停车等候的交通状态。
12、信号灯组 一个完整的红、黄、绿三头灯或行人红、绿二头灯的组合。 13、信号组
具有同一灯色序列的所有信号灯组的集合。
14、信号相位 在一个信号周期内,同时获得通行权的一个或多个交通流的信号显示状态。
根据时钟同步,通过设定相位差来实现交 叉路口交通信号协调的控制方式。


协调控制
5、区域协调控制(面控) 把城市某一区域内的多个交叉路口交通信

智能交通系统中存在的问题及改进措施

智能交通系统中存在的问题及改进措施

智能交通系统中存在的问题及改进措施改革开放以来,随着我国经济建设的快速发展,我国的道路交通也得到了快速的发展。

目前随着人们生活水平的提高,交通堵塞已成为人们日益关注的焦点问题。

针对这些问题,我国交通部门在交通方面引入了一些先进的技术,采用网络技术来改善我国交通的现状,但是在实行的时候,仍然存在许多问题。

本文主要阐述了智能交通系统中存在的问题以及相应的改进措施。

关键字:智能交通系统;发展现状;存在问题;对策0 引言随着科学技术的不断进步,各种计算机信息技术运用到了人们生活的每一个方面。

针对道路交通混乱等现象,交通部门可以引进智能交通系统,使用先进的技术,把人与车辆的行驶合并到一个整体,并制定一定的行驶秩序,在一定程度上降低安全事故的发生,保证道路交通的顺畅,同时也降低了交通部门的劳动成本。

1 智能交通系统的重要性分析20世纪的时候,西方各个国家的发展达到了鼎盛的时期,但是随之而来的交通问题,严重影响了人们的生活,因此各大国家开始研究交通控制系统,大概在20世纪80年代的时候,交通运输系统得到了快速的发展。

目前随着我国城市化脚步的加快,各种交通工具相继发展起来,以至于我国的交通压力越来越大,甚至经常出现交通问题,严重影响了城市居民的正常生活。

众所周知,解决交通问题的主要方法是修建道路,但是只靠修建道路进行交通的维护是远远不够的。

针对日益突出的交通问题,交通部门若想在有限的空间,维持好良好的交通秩序,就要采取先进的技术,例如智能交通系统,将先进的计算机技术、电子科技技术以及网络技术等与车辆和行人合理的结合起来,从根本上解决道路拥堵问题。

其中,在道路交通管理中使用智能交通系统,一方面能够缓解道路拥堵的问题,另一方面也大大提高了道路的交通安全。

2 目前我国智能交通系统中存在的问题目前,针对我国交通运输情况,我国引进了智能交通系统,但是在对智能交通系统使用的过程中依然存在许多的问题,其中主要包括以下几个方面:2.1 区域信号协调控制系统与本国交通状况不符在我国的智能交通系统中,区域信号协调控制系统大致分为两种:一种是固定的区域信号协调系统,另一种是实时的可以自行调控的区域信号协调系统。

第七章-交通信号控制

第七章-交通信号控制

二 信号控制参数基与本概念

交叉口交通运行状态及车辆受阻描述

在信号控制下,车辆在红灯期间受阻,产生排队,在绿 灯期间放行,疏散车队。 三种情况:欠饱和,临界饱和,过饱和 三种交通运行状态的描述


Gei*S和q*C的大小 Gei与ts(车队疏散时间也叫饱和绿灯时间)的大小
PS.对于欠饱和 Qm=q*Rei ts=Qm/(S-q);Gei=ts+自由流时间
停车损失时间l2:因严禁闯红灯,黄灯结束前,越过停车线的车流不 再密集,已是非饱和车流,黄灯也属于给予通行权的时间,这样损失
一部分通行权时间,也叫黄后损失时间。

若绿灯信号时段,车辆时时以饱和状态运行则不会有损失了,实际上 存在着起动停车损失。
二 信号控制参数基与本概念

相位有效绿信比ui等于相位有效绿灯时间与信号周
二 信号控制参数基与本概念

关键车道

交叉口有多个进口道,每个进口道又有着一条或者多 条车道。

对于信号配时的确定,不是所有的进口车道都起着决
定作用,只有部分车道的交通需求起着决定作用,这 就是关键车道 把关键车道作为确定信号配时的依据。

二 信号控制参数基与本概念

关键车道的确定方法(以两相位为例)
1)按控制范围分类

单点交叉口交通信号控制(点控)


主干路交通信号协调控制(线控)
区域交通信号系统控制(面控)
一 交通信号控制

2.交通信号控制的分类
2)按控制方法分类

定时控制

感应控制
定时控制

交叉口的信号控制按事先设定的配时方案运行即为 定时控制,亦称定周期控制。 适合于那些交通量不大、变化较稳定、相邻交叉口 距离较远的交叉口。 根据一天内采用配时方案的多少,分:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PI值上升
PI值下降
向“-”方向 试调成功
三、SCATS控制系统
SCATS系统属于响应式联机操作系统, 70年代开始研究,80年代投入使用。该 系统把信号周期、绿信比和相位差作为 各自独立的参数分别进行优选,优选过 程所使用的“算法”以饱和度和综合流 量为主要依据。它的优化过程并没有利 用数学模型,而是再各种预定的方案钟 进行优选,方法简单但配时方案的数量 是有限的。
一、 概述
(二)分类(4)
3.按控制结构分 (1)集中式控制:多个区域由一个中心控制 优点:研制与维护方便; 所需设备较少,维修方便。 缺点:通信复杂,存储数量大。 考虑因素: 需要监视和控制的实时单元的数量; 分配数据和指令所需通信线路的费用; 可选用的控制方法和执行能力的灵活性。
一、 概述
一、 概述
(二)分类(3)
2.按控制方式分 (1)方案选择式(SCATS) 通常要根据不同的交通流,事先求解出各 种配时方案,存储在中心计算机内,系统运行 时按实时采集的交通量数据,选取最适用的配 时方案,实施交通控制。 (2)方案生成式(SCOOT) 根据实时采集的交通量数据,在线算出最 优控制参数从而形成配时方案。
二、固定式脱机控制系统
TRANSYT是一种用于定周期信号控制系 统的设计方法。在该系统中,信号周期 是共用的,而且在一个确定的配时方案 执行阶段内,每个交叉口上的各个信号 阶段起迄时间点(相对于一个周期长度 的比例)是固定不变的。为了适应交通 量随时间而变化的客观情况,就要拟定 适合于不同交通状况的配时方案,以供 不同时段使用。对于已有控制方案的路 口,TRANSYT利用自身的交通模型对已有 方案进行优化。
(二)分类(5)
3.按控制结构分 (2)分层式控制 第一层:(微观层)交叉口层,一般由信号机 控制 功能包括:监视设备故障;收集检测数据 (时间占有率、流量、速度等);上传分控 中心;接受下达的指令并执行(或人工干 预)。 第二层:(中观层)分控中心 功能包括:接受信号机上传数据并上报中控 中心;形成方案并下达信号机执行。
三、SCATS控制系统
交通管理数据 库 中央监控中心
区域控制分中 心
区域控制分中 心
区域控制分中 心
子控制区
子控制区
子控制区
子控制区 子控制区
子控制区
1~10个信号控制 器
1~10个信号控 制器
SCATS系统的控制结构层次示意图
三、SCATS控制系统
中央控制中心,除了对整个控制系统运行状况及 系统各项设备工作状态作集中监视之外,还有专门用 于系统数据库管理的计算机。执行管理任务的计算机, 对所有各区域控制分中心的各项数据以及每一台信号 控制器的运行参数进行动态存储。SCATS系统以1-10 个交叉口组成的子系统作为基本控制单位。在所有交 叉口的每一进口通道上,都设置车辆检测装置,传感 器分设于每条车道停车线后面,根据车辆检测装置所 提供的实时交通量数据和停车线断面在绿灯期间的实 际通过量,算法系统选择子系统内各交叉口共用的信 号周期长度、各交叉口的绿信比及相位差。考虑到相 邻子系统有合并的可能,则需为它们选择一个合适的 绿时差(即:子系统外部的绿灯起步时距差)。
三、SCATS控制系统
SCAT系统的结构层次(如下图所示)大 体上可分为:中央监控中心→区域控制中心 →信号控制器,在区域控制中心(Regional Control)对路口信号控制器实行控制时, 通常将每1~10个信号控制器组合为一个 “子系统”(Sub-System),若干个子系统 组合为一个相对独立的系统。系统之间基本 上互不相干,而系统内部各子系统之间,存 在一定的协调关系,随交通状况的实时变化, 子系统既可以合并,也可以重新分开。三项 基本参数的选择,都是以子系统为计算单位。
一、 概述
一般来说,城市区域内各交叉路口处的交通 流是相互关联的,某些情况下,提高某一交叉口 的通行能力或减少车辆在该交叉口的延误,有可 能引起关联路口更多的延误,换句话说:子系统 最优并不能保证大系统最优。因此,有理由认为: 实施交叉路口间的协调自适应控制能够获得更好 的效果。自适应控制是把交通系统作为一个不确 定性系统,能够连续测量其状态,如车流量、停 车次数、延误时间、排队长度等,逐渐了解和掌 握对象,把它们与希望的动态特性进行比较,并 利用差值以改变系统的可调参数或产生一个控制, 从而保证不论环境如何变化,均可使控制效果达 到最优或次最优。
城市区域交通信号的控制通常基于这 样一个事实:在一个区域或整个城市范围 内,一个路口交通信号的调整将会影响相 邻路口的交通流;而相邻路口交通信号的 改变也会影响本路口的交通状况。因此, 从整个系统的战略目标出发,根据交通量 检测数据,协调区域内各路口的交通信号 配时,必然能够取得整体最优的效果。而 这种效果是交通信号单点控制所不能获得 的。
二、固定式脱机控制系统
2.在仿真的路网范围内,所有信号灯交叉口, 均采用一个共用的信号周期长度;或者, 某些交叉口采用共用周期长度一半作为其 信号周期。每个交叉口信号阶段划分情况 以及各信号阶段的最短时间均为一致。 3.每一股独立的车流,不管是直行通过交叉 口还是在交叉口转弯,其流率(即在某一 时段内的平均流量值)比较稳定,且假定 均为常量。
TRANSYT基本上由两大部分构成,其一是交通 仿真模型,其二则是优化选择。 建立交通仿真模型,其目的是用数学方法模 拟车流在道路系统上的运行状况,研究路网配 时参数的改变对车流运动的影响,以便客观地 评价任意一组路网配时方案的优劣。为此,交 通仿真应当能够对不同配时方案控制下的车流 运动参数(延误时间、停车率、燃油消耗量等) 做出可靠的预测,以便客观的评价任意一组配 时方案的优劣。
一、 概述
(三)采用区域控制系统应考虑的事项
1.控制性能的发展性:在这种大的控制系统的 建设中,要有次序地把现有的定周期式信号 机更换为面控系统。尽量使控制机能引入新 的研究成果,而不致改变原来的机器构成即 尽量利用老的信号机。 2.控制范围有扩大的可能性:随着城市的发展, 城市规模的扩大,必须有可能扩大控制范围, 以扩大中央控制室的作用。
TRANSYT绿时差的优选“爬山法”
开始
向“+”方向 试调一个步距 路网运行 指标PI上升
路网运行指标PI上升
向“-”方向 试调一个步距
PI值上升
PI值下降 重 复 调 整 再向“+”方向 试调一个步距 PI值下降 向“+”方向 试调成功 重 复 调 整 PI值上升 维持初始配时参数 不做调整
再向“-”方交通信息和初始配时参数作为原始数 据,以包含多项参数的综合目标函数— —“运行指标”(Performance Index, PI)作为配时方案优选的依据,用“爬 山法”进行优化,产生比初始配时方案 优越的新的配时方案,再把新的信号配 时方案输入到仿真系统,反复迭代,最 后得到PI达到最佳时的配时方案。
三、SCATS控制系统
西姆斯等人曾竭尽全力为SCATS系统 寻求一种能最大限度地减少路网上车辆 的延误时间和停车次数的配时参数优化 “算法”,用以对三项基本参数——信 号周期、绿信比及相位差进行优选。诚 然,在目前的SCATS系统中,并没有使用 模拟实时交通的数学模型,但它却也有 一套以实时交通数据为基础的“算法”, 用于实时方案选择。按不太严格的归类 方法,这种系统也可算作一种实时反馈 控制系统。
三、SCATS控制系统
SCATS控制系统是一种实时自适应控 制系统。该系统是自二十世纪70年代开 始研究,并于80年代初投入使用。最初 应用于澳大利亚悉尼市,故而得此名。 目前,我国的上海等城市采用了SCAT系 统。这一系统是由澳大利亚新南威尔士 干线道路局的西姆斯(A.G.Sims)等 人开发的,实际上也是一种实时配时方 案选择系统。
一、 概述
(二)分类(6)
第三层:(宏观层)中央控制中心 功能包括:监视整个系统的运行;宏观交通管 理和决策(根据交通强度作出不同的控制决 策);下达特殊方案 分层控制的优缺点 优点:减少通信费用;可靠性较高(可降级 处理);处理实时单元的容量较大;控制方法 较灵活 缺点:投资高;设备维护复杂;控制程度复 杂
二、固定式脱机控制系统
最新的TRANSYT方法,不仅对每一信号阶 段绿灯起步时距和绿灯长度进行优选,而 且还能对整个路网上不同部分应该分别使 用的最佳信号周期值提出分析结果,既可 供设计者参考,也可自动选择最佳周期值 作为配时设计的基础,进行绿信比和相位 差的合理选择。 TRANSYT方法中有如下几条基本假定: 1 . 在 路网 上 , 所 有 交 叉 口 均 由 信 号 灯 控 制 (或由优先通行权控制)。
区域信号协调控制
主要内容
一、概述 二、固定式脱机控制系统 三、SCATS控制系统 四、SCOOT系统 五、RHODES系统
区域交通信号控制(简称面控制)系 统的控制对象是城市或某个区域中所有交 叉口的交通信号。控制区域内各受控交通 信号都受中心控制室的集中控制。对较小 的区域,可以整个区域集中控制;范围较 大的区域,则需分区分级控制。分区的结 果往往成为一个由几条线控系统组成的分 级集中控制系统,这时,可以认为各线控 系统是面控系统中的一个单元;有时分区 还会成为一个由点、线、面控制的综合性 分级控制系统。
一、 概述
(一)概念
1.控制对象:城市或某区域中所有交叉口的交 通信号。通常设立控制中心进行监控,是单点 控制与干线控制的结合 2.控制特点 (1)便于整体监视和控制 (2)因地制宜选择合适的控制方法 (3)有效、经济地选择设备
一、 概述
(二)分类(1)
1.按控制策略分 (1)定时式脱机操作控制系统(TRANSYT) 利用已有的交通量统计数据进行脱机优化 处理,得出最优配时方案,然后存入信号机 或控制计算机内,对整个区域实施控制。该 系统只有在网络交通条件发生重大变化,信 号配时方案不能满足要求时,才重新对整个 网络进行一次交通量数据采集、处理,进而 更新信号配时方案。很显然,离线控制系统 简单、可靠,但不能及时响应交通流的随机 变化,因此当交通量数据过时后,控制效果 明显下降。
相关文档
最新文档