第五章定积分、广义积分

合集下载

高等数学 定积分

高等数学 定积分

第五章 定积分第一节 定积分的概念第二节 定积分的性质和中值定理第三节 微积分基本公式第四节 定积分的换元法第五节 定积分的分部积分法第六节 定积分的近似计算第七节 广义积分问题的提出定积分的定义 几何意义定积分存在定理第一节 定积分的概念abxyo?=A 曲边梯形由连续曲线实例1 (求曲边梯形的面积))(x f y =)0)((≥x f 、x 轴与两条直线a x =、b x =所围成.一、问题的提出)(x f y =ab xyoab x yo用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.曲边梯形如图所示,,],[1210b x x x x x a b a n n =<<<<<=- 个分点,内插入若干在区间a bxyoi ξi x 1x 1-i x 1-n x ;],[],[11---=∆i i i i i x x x x x n b a 长度为,个小区间分成把区间形面积,曲边梯形面积用小矩上任取一点在每个小区间i i i x x ξ-],[1ii i x f A ∆ξ≈)(:))(],[(1近似为高为底,以i i i f x x ξ-(1)分割(2)近似ini i x f A ∆≈∑=)(1ξ曲边梯形面积的近似值为ini i x f A ∆=∑=→)(lim 10ξλ时,趋近于零即小区间的最大长度当分割无限加细)0(},,max{,21→∆∆∆=λλn x x x 曲边梯形面积为(3)求和(4)取极限实例2 (求变速直线运动的路程)设某物体作直线运动,已知速度)(t v v =是时间间隔],[21T T 上t 的一个连续函数,且0)(≥t v ,求物体在这段时间内所经过的路程.思路:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值.(1)分割212101T t t t t t T n n =<<<<<=- 1--=∆i i i t t t ii i t v s ∆≈∆)(τ部分路程值某时刻的速度(3)求和ii ni t v s ∆≈∑=)(1τ(4)取极限},,,max{21n t t t ∆∆∆= λini i t v s ∆=∑=→)(lim 10τλ路程的精确值(2)近似设函数)(x f 在],[b a 上有界,记},,,max{21n x x x ∆∆∆= λ,如果不论对],[b a 在],[b a 中任意插入若干个分点bx xx x x a nn =<<<<<=-121把区间],[b a 分成n 个小区间,各小区间的长度依次为1--=∆i i i x x x ,),2,1( =i ,在各小区间上任取一点i ξ(i i x ∆∈ξ),作乘积i i x f ∆)(ξ ),2,1( =i 并作和i i ni x f S∆=∑=)(1ξ,二、定积分的定义定义怎样的分法,⎰==ba I dx x f )(ii ni x f ∆∑=→)(lim 10ξλ被积函数被积表达式积分变量积分区间],[b a 也不论在小区间],[1i i x x -上点i ξ怎样的取法,只要当0→λ时,和S 总趋于确定的极限I ,我们称这个极限I 为函数)(x f 在区间],[b a 上的定积分,记为积分上限积分下限积分和几点说明:(1) 定积分是一个数值,它仅与被积函数及积分区间有关,⎰b a dx x f )(⎰=b a dt t f )(⎰=ba duu f )(而与积分变量的字母无关.)( ,)()( 2⎰⎰⎰=-=aaabbadx x f dx x f dx x f 规定:)(.],[)(],[)( 3的取法无关的分法及的和式的极限与所表示上可积,则在区间若)(i bab a dx x f b a x f ξ⎰,0)(≥x f ⎰=ba Adx x f )(曲边梯形的面积,0)(≤x f ⎰-=ba Adx x f )(曲边梯形的面积的负值a b xyo)(x f y =AxyoabA -)(x f y =三、定积分的几何意义1A 2A 3A 4A 4321)(A A A A dx x f ba ⎰=-+-,],[)(变号时在区间b a x f 三、定积分的几何意义.)(是面积的代数和⎰badx x f几何意义:积取负号.轴下方的面在轴上方的面积取正号;在数和.之间的各部分面积的代直线的图形及两条轴、函数它是介于x x b x a x x f x ==,)(++--当函数)(x f 在区间],[b a 上连续时,定理1定理2 设函数)(x f 在区间],[b a 上有界,且只有有限个间断点,则)(x f 在四、定积分的存在定理区间],[b a 上可积.例1 利用定义计算定积分.12dx x ⎰解将]1,0[n 等分,分点为nix i =,(n i ,,2,1 =)小区间],[1i i x x -的长度nx i 1=∆,(n i ,,2,1 =)取i i x =ξ,(n i ,,2,1 =)i i n i x f ∆∑=)(1ξi i ni x ∆=∑=21ξ,12i ni ix x ∆=∑=.,102的选取无关及法故和式极限与区间的分可积因为i dx x ξ⎰n n i ni 121⋅⎪⎭⎫ ⎝⎛=∑=∑==n i i n 12316)12)(1(13++⋅=n n n n ,121161⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=n n ∞→⇒→n 0λdx x ⎰102i i ni x ∆=∑=→210lim ξλ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=∞→n n n 121161lim .31= 几何上是曲线y=x 2,直线x=1及x 轴围成的曲边三角形面积.例2 利用定义计算定积分.121dx x⎰解在]2,1[中插入分点 12,,,-n q q q ,典型小区间为],[1ii q q -,(n i ,,2,1 =)小区间的长度)1(11-=-=∆--q qq q x i i i i ,取1-=i i qξ,(n i ,,2,1 =)i i ni x f ∆∑=)(1ξi ni ix ∆=∑=11ξ)1(1111-=-=-∑q q q i ni i ∑=-=ni q 1)1()1(-=q n 取2=nq即nq 12=),12(1-=n n )12(lim 1-+∞→xx x x xx 112lim1-=+∞→,2ln =)12(lim 1-∴∞→nn n ,2ln =dx x ⎰211i ni ix ∆=∑=→101lim ξλ)12(lim 1-=∞→n n n .2ln =i i ni x f ∆∑=)(1ξ原式⎥⎦⎤⎢⎣⎡π+π-++π+π=∞→n n n n n n n nsin )1(sin 2sin sin 1lim π=∑=∞→n i n n i n 1sin 1lim n n i ni n π⋅⎪⎭⎫ ⎝⎛ππ=∑=∞→1sin lim 1.sin 10⎰ππ=xdx ix ∆i ξ例3:将下列和式极限表示成定积分.⎥⎦⎤⎢⎣⎡-+++∞→n n n n n n πππ)(sin sin sin lim121 :五、小结1.定积分的实质:特殊和式的极限.2.定积分的思想和方法:分割化整为零求和积零为整取极限精确值——定积分求近似以直(不变)代曲(变)取极限Z .思考n n n n f n f n f ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim 试证.1)(ln ⎰=dxx f e 2:将和式极限,表示成定积分.⎥⎦⎤⎢⎣⎡-++-+-∞→2222241241141lim n n n n n 证明n n n n f n f n f ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫⎝⎛∞→ 21lim ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→=n n n n f n f n f e21lim ln n n n n f n f n f ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim 试证.1)(ln ⎰=dx x f e 利用对数的性质得⎪⎭⎫⎝⎛∑==∞→n i f n ni n e1ln 1lim n n i f ni n e1ln lim 1⋅⎪⎭⎫ ⎝⎛∑==∞→ 指数上可理解为:)(ln x f 在]1,0[区间上的一个积分和.分割是将]1,0[n 等分分点为nix i =,(n i ,,2,1 =)⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→=n n n n f n f n f e21ln lim 极限运算与对数运算换序得nn i f n i n 1ln lim 1⋅⎪⎭⎫ ⎝⎛∑=∞→⎰=10)(ln dx x f 故nn n n f n f n f ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim.10)(ln ⎰=dxx f e 因为)(x f 在区间]1,0[上连续,且0)(>x f 所以)(ln x f 在]1,0[上有意义且可积 ,2:将和式极限,表示成定积分.⎥⎦⎤⎢⎣⎡-++-+-∞→2222241241141lim n n n n n ⎰∑-=-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++-+-=⎥⎦⎤⎢⎣⎡-++-+-=∞→∞→∞→1021222222222411)(41lim )(41)2(41)1(411lim 41241141lim dxx n ni n n n n n n n n n n i n n n 解第二节 定积分的性质、中值定理1.定积分性质2.中值定理对定积分的补充规定:(1)当b a =时,0)(=⎰ba dx x f ;(2)当b a >时,⎰⎰-=abb adx x f dx x f )()(.说明 在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小.一、定积分性质和中值定理证⎰±ba dxx g x f )]()([i i i ni x g f ∆±=∑=→)]()([lim 10ξξλi i ni x f ∆=∑=→)(lim 10ξλii ni x g ∆±∑=→)(lim 10ξλ⎰=ba dx x f )(.)(⎰±ba dx x g ⎰±b a dx x g x f )]()([⎰=b a dx x f )(⎰±ba dx x g )(.(此性质可以推广到有限多个函数作和的情况)性质1⎰⎰=ba b a dx x f k dx x kf )()( (k 为常数).证⎰ba dx x kf )(ii ni x kf ∆=∑=→)(lim 10ξλi i n i x f k ∆=∑=→)(lim 1ξλii ni x f k ∆=∑=→)(lim 10ξλ.)(⎰=ba dx x f k 性质2⎰ba dx x f )(⎰⎰+=bcca dx x f dx x f )()(.补充:不论 的相对位置如何, 上式总成立.c b a ,,例 若,c b a <<⎰c a dx x f )(⎰⎰+=cb b a dx x f dx x f )()(⎰b a dx x f )(⎰⎰-=cb c a dxx f dx x f )()(.)()(⎰⎰+=bc ca dx x f dx x f (定积分对于积分区间具有可加性)假设bc a <<性质3dx b a ⋅⎰1dx ba⎰=a b -=.则0)(≥⎰dx x f ba. )(b a <证,0)(≥x f ,0)(≥ξ∴i f ),,2,1(n i =,0≥∆i x ,0)(1≥∆ξ∴∑=i i ni x f },,,max{21n x x x ∆∆∆= λi i ni x f ∆∴∑=→)(lim 1ξλ.0)(⎰≥=ba dx x f 性质4性质5如果在区间],[b a 上0)(≥x f ,例1 比较积分值dx e x⎰-20和dx x ⎰-20的大小.解令,)(x e x f x -=]0,2[-∈x ,0)(>x f ,0)(02>-∴⎰-dx x exdx ex⎰-∴2,02dx x ⎰->于是dx e x ⎰-2.20dx x ⎰-<性质5的推论:证),()(x g x f ≤ ,0)()(≥-∴x f x g ,0)]()([≥-∴⎰dx x f x g ba ,0)()(≥-⎰⎰ba ba dx x f dx x g 于是 dx x f ba ⎰)( dx x g ba ⎰≤)(.则dx x f ba ⎰)( dx x g ba ⎰≤)(. )(b a <如果在区间],[b a 上)()(x g x f ≤,(1)dx x f b a ⎰)(dx x f ba⎰≤)(.)(b a <证,)()()(x f x f x f ≤≤- ,)()()(dx x f dx x f dx x f ba ba ba ⎰⎰⎰≤≤-∴即dx x f ba ⎰)(dx x f ba⎰≤)(.说明: 可积性是显然的.|)(x f |在区间],[b a 上的性质5的推论:(2)设M 及m 分别是函数证,)(M x f m ≤≤ ,)(⎰⎰⎰≤≤∴ba ba b a Mdx dx x f dx m ).()()(a b M dx x f a b m ba -≤≤-⎰(此性质可用于估计积分值的大致范围)则 )()()(a b M dx x f a b m ba -≤≤-⎰.)(x f 在区间],[b a 上的最大值及最小值,性质6例2 估计积分dx x⎰π+03sin 31值的范围.解,sin 31)(3xx f +=],,0[π∈∀x ,1sin 03≤≤x ,31sin 31413≤+≤x ,31sin 31410030dx dx x dx ⎰⎰⎰πππ≤+≤.3sin 31403π≤+≤π∴⎰πdx x例3 估计积分dx xx⎰ππ24sin 值的范围.解,sin )(xx x f =2sin cos )(x x x x x f -='2)tan (cos x x x x -=⎥⎦⎤⎢⎣⎡∈2,4ππx ,0<)(x f 在]2,4[ππ上单调下降,,22)4(π=π=f M ,2)2(π=π=f m ,442π=π-π=-a b ,422sin 4224π⋅π≤≤π⋅π∴⎰ππdx x x .22sin 2124≤≤∴⎰ππdx x x 如果函数)(x f 在闭区间],[b a 上连续,上的平均值在],[)()(1b a x f dxx f a b ba⎰-则在积分区间],[b a 上至少存在一个点 ξ,使dx x f b a ⎰)())((a b f -=ξ. )(b a ≤≤ξ性质7(定积分中值定理)积分中值公式证Mdx x f a b m ba≤-≤∴⎰)(1)()()(a b M dx x f a b m ba -≤≤-⎰ 由闭区间上连续函数的介值定理知在区间],[b a 上至少存在一个点 ξ,)(1)(⎰-=ξbadx x f a b f dx x f ba ⎰)())((ab f -=ξ.)(b a ≤≤ξ即在区间],[b a 上至少存在一个点ξ,1. 积分中值公式的几何解释:xyoa b ξ)(ξf 使得以区间],[b a 为以曲线)(x f y =底边,为曲边的曲边梯形的面积等于同一底边而高为)(ξf 的一个矩形的面积。

数学积分第五章

数学积分第五章
xn 1
b xn x
A lim f ( i ) x i
0 i 1
n
二、定积分的定义 定义:设函数 f(x) 在闭区间 [a, b] 上有界,在 (a, b) 内任意
插入 n - 1 个分点
a x 0 x1 x 2
… xn 1 xn b
把区间 [a, b] 分成了 n 个小区间 [ x i 1 , x i ] ,其长度为
( i 1, 2 ,
… , n)
小区间的长度 x i x i x i 1 ⑵ 取近似 A i f ( i ) x i ⑶ 求和
A A i f ( i ) x i
i 1 i 1 n n
⑷ 取极限:设 为小区间长 度的最大值,则 o x0 a x 1 x 2 x i 1 i x i
b b
⑵ a [ f ( x) g ( x) ] d x a f ( x) d x a g ( x) d x ; 性质 ⑵ 可以推广到有限个可积函数的情形。 ⑶ 对任意常数 a , b , c,总有
b
b
b
a
b
f ( x) d x
a
c
f ( x) d x
c
b
f ( x) d x .
y
y f ( x)
y
y f ( x)
y
y f ( x)
。 .
o a c b x o a
。 .
.
c

.
c
b
x
o
a
b
x
三、定积分的几何意义(1)
由定积分的定义可得:
在闭区间 [a, b] 上,若函数 f ( x) 0 ,则 a f ( x ) d x 在几

3(专升本内容)定积分及其应用

3(专升本内容)定积分及其应用

b
b
b
f R[a, b], g R[a, b] f g R[a, b]
性质2
a kf ( x )dx k a f ( x )dx
b
b
k ( 为常数)
b
性质3
性质4
a f ( x )dx a f ( x )dx c
b
c
f ( x )dx
a 1 dx a

r 1 ( )
r 2 ( )
d

o

x
o
x
1 2 A [ ( )] d 2
1 2 2 A [ 2 ( ) 1 ( )]d 2
(2) 体积
o
a
A( x )
x x dx
b
y
V
x x x dx
a A( x )dx
(2)分部积分法

b
a
udv [uv ] vdu
7、常用的积分等式:

a
a
2 a f ( x)dx , f ( x) f ( x) 0 f ( x)dx ; 0 , f ( x) f ( x)
a l a
f ( x l ) f ( x) :
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.

b
f ( x )dx alim a f ( x )dx blim 0
0
b
f ( x )dx
(2)无界函数的广义积分
a f ( x )dx lim0 a
a f ( x )dx lim0 a
判断瑕点:考察f(x)的间断疑点处是否f(x)→ ∞.

第5章定积分95525

第5章定积分95525

第五章定积分一、基本内容(一)基本概念1.定积分的定义:设函数f (x)在[a, b]上有定义,任取分点a =Xo c Xj c X2 <••• < x n_^ < x^ b .把区间[a,b]分成n个小区间[x ij X i]称为子区间,其长度记为△X i =X i —X i」(i =1,2,…,n)在每个小区间[X i^X i]上任取一点q(X i」<X i),得相应的函数值f(E i),作乘f GM X i (i =1,2,…,n)把所有这些乘积加起来,得和式nZ f(©i)心X i,i =1如果不论区间[a,b]分成n个小区间[X i」,X i]的分法如何及点©怎样取法,当分点无限增多(记作n T K)而每个小区间长度无限缩小(h=max{A x i}T 0),此和n式的极限存在,即设I “im S f^JA X i,贝U称函数f(x)在[a,b]可积,并将此极b限值I称为函数f (X)在[a,b]上的定积分。

记作/ f (x)dx,即L aa f(x)dx=i f G)i X i.(二)定积分的计算1.变上限积分X定义如果函数f(x)在[a,b]上连续,则①(x) = J f(t)dt, xFa,b]是积分上限XaX的函数,称f f(t)dt为变上限的定积分.“a2.牛顿-莱布尼兹公式设函数f(x)在[a,b]上连续,F(x)是f(x)的一个原函数,则b baf(x)dx = F(b)-F(a)=F(x) .3. 定积分换元积分公式设函数f(x)在[a,b ]上连续,函数x =^t)在区间[a ,P ]上单值且连续可导,其 值在[a,b ]上变化,且护(a ) =a,申(P ) =b ,则有b Paf(x)dx =『 伴(t))®'(t)dt在使用定积分换元公式时,要注意还原同时换积分限 4. 定积分的分部积分公式设函数u =u(x),v =v(x)在[a,b ]上有连续导数uTx)V(x),则bbau(X)dv(X)=u(X)v(X)|a (三) 广义积分 无穷区间上的广义积分-be b 驭a f(x)dx. blim f f (x)dx .c a ^If g dx +J %! f (x)dx .2 .无界函数的广义积分(1) 设 f (x)在(a, b ]上连续,lim/(X)=处,贝 UX —j a十b baf(x)dx =绞^+[七f(x)dx .⑵设f(x)在[a,b)上连续,lim f(x)=处,贝UX —j b —bb一名[f(x)dx = linn a f (x)dx . (3)设 f (x)在[a,c)和(c,b ]上连续,lim f (x)=处,则 X TbCb[f(x)dx = [ f(x)dx+.C f(x)dxc Yb=lim.f f (x)dx + lim.f , f (x)dx .二、练习题5. 1计算下列定积分:丑 1 ⑴為一dx. 三1 + COSX⑴[f(x)dx=bb (2) J f(x)dx =a 二-be⑶ Lcf(x)dx =b- av(x)du(x).1dx上 2”e%x.所以原式=-In | e 」+ Je^x -1『2 +山—e 2x (4) 『|sinx - cosx| dx .JI解:原式 =『(cosx - sin X)dx + g(sin x - cosx) dx4=sinx]# +cosx|4-cosx|2—sinx|24=返+2^_1+返 _1+返=2(血-1).2a⑸ Lx[f(x) + f(—x)]dx.aa解:原式=L xf (x)dx + xf (-x)dx ,解:原式= "2COS 2|f\sec 2xd- 今 2 2解:原式=f 6 dx= .016J x + 9 詈 |(2|063x 2 16j xdx+[于 dx|?=12.16解 :原式上21 -e 2xJn 2J 1 - e 2x_ln 2 dx= 0= dx- 訴-e 2xJn 2e2x兀_x edx£上2 de 2xL 2xP 1 -e上2 de^J e ^x _1丄 1 /n2d(1-e 2x )2^由于dx=In | X + J x 2 -1 | + C .『2 —In(2+7l)+¥XCM_xL| —co I 00+ co u」X—L)Xpx+L +CML | CM+ co _cL | COIIL I oq oT —X-I CM+ -1 CM+CO _c-I 00II■ I00IIXCMXCM VX L I CJ_P¥3n-x —L3X—L。

5-5广义积分

5-5广义积分

lim 10
01 1
1 x2
d
x
lim
2 0
11 02 x2 d x
1 10
1
1
11
lim( x)

1
lim (
2 0
x)
lim (1
2 0


2
im0(1
1)

lim (1
2 0
2)
由于上面两个极限都不存在,所以

π 2
0

π, 2
所以,广义积分1
1 x2
dx
收敛,且
1
1 x
2
dx

π 2

π 2

π.
例3
证明广义积分
1
1 x p dx
当p 1收敛,当p 1时发散.
证明 当p 1时,则
lim 1 dx
1 xp
b
b 1
1dx x

lim
b
a
f
( x)dx,
若上述等式右端的极限存在,则称广义积分a f (x)dx 收敛;如果上述极限不存在,则称广义积分a f (x)dx
发散.
类似地,无穷区间 (,b]上的广义积分定义为
b

f
(x)dx

lim
a
b
a
f
(x)dx
(a b).
无穷区间 (,) 上的广义积分定义为
此时,如果上式右端两个广义积分 ac f (x)dx和cb f (x)dx
都收敛,则称广义积分ab f (x)dx 收敛,否则称广义积

b
a

定积分积分法与广义积分

定积分积分法与广义积分
02
广义积分在一定条件下可以转化为定积分,而定积 分可以通过极限的思想推广到广义积分。
03
两者都涉及到积分的存在性和可积性,以及积分的 计算和性质。
定积分与广义积分的区别
定义域不同
定积分的定义域是有限的闭区间,而广义积分的定义域可 能是无限的区间或者无界点集。
积分结果可能不同
在定积分中,如果被积函数在闭区间上连续且在开区间上可积 ,则其积分值是确定的;而在广义积分中,即使被积函数在某
个区间上连续,其积分值也可能不存在。
意义不同
定积分主要用于计算面积、体积等数值结果,而广义积分则更 多地用于研究函数的性质和行为,例如函数的奇偶性、可导性
、收敛性等。
定积分与广义积分的应用场景
定积分的应用场景
在物理学、工程学、经济学等各个领域中,都需要用到定积分来计算各种量值,例如物体的质量、面积、体积 等。
换元法
通过换元公式将复杂的积分转化为简单的积分。
分部积分法
通过分部积分公式将两个函数的乘积转化为两个函数的积分之差。
广义积分的计算方法
无穷区间上的广义积分
通过将无穷区间分割成有限个小区间,然后对每个小区间上的函数值进行积分, 最后取极限得到广义积分的值。
无界函数的广义积分
对于无界函数的广义积分,需要特别注意积分的上下限,以及在计算过程中对无 界点的处理。
广义积分的性质
01
线性性质
广义积分具有线性性质,即对于两个 函数的和或差的积分,可以分别对每 个函数进行积分后再求和或求差。
02
区间可加性
对于函数在两个区间上的积分,如果 这两个区间有重叠部分,则该函数在 这两个区间上的积分之和等于在重叠 区间上积分的两倍。
03

高数第五章广义积分、定积分应用课堂练习题及参考答案

高数第五章广义积分、定积分应用课堂练习题及参考答案
0
ab.
2
y
b
O
ax
1
4
(2)
四.求下列平面图形分别绕 x 轴、y 轴旋转产生的立体的体积.
1. 由椭圆 x2 y2 1围成的平面图形 a2 b2
解:如图,该旋转体可视为由上半椭圆 y b a2 x2 及 x 轴所围成的图形,绕 x 轴旋转而成 a
的立体,故
Vx
a
dV
a
a
a
b2 a2
解: Vx
2 (x3 )2 dx
0
7
x7
|02
128 7
Vy
2
8 0
x
x3dx
2
1 ( 5
x5 )
|80
64 5
(或者 Vy
8 (22 3
0
y2
)dy
(4 y
3 5
5
y3
)
|80
64 5
(3)
4. 曲线 y x3 与直线 x 0, y 1所围成的图形
解: Vy
1
(3
0
y )2 dy
;当
p 1时,发散
3.
11 1 x2
dx 1 x
1 1
2
( “对”,“错” )
11 1 x2 dx
解:错,无界函数的积分,瑕积分,瑕点为 0,
1
1 dx
01 dx
11 dx
1 x2
1 x2
0 x2
0
1
1 0 dx
lim (1 1) ,(或者
1 x2
x 1
x x 0
2
3
3
x2
x3 3
1
0

高等数学(考研要点复习_下)

高等数学(考研要点复习_下)

第五章 定积分的概念教学目的与要求:1. 解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式。

2. 解广义积分的概念并会计算广义积分。

3.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力做功、引力、压力和函数的平均值等)。

5.1定积分概念 一. 定积分的定义不考虑上述二例的几何意义,下面从数学的角度来定义定积分 定义 设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点,把区间[a,b]分成n 个小区间,记},......,,max{,,......2,1,211n i i i x x x n i x x x ∆∆∆==-=∆-λ在[i i x x ,1-]上任意取一点i ξ,作和式:)1.......()(1ini ix f ∆∑=ξ 如果无论[a,b]作怎样分割,也无论i ξ在[i i x x ,1-]怎样选取,只要0→λ有→∆∑=ini ixf 1)(ξI (I为一个确定的常数),则称极限I 是f(x)在[a,b]上的定积分,简称积分,记做⎰badx x f )(即I=⎰badx x f )(其中f(x)为被积函数,f(x)dx 为积分表达式,a 为积分下限,b 为积分上限,x 称为积分变量,[a,b]称为积分区间。

注1. 定积分还可以用δε-语言定义 2由此定义,以上二例的结果可以表示为A=⎰badx x f )(和S=⎰21)(T T dt t v3有定义知道⎰badx x f )(表示一个具体的书,与函数f(x)以及区间[a,b]有关,而与积分变量x 无关,即⎰badx x f )(=⎰badu u f )(=⎰b adt t f )(4定义中的0→λ不能用∞→n 代替5如果ini ix f Lim∆∑=→1)(ξλ存在,则它就是f(x)在[a,b]上的定积分,那么f(x)必须在[a,b]上满足什么条件f(x)在[a,b]上才可积分呢?经典反例:⎩⎨⎧=中的无理点,为,中的有理点,为]10[0]10[,1)(x x x f 在[0,1]上不可积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 (令x t)
0
2
(5) xf (sin x)dx
f (sin x)dx

2 f (sin x)dx
0
20
0
(令x t)
二、基本问题及解法
问题(一) 有关变上限积分的运算
如果f ( x)在[a, b]上连续,则变上限积分( x)
x
f (t)dt
a
是x的连续函数.可进行函数的各种运算,如,求极限、 求
(3) a ( x a)k k 1时发散
利用以上结论可直接判定一些广义积分的敛散性:
例1.下列广义积分发散的是 ( )
1 dx
( A)0
; x
2 dx
(B)
;
1 3 x1
dx
(C )1
; x
dx
(D)2 x (ln x)
利用上述结论不难判定 (C), (D)正确.
6.微积分的常用公式
dy 2xe y2 cos x2dx
例5.设f ( x)在[0, )上连续且满足
x2 (1 x )
f (t)dt x
0
求f (2)
解 : 方程两边对x求导,得 f [x2(1 x)][x2(1 x)] 1,
即 f ( x2 x3 ) (2x 3x2 ) 1.令 x 1,得 f (2) 1 5
(a, c为任意常数)
2 a kf (x)dx k a f (x)dx
3 a [ f (x) g(x)]dx a f (x)dx a g(x)dx
4
分部积分公式
udv uv
vdu
a
a
a
5 也有相应的换元法;
6
f (x)dx F (x) F () F (a)
a
a
7
b f (x)dx F (x) b F (b) F ()
cos x
cos x
sin x, 0 x
2
sin x, x
2
所以 sin x sin3 xdx 0
2 cos x
0
sin xdx cos x
sin xdx
2
2
(sin
x)
3 2
2
2
(sin
x)
3 2
4
3
3
0
3
2
例4 求 16
dx
0 x9 x
解: 16
dx
16 x 9 x
解 f ( x ) x2 1,在[1,4]上的最小值、最大值分别为:
m 2, M 42 1 17.
2( 4 1 )
4
(
x2
1 )dx
17( 4
1)
1
所以
6
4
(
x2
1
)dx
51
1
(8)积分中值定理:
如果函数f(x)在区间[a,b]上连续,则在[a,b]上至
少存在一点
,使
b
a f (x)dx f ( )(b a)
导、 求极值等。
例1.求下列函数导数
(1) f ( x) x 1 t 2 dt; 1
(3) f ( x) x2etdt; x3
(2) f ( x) 0 f (t 2 )dt x2 x
(4) f ( x) a xf (t)dt
解: (1) f (x) 1 x2 ; (2) f ( x) f ( x4 ) 2x 2xf ( x4 )
反之不然
特别地,若f ( x)在[a,b]上连续,f ( x) 0( 0)
b
a f ( x)dx 0 f ( x) 0,
(7)估值定理:m f ( x) M, x [a,b],有
b
m(b a) a f ( x)dx M(b a)
例1.估计积分值: 4 ( x2 1 )dx 1
(3) f ( x) ex2 2x ex3 3x2 xex2 (2 3xex )
x
x
(4) f ( x) [ xa f (t)dt] a f (t)dt xf ( x)
x
arctantdt
例2.求 lim 0 x0
x2
解 : 原式( 0 型) lim arctan x 1 lim arctan x 1
b
vdu
a
aa
注:1 u,dv 的选取与不定积分相同;
2
若被积函数中含有变上限积分或被积函数的 导数时一般用分部积分。
5.广义积分
(1)无穷区间上的广义积分
(2)无界函数的广义积分(瑕积分) 注: 广义积分的计算转化为计算一个定积分的
极限,极限存在时收敛,极限不存在时发散;
(3)性质:
c
1 a f (x)dx a f (x)dx c f (x)dx
注2 Newton——Leibniz公式表明:
(1) 一 个 连 续 函 数 在 区 间 [a ,b ]上 的 定 积 分 等 于 它 的 任 意 一 个 原 函 数 在 区 间 [a ,b ]上 的 增 量 .
(2)求定积分问题转化为求原函数不定积分 的问题.
(3 )当
a
b

, b a
f
( x )dx
(1)若f ( x)在[a, a]上 连 续 , 则
a
a
f ( x)dx [ f ( x) f ( x)]dx
a
0
0, f ( x) f ( x)
2
a 0
f ( x)dx,
f (x)
f (x)
奇函数 偶函数
(2)若, f ( x T ) f ( x) 则
aT
T
T
a
f ( x)dx
0
x0 2x
2 x0 x
2
例3. lim e x2 x x
x t 2et2 dt lim
0
x
x t 2et2 dt
0
xe x2
x2e x2
x2
1
lim
x
e
x2
xe x2
2x
lim
x
1
2
x
2
2
例4.设方程 y et2 dt x2 cos tdt,确定y为x的
0
0
函数, 求dy
解 : (这是求变上限隐函数的微分) 两端微分 e y2 dy cos x2 2xdx,于是
a
dx a
b
c
b
(5)a f ( x)dx a f ( x)dx c f ( x)dx
(a,b, c的位置不一定,只要上述积分存在);
(6)比较性质:f ( x) g( x), x [a, b]
b
b
b
b
a f ( x)dx a g( x)dx, a f ( x)dx a f ( x) dx
dx
0 x9 x 0
9
例5.
1 9
2(x 3
3
9)2
2 3
x
3 2
求 1 xe x|x|dx 1
16
14
0
解 : 原式 0 xe x2 dx 1 xe x2 dx
1
0
1 e x2 0 1 e x2 1 1 (e e1 )1
2
1 2 0 2
练习: 求 2 1 cos xdx 0
b
a
(2).a f ( x)dx b f ( x)dx;
(3)(线性性质)
b
[ f ( x) g( x)]dx
a
b
b
a f ( x)dx a g( x)dx,
b
b
a kf ( x)dx k a f ( x)dx
(4) a f ( x)dx 0; d ( b f ( x)dx) 0( f ( x)连续)
dx a
a
b( x)
g( x)a f (t)dt g( x) f [b( x)]b( x)
4.定积分的计算方法
(1)Newton—Leibniz公式:
b f (x)dx F (x) b F (b) F (a)
a
a
其中F(x)为f (x)在[a,b]上的任一原函数
b
注1: f (b) f (a) a f (x)dx
2 x 2 4 x 2 dx
0
解: 设x 2sint,dx 2cos tdt
当 x 0时, t 0 ;当 x 2时, t
2
于是,
2 x2
0
4 x 2 dx 2 (2sint)2 0
4 4sin2 t 2cos tdt
4 2 (sin2t)2dt 2 2 (1 cos4t)dt
y f ( x) 0,
oa
bx
b
a
a f ( x)dx S
曲边梯形的面积
f ( x) 0,
y
a
o
b x
b
b
a f ( x)dx S
曲边梯形的面积
的负值
s1
0 s2
a
s3 b
b
a f ( x)dx S1 S2 S3
3.定积分的性质:
b
b
(1)a f ( x)dx a f (t )dt,
★问题(二): 定积分的计算
10 直接积分法
直接利用积分性质, 基本积公式,凑微分的方法 找到一个原函数代入牛顿— 莱布尼兹公式计算.
当 被 积 函 数 在 积 分 间 上连 续, 或 出 现 有 限 个 第一类间断点时,可直接或分段利用牛— 莱
公式积分;当被除数积函数出现绝对值、 分 段函数以及要开方的函数形式时, 必须注意
0
f ( x)dx
2 T
f ( x)dx
2
(3) 2 sinn xdx 2 cosn xdx
相关文档
最新文档