支架计算说明书

合集下载

支架说明书.doc11

支架说明书.doc11

设计说明书第一章概述该支架是按MT/T556-1996《液压支架设计规范》、MT312-2000《液压支架通用技术条件》标准进行设计、制造作的。

通过MT312-2000《液压支架通用技术条件》试验合格,能在井下安全使用。

支架型号含义支架最大高度:2.6m支架最小高度:1.6m支架工作阻力:3200kN支架型式: 放顶煤产品类型代号: 液压支架第二章支架的结构及性能ZF3200/16/26(简称ZF26)型放顶煤支架是在认真总结国内外放顶煤技术成果,分析研究各种放顶煤支架特点和使用经验的基础上,由天地科技股份有限公司开采所事业部设计的新型低位放顶煤支架。

第一节支架的适用条件1、可以用于放顶煤工作面,也可用于单一煤层开采工作面;2、作用在于每架支架上的顶板压力不能超过3200KN;3、配套刮板运输机型号前部SGZ-630/220、后部SGZ-630/220;4、配套采煤机型号MG160/380-WD;5、适用煤层倾角不大于15°。

第三节ZF3200/16/26支架的特点及组成一、支架的特点:(1)工作面三机配套,截深为600mm,为了保证截深和有效的移架步距,支架的推移千斤顶的行程定为700mm,拉后溜千斤顶行程定位800mm;(2)支架工作阻力大,对顶煤的支撑、破碎能力加强,提高了坚硬煤层顶煤回收率;(3)支架的前连杆采用双连杆,大大提高了支架的抗扭能力;(4) 放煤机构高效可靠;后部输送机过煤高度高,增加了大块煤的运输能力,尾梁向上向下回转角度大,增加了对煤的破碎能力和放煤效果;(5) 尾梁-插板机构采用小尾梁-插板机构,运动灵活自如;(6) 底座中部为推移机构,推移千斤顶采用正装形式,结构可靠。

推移为短推杆机构,结构简单可靠,重量轻;(7)支架前、后均配置喷雾降尘系统。

二、支架的组成(图1)ZF26液压支架主要由金属结构件、液压元件两大部分组成。

金属结构件有:护帮板、顶梁、掩护梁、尾梁、插板、前后连杆、底座、推移杆以及侧护板等,如图1所示。

张紧轮支架设计说明书

张紧轮支架设计说明书

张紧轮支架设计说明书设计说明书:张紧轮支架一、引言张紧轮支架是一种常用的机械装置,被广泛应用于桥梁、高架道路以及其他需要支撑和张紧轮的结构中。

本设计说明书旨在介绍该支架的设计原理、结构特点以及使用方法,以及如何正确维护和保养该设备,从而确保其长期稳定运行。

二、设计原理1. 张紧原理:张紧轮支架通过减小张紧轮的直径,使其在装配时产生预载力,从而在使用过程中保持合适的张紧力,以增强结构的稳定性和承载能力。

2. 结构原理:张紧轮支架主要由张紧轮、轴承座、固定爪、固定螺栓等组成。

张紧轮固定在轴承座上,通过固定爪将整个装置固定在需要支撑的结构上。

三、结构特点1. 材质选择:为了确保张紧轮支架的耐用性和稳定性,主要材料选择应具有高强度、耐磨性和耐腐蚀性,常见的选择有优质的合金钢或不锈钢。

2. 结构设计:在设计中应充分考虑张紧轮与轴承座的匹配度,确保其运行的平稳性和承载能力。

固定爪的设计应该牢固可靠,以防止在使用过程中的脱落。

3. 调节装置:为了适应不同编码结构的需求,张紧轮支架常配备调节装置,使其能够根据实际情况进行高度和张紧力的调整。

四、使用方法1. 安装前,应检查整个支架是否有损坏或锈蚀现象,以及固定螺栓是否松动,并及时进行修复或更换。

2. 将张紧轮支架固定在所需支撑的结构上,确保固定牢固。

3. 适当调整调节装置,使张紧轮与结构之间保持适当的张紧力,以确保结构的稳定。

4. 定期检查整个支架的使用情况,如发现异常应及时处理。

定期润滑轴承,以确保其正常运转。

五、维护与保养1. 定期检查并清洁整个支架,避免积聚杂物对支架的影响。

2. 定期检查固定爪和固定螺栓,保证其紧固度。

3. 定期润滑轴承,选择适当的润滑剂,并按照润滑周期进行维护。

4. 如发现轴承座、固定爪等部件有明显损坏或磨损,及时更换。

六、结语张紧轮支架作为一种重要的机械装置,在工程建设中发挥着重要作用。

本设计说明书通过介绍其设计原理、结构特点以及使用方法和维护保养等方面的知识,旨在帮助使用者正确使用和维护该设备,确保其长期稳定运行。

现浇箱梁支架计算书

现浇箱梁支架计算书

现浇箱梁支架计算书 The document was finally revised on 2021怀集至阳江港高速公路怀集至郁南段一期工程X2合同段A匝道第三联现浇支架计算书编制:审核:审批:中铁二十局集团有限公司怀阳高速公路X2标项目经理部二〇一八年二月目录A匝道桥第三联支架计算一、工程概况本桥为跨越道路而设,路线纵断较高,最大桥高约38米。

桥跨设计为(25+30+30)+5×25+(25+37+25),上部结构采用预应力混凝土预制小箱梁和预应力混凝土现浇箱梁。

桥墩采用柱式墩、墙式墩,桥台采用柱式台;桥墩、桥台基础均采用桩基础。

桥跨起点桩号为AK0+,终点桩号AK0+,中心桩号AK0+,桥跨全长为(包括耳墙)。

本桥平面位于圆曲线、缓和曲线、缓和曲线和圆曲线上,纵断面纵坡为%和%。

二、箱梁设计情况本桥第三联(25+37+25m)于AK0+上跨B2匝道桥,交叉角度149°,8号墩至11号台,桥位布置见图1。

全桥箱梁高度均为200cm,跨中顶板厚度25cm,底板厚度22cm,梁端顶板厚度45cm,底板厚度42cm;翼缘板宽度250cm,翼缘板板端厚度18cm,翼缘板根部厚度45cm。

腹板高度113cm,厚度由梁端80cm向跨中45cm渐变。

箱梁细部尺寸见表1,箱梁横断面见图2。

混凝土强度为C50,工程量为3。

图1 桥位布置图图2 箱梁横断面图三、支架布设方案支架顺桥向第1跨设置2个边墩、1个中墩,编号①、②、③;第2跨设置2个边墩、2个中墩,编号①、②、③、④;第3跨设置2个边墩、1个中墩,编号①、②、③。

详细布置图3如下:图3第三联支架布置立面图支架钢管柱横桥向对应中线对称布置4根,间距均为米。

钢管柱上放置双拼I36a工字钢横梁,横梁上面布置321型贝雷梁。

贝雷梁由花窗连接两拼一组或三拼一组,其中三拼一组间距45cm,两拼个一组间距90cm。

中线处两侧对称放置,由内至外分别为两拼、三拼、两拼,断面共有6组14片贝雷,每组贝雷间距为90cm,每隔6米用[10槽钢横向将所有贝雷梁连接为一整体。

脚手架盖梁支架计算方法

脚手架盖梁支架计算方法

脚手架盖梁支架计算方法一)立杆支撑稳定性验算计算原则:考虑到脚手架钢管的使用磨损情况,钢管材料按照中48X3.5mm 进行验算。

脚手架钢管截面积A = 4.89cπι2,回转半径i=15. 78mm,钢材抗压强度设计值为205MPa;1、不含大跨盖梁支架立杆支撑布置按照0.6X0. 6m (纵向X横向)进行设计,横杆设计按照步距 1. 2m进行计算。

取单位面积重量最大的PHN05号盖梁4. 514t∕m2盖梁混凝土:⑴荷载计算:(不考虑风荷载):①永久荷载(ENGk)A、混凝土重:66. 2m3*25∕ (19.295*1. 9)=45. 144kN∕m2B、模板及支架重:0. 75 kN∕m2C、ΣNGK= (45. 144+0. 75)×0. 6×0, 6 = 16. 522kN②活荷载(ENQK)A、施工人员及设备荷载:LO kN∕m2B、振捣混凝土荷载:2. 0 kN∕m2C、ΣNQK= (1. 0 + 2.0) X0. 6X0. 6 = 1. 08 kN⑶计算荷载(N)N=l. 2NGK+1. 4NQK=1. 2×16. 522 + 1. 4×1. 08 = 21. 338kN2、立杆稳定性计算:N∕ΦA≤f式中:N 一立杆轴向力,取N=2L 338kN;6—稳定系数,根据长细比入=76,查得稳定系数6=0.744A一立杆截面积,A=4. 89cm2;f一钢材抗压强度设计值,取f = 205MPa.N∕ΦA = 21338∕ (0. 744X489) =58. 65MPa<f = 205 MPa故立杆稳定二)立杆地基承载力计算荷载计算:(不考虑风荷载)单根立杆的轴向力N=2L 338 kN整个支架的总竖向力 No 为 21. 338X36. 66/ (0.6X0.6) =2172. 92kN基础底面积为19. 295*1. 9=36. 66m2则基础底面平均压力:P=N∕A = 2172. 92/36. 66 = 59. 27KPa<80 Kpa (上海市地基平均承载能力)2、大跨箱梁桥大盖梁支架立杆支撑布置按照0.6X0. 3m (纵向X横向)进行设计,横杆设计按照步距 1. 2m进行计算。

(公建屋面)光伏支架计算书

(公建屋面)光伏支架计算书

海南恒大海花岛影视基地光伏项目2#、3#楼(整体)计算书审核:校核:编写:2017年1月22日目录1 设计依据 (1)1.1作用荷载计算过程 (1)2 计算简图 (2)3 荷载与组合 (2)3.1 节点荷载 (3)3.2 单元荷载 (3)3.3 其它荷载 (6)3.4 荷载组合 (7)4 内力位移计算结果 (7)4.1 内力 (7)4.1.1 内力包络及统计 (7)4.2 位移 (18)4.2.1 组合位移 (18)5 设计验算结果 (23)5.1 设计验算结果图及统计表 (24)附录 (27)6.连接螺栓计算 (28)6.1主梁与横向次梁的连接 (28)6.2横向次梁与纵向次梁的连接(纵向次梁端) (31)6.3横向次梁与纵向次梁的连接(横向次梁端) (32)6.4横向次梁与纵向次梁的连接(连接过渡用钢板) (34)6.5拉条与横向次梁的连接(横向次梁端) (35)1 设计依据《钢结构设计规范》 (GB50017-2003) 《冷弯薄壁型钢结构技术规范》 (GB50018-2002) 《建筑结构荷载规范》 (GB50009-2012) 《建筑抗震设计规范》 (GB50011-2010) 《建筑地基基础设计规范》 (GB50007-2011) 《钢结构焊接规范》 (GB50661-2011) 《钢结构高强度螺栓连接技术规程》 (JGJ82-2011)1.1作用荷载计算过程一、与光伏板直接连接横梁所受荷载1、永久荷载标准值(对水平投影面): 光伏板 22520.12630.99100k g kN m =≈⨯2、可变荷载标准值 (1) 活荷和雪荷载不考虑。

(2)风荷载根据招标文件要求,光伏板所受风荷载按围护结构计算,基本风压按50年一遇(0.80kN/m 2)考虑, 外部局部体型系数按1 2.0s μ=-外考虑。

根据《荷规》8.2.1,地面粗糙度类别为A 类,高度按26.6米考虑查表8.2.1 ()26.6201.67 1.52 1.52 1.6193020z μ-=⨯-+≈-8.3.4 光伏板横梁A=0.87x0.93=0.81m ²<1.0m ²,故1s μ外不折减 8.3.5 开放式,11 2.0s s μμ==-外 查表8.6.1 ()26.6201.53 1.55 1.55 1.5373020gz β-=⨯-+≈-8.1.1 10 1.537( 2.0) 1.6190.80 3.98k gz s z ωβμμω==⨯-⨯⨯≈ kN/m 22、汇总每根横梁所受荷载如下: 由上文可知,'0.1263k g ≈ kN/m边部迎风面最大角度14°,()'0,max 3.98 1.65sin 1420.794k ω=⨯⨯≈ kN/m2 计算简图计算简图 (圆表示支座,数字为节点号)3 荷载与组合结构重要性系数: 1.003.1 节点荷载3.2 单元荷载1) 工况号: 0*输入荷载库中的荷载:单元荷载分布图:单元荷载序号1分布图(实粗线表示荷载作用的单元) 2) 工况号: 1*输入荷载库中的荷载:单元荷载分布图:单元荷载序号1分布图(实粗线表示荷载作用的单元)单元荷载序号2分布图(实粗线表示荷载作用的单元)单元荷载序号3分布图(实粗线表示荷载作用的单元)单元荷载序号4分布图(实粗线表示荷载作用的单元)单元荷载序号5分布图(实粗线表示荷载作用的单元)单元荷载序号6分布图(实粗线表示荷载作用的单元)3.3 其它荷载(1). 地震作用规范:《建筑抗震设计规范》(GB50011-2010)地震烈度: 7度(0.10g)水平地震影响系数最大值: 0.08计算振型数: 9建筑结构阻尼比: 0.040特征周期值: 0.35地震影响:多遇地震场地类别:Ⅱ类地震分组:第一组周期折减系数: 1.00地震力计算方法:振型分解法(2). 温度作用无温度作用。

给水管道支架计算

给水管道支架计算

给水管道支架计算一、引言给水管道支架在建筑工程中起着至关重要的作用,它们不仅承受着管道的重量,还保证了管道的正常运行。

合理的支架设计、计算和安装对于确保给水系统的安全、稳定运行至关重要。

本文将详细介绍给水管道支架的类型、选用、计算方法、安装与维护等方面的内容,以期为工程实践提供参考。

二、给水管道支架的类型与选用1.支架类型的分类根据支架的材料、结构及功能等特点,给水管道支架可分为以下几类:(1)金属支架:如角钢、槽钢、钢管等。

(2)非金属支架:如混凝土、玻璃钢、塑料等。

(3)组合支架:如金属与非金属组合、多种材料组合等。

2.支架选用的原则在选用给水管道支架时,应遵循以下原则:(1)满足管道承载能力要求。

(2)确保管道在运行过程中的稳定性和安全性。

(3)考虑管道敷设方式、工程预算和施工条件。

(4)满足检修、维护和更换的便利性。

三、给水管道支架计算方法1.管道支架间距的确定管道支架间距应根据管道的直径、材质、运行压力等因素综合考虑。

一般情况下,支架间距可按照以下公式计算:间距= (管道外径+ 2 × 支架宽度)× 支架间距系数2.管道支架承载能力的计算管道支架承载能力计算主要包括两个方面:一是管道及附件的重量;二是管道运行过程中可能受到的附加载荷(如水锤、地震等)。

计算公式如下:承载能力= 管道及附件重量+ 附加载荷3.管道支架稳定性的分析管道支架稳定性分析主要包括支架的材料、结构、地基条件等因素。

在分析过程中,应注意支架在各种工况下的稳定性能,确保其在运行过程中不易发生变形或破坏。

四、给水管道支架的安装与维护1.支架安装的要求(1)支架位置应准确,符合设计要求。

(2)支架安装应牢固,保证管道与支架的连接紧密。

(3)支架安装过程中,应注意保护管道及附件,防止损坏。

2.支架维护与管理的重要性(1)定期检查支架的完好状况,发现问题及时处理。

(2)对损坏的支架进行更换,确保管道运行安全。

抗震支架技术说明书文件全资料

抗震支架技术说明书文件全资料

1.工程概况略。

2.抗震支架设计依据:主要采用的规标准(1)《建筑抗震设计规》(GB50011-2010)(2)《建筑机电工程抗震设计规》(GB50981-2014)(3)《建筑机电设备抗震支吊架通用技术条件》(CJ/T 476-2015)(4)《抗震支吊架安装及验收规程》(CECS420:2015)(5)《混凝土用膨胀型、扩孔型建筑锚栓》(JG 160-2004)(6)《建筑抗震设计规》(GB50011-2010)(7)《建筑机电工程抗震设计规》(GB50981-2014)(8)《建筑机电设备抗震支吊架通用技术条件》(CJ/T 476-2015)3.设计围:(1)重力大于1.8kN的设备;(2)DN65以上的生活给水、消防管道等系统;(3)矩形截面面积大于等于0.38 m2和圆形直径大于等于0.7m的风管系统;(4)径大于等于60mm的电气配管及重力大于等于150N/m的电缆梯架、电缆槽盒、母线槽;(5)防排烟风道、事故通风风道及相关设备;(6)吊杆长度小于300mm的悬吊管道可不进行抗震设计。

此设计围,(5)是必须执行的,规的强条。

4.抗震支架设计要求4.1基本要求(1)每段水平直管道应在两端设置侧向抗震支吊架(2)当两个侧向抗震支吊架间距超过最大设计间距时,应在中间增设侧向抗震支吊架。

例如:刚性连接金属管道长为24m,侧向抗震支吊架最大间距12m,首先于两端加设侧向支撑,再依次按12m 设置侧向支撑。

(3)每段水平直管道应至少设置一个纵向抗震支吊架,当两个纵向抗震支吊架距离超过最大设计间距时,应按《建筑机电工程抗震设计规》第8.2.3 条要求间距依次增设纵向抗震支吊架。

例如:刚性连接金属管道长为36m,按最大24m 的间距依次设置纵向支撑,直至所有支撑间距均满足要求。

(4)刚性连接的水平管道,两个相邻的加固点间允许纵向偏移,水管不得超过最大侧向支吊架间距的1/16,风管不得超过其宽度的两倍。

连续钢构桥0号块托架计算说明书

连续钢构桥0号块托架计算说明书
压力设计值: N = 260 kN
剪力设计值: V = 334 kN
弯矩设计值: M =5.2 kN·m
1.
(1)根据《混凝土结构设计规范》10.9.6条的规定,锚板厚度宜大于锚筋直径的0.6倍
满足要求。
(2)验算锚板的法向压力
预埋钢板尺寸:
A =600*450=270000 mm2
0.5fcA = 0.5×14.30×270000 = 1930500 N >260000 N满足要求!
(3)锚筋的受剪承载力系数
根据《混凝土结构设计规范》式10.9.1-5,得
0.437≤0.7
取v = 0.437
(4)求锚筋的受弯承载力系数
根据《混凝土结构设计规范》式10.9.1-6,得
(5)确定直锚筋层数影响系数
由于锚筋布置为四层,根据《混凝土结构设计规范》第10.9.1的规定,得
r = 0.85
泊松比
[σW](Mpa)
[σ](Mpa)
[τ](Mpa)
Q235
2.06E+05
0.3
145
140
85
建立计算模型
采用结构有限元计算软件,建立空间结构模型。
1.2.1
水平挑梁与牛腿采用固结;斜撑两端均为刚接。
1.2.2
建立托架结构空间计算模型:
1.3
1.3.1
正面托架组合应力等值线
正面托架剪应力等值线
正面托架中间分配分配量端头1.2米123KN/M,中间57KN/M.
正面托架外分配量端头1.2米58KN/M,中间24KN/M.
侧面按照等截面1.2米计算的。比实际重量大很多,所以不考虑安全系数。
分配梁的分配系数3:7:2.4总量为(1.2*2.1*15)*25=945KN
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

支架强度计算
支架是安装从下端到上端高度为4m以下的太阳能电池阵列时使用。

计算因从支架前面吹来(顺风)的风压及从支架后面吹来(逆风)的风压引起的材料的弯曲强度和弯曲量,支撑臂的压曲(压缩)以及拉伸强度,安装螺栓的强度等,并确认强度。

(1)结构材料
选取支架材料,确定截面二次力矩I M和截面系数Z。

(2)假象载荷
1)固定荷重(G)=
组件质量
2)风压荷重(W)
(加在组件上的风压力(W M)和加在支撑物上的风压力(W K)的总和)。

W=1/2×(C W×σ×V02×S)×a×I×J
3)积雪载荷(S)。

与组件面垂直的积雪荷重。

总荷重(W)
正压:5)=1)+2)+3)
负压:5)=1)-2)+3)
载荷的条件和组合
载荷条件一般地方多雪区域
长期平时G G+0.7S
短期积雪时G+S G+S
暴风时G+W G+0.35S+W 地震时G+K G+0.35S+K
附件1:△风荷载计算△
(1)设计时的风压载荷
W=C w×q×A w(作用于阵列的风压载荷公式)
式中W——风压荷重
C w——风力系数
q ——设计用速度压(N/m2)
A w——受风面积(m2)
(2)设计时的速度压
q=q0×a×I×J
式中q——设计时的速度压(N/m2)
q0——基准速度压(N/m2)
a——高度补偿系数
I——用途系数
J——环境系数
3)用途系数。

通常1.0
用途系数建设地点的周围地形等状况
1.15 ①极重要的太阳能光伏发电系统
1.0 ②普通的太阳能光伏发电系统
0.85 ③短时间或者①以外的系统,且太阳能电池阵列在地面以上高度为2m以下场合
4)环境系数。

通常1.0
环境系数建设地点的周围地形等状况
1.15 如海面一样基本没有障碍物的平坦地域
0.90 树木、低层房屋(楼房)分布平坦的地域
0.70 树木、低层房屋密集的地域,或者中层建筑(4-9层)物分布的地域
(3)风力系数
1)组件面的风力系数。

若是如下图所示的安装形态的场合,采用下图数据即可。

地面安装型 (单独)
屋顶安装型
风力系数
顺 风逆 风备 注
正 压负 压
正 压负 压
Φ
0.79
0.87
1.06
0.94
1.18
1.43
15°
30°
45°
20°
27°
12°
Φ
0.75
0.61
0.49
0.45
0.40
0.08
支架为数个的场合,周围端部的风力
系数取左边值,中央部的风力系数取左边
值的1/2最好。

在左边没有标注的角度由下
式求得:
(正压)0.65+0.009Φ;
(负压)0.71+0,016Φ
附件2:△积雪荷载计算△
设计时的积雪载荷:
S=C S×P×Z S×A S
式中S——积雪荷重
C S——坡度系数
P ——雪的平均单位质量(相当于积雪1cm的质量,N/m2)
一般的地方19.6N以上,多雪区域为29.4N以上。

Z S——地上垂直最深积雪量(cm)
A S——积雪面积
(1)坡度系数
坡度<30°>30°~40°40°~50°50°~60°>60°坡度系数C S 1.0 0.75 0.5 0.25 0 (2)雪的平均单位质量
雪的平均单位质量是指积雪厚度为1cm、面积为1m2的质量。

(3)积雪量
太阳能电池阵列面的设计用积雪量设定为地上垂直最深的积雪量(Z S),但是,经常扫雪而积雪量减少的场合,根据状况可以减小Z S值。

备注:南昌市50年一遇最大载荷。

载荷要求:风载为0.45KN/M2;
雪载为0.45KN/M2
安装方式屋顶厂房屋顶支架;
载荷计算:
备注:此处正压对组件影响比较大,所以只需考虑正压即顺风情况。

单块组件风载:(此处以12度角正压计算)
W=0.75*450*1.64*0.992=549N
单块组件雪载:
S=450*A S=450*1.64*0.992=732N
总载荷计算:(考虑最差情况,暴风雪时)
F=W+0.35S+G组件=549+732*0.35+200=1005N
由于支架在所有排列中最大跨度为1.0M,所以这里按照最大跨度计算;查SOLIDWORKS截面属性可知,导轨的抗弯截面模量3.549CM3,
导轨强度计算:
由于每块组件所受最大载荷为1005N,组件与组件之间的和力为1005N,由于总载荷由2根导轨承受所以单根导轨受力为503N.
所以集中载荷为503N,跨度为1.0M,是当集中载荷在中间时导轨受力最大,查机械设计手册可知Mmax=PL/4=503*1/4=126N*M;
σ=Mmax/Wf=126/3.549=35.5MP<145MP
所以导轨应用是安全的;
模型模拟验证:
模型信息
模型名称: 可调支架 新导轨 - 1000
当前配置: 默认
实体
文档名称和参考引用
视为
容积属性
文档路径/修改日期
凸台-拉伸1
实体
质量:0.899798 kg 体积:0.000333258 m^3
密度:2700 kg/m^3 重量:8.81802 N
导轨 - 1000.SLDPRT Aug 05 10:21:09 2014
算例属性
算例名称算例 1
分析类型静应力分析
网格类型实体网格
热力效果: 打开
热力选项包括温度载荷
零应变温度298 Kelvin
包括SolidWorks Flow Simulation 中的液压效
关闭

解算器类型FFEPlus
平面内效果: 关闭
软弹簧: 关闭
惯性卸除: 关闭
不兼容接合选项自动
大型位移关闭
计算自由实体力打开
摩擦关闭
使用自适应方法: 关闭
结果文件夹SolidWorks 文档(D:\工作文件\小金)
单位
单位系统: 公制(MKS)
长度/位移mm
温度Kelvin
角速度弧度/秒
压强/应力N/m^2
材料属性
模型参考
属性
零部件
名称: 6063-T5 模型类型: 线性弹性同向性 默认失败准则: 未知
屈服强度: 1.45e+008 N/m^2 张力强度: 1.85e+008 N/m^2 弹性模量: 6.9e+010 N/m^2 泊松比: 0.33 质量密度: 2700 kg/m^3 抗剪模量: 2.58e+010 N/m^2 热扩张系数: 2.3e-005 /Kelvin
SolidBody 1(凸台-拉伸1)导轨 - 1000
曲线数据:N/A
载荷和夹具
夹具名称
夹具图像
夹具细节
固定-1
实体: 2 面
类型: 固定几何体
合力
零部件 X Y Z 合力 反作用力(N) 486.535 -35.8257
-0.0211906
487.852 反力矩(N ·m)
文章来源:
载荷名称 装入图象 载荷细节
力-1
实体: 2 面 类型: 应用法向力 值: 503 N
网格信息
网格类型实体网格
所用网格器: 标准网格
自动过渡: 关闭
包括网格自动环: 关闭
雅可比点 4 点
单元大小12.2592 mm
公差0.612962 mm
网格品质高
文章来源:
网格信息- 细节
节点总数43785
单元总数22681
最大高宽比例56.478
单元(%),其高宽比例< 3 0.833
单元(%),其高宽比例> 10 36.5
扭曲单元(雅可比)的% 0
完成网格的时间(时;分;秒): 00:00:16
计算机名: PC201404011352
文章来源:
反作用力
选择组单位总和X 总和Y 总和Z 合力
整个模型N 486.535 -35.8257 -0.0211906 487.852 反作用力矩
选择组单位总和X 总和Y 总和Z 合力
整个模型N·m 0 0 0 0
算例结果
名称类型最小最大
应力1VON:von Mises 应力71946.4 N/m^2
节: 11681 1.83423e+007 N/m^2 节: 6857
可调支架新导轨- 1000-算例1-应力-应力1
位移1URES:合位移0 mm
节: 1 0.296916 mm 节: 3806
可调支架新导轨- 1000-算例1-位移-位移1
应变1ESTRN :对等应变 1.41537e-006
单元: 4353 0.000226646 单元: 14334
可调支架新导轨- 1000-算例1-应变-应变1
结论:导轨符合安装要求。

文章来源:。

相关文档
最新文档