关于凸函数的定义和性质

合集下载

凸函数上凸下凸凹函数

凸函数上凸下凸凹函数

凸函数上凸下凸凹函数凸函数、上凸函数、下凸函数和凹函数是数学中常见的函数类型,它们在经济学、物理学、计算机科学等领域中都有广泛的应用。

本文将详细介绍这些函数类型的定义、性质和应用。

一、凸函数的定义和性质凸函数是定义在实数区间上的一类函数,它具有很好的几何性质。

具体来说,如果函数f在定义域上的一些区间上满足以下条件,那么它就是凸函数:1. 对于区间上的两个点a和b,以及任意介于a和b之间的数t∈[0,1],都有f(ta+(1-t)b)≤tf(a)+(1-t)f(b)。

这个条件称为凸函数的Jensen不等式。

从几何上来看,Jensen不等式意味着函数图像上任意两点之间的连线位于函数图像的下方。

这个性质被称为凸函数的上凸性。

凸函数的性质包括以下几个方面:1.凸函数的上凸性。

对于凸函数f,任意两点a和b以及他们之间的连线位于函数图像的下方。

2.凸函数的上确界性质。

如果函数f在一些区间上凸且上有界,那么在该区间上必存在一个唯一的点c,使得f(x)≤f(c),对于任意的x∈区间。

3.凸函数的导数性质。

凸函数的导函数是非递减的。

也就是说,如果函数f在一些区间上凸,那么它的导函数f'(x)在该区间上非负。

凸函数有许多应用,特别是在经济学和运筹学中。

经济学家和决策者常常使用凸函数来描述效用函数、成本函数、收益函数等。

在运筹学中,凸函数被广泛应用于线性规划、非线性规划和凸优化等问题的建模和求解。

二、上凸函数和下凸函数的定义和性质上凸函数和下凸函数是凸函数的两个特殊情况。

上凸函数是指函数f在定义域上的一些区间上满足以下条件:1. 对于区间上的两个点a和b,以及任意介于a和b之间的数t∈[0,1],都有f(ta+(1-t)b)≥tf(a)+(1-t)f(b)。

上凸函数的性质包括:1.上凸函数是凸函数的一种特殊情况。

也就是说,任何一个上凸函数都是凸函数。

2.上凸函数的导数是非递增的。

也就是说,如果函数f在一些区间上上凸,那么它的导函数f'(x)在该区间上非正。

凸集与凸函数的性质与应用

凸集与凸函数的性质与应用

凸集与凸函数的性质与应用凸集与凸函数是数学中两个非常重要的概念,它们在各个领域都有广泛的应用。

本文将围绕凸集与凸函数的性质展开讨论,并探讨它们在实际问题中的应用。

一、凸集的定义及性质1. 凸集的定义在数学中,一个集合称为凸集,如果对于集合中的任意两点,连接这两点的线段上的所有点也在该集合内部。

2. 凸集的性质(1)凸集的交集仍然是凸集。

即若集合A和集合B都是凸集,则它们的交集A∩B也是凸集。

(2)凸集的闭包仍然是凸集。

即若集合A是凸集,则它的闭包A 也是凸集。

(3)凸集的仿射变换仍然是凸集。

即若集合A是凸集,线性变换T将A的元素变换到B,B上的任意两点通过T来自A的元素,B也是凸集。

二、凸函数的定义及性质1. 凸函数的定义在实数域上,如果一个函数的定义域是凸集,并且满足对于任意一对定义域内的点x₁和x₂以及任意的x∈ [0,1],都有凸函数性质:x(xx₁+(1−x)x₂) ≤ xx(x₁)+(1−x)x(x₂)则该函数被称为凸函数。

2. 凸函数的性质(1)凸函数上的割线位于函数图像的下方或与之切线重合。

(2)凸函数的上、下半级集都是凸集。

即对于凸函数x(x),有以下性质:- x∈ℝ且x∈ℝ,x(x) ≤ x≤ x(x) 成立,则对于该函数来说,有x(x) ≤ x,其中x∈ [x, x]。

- 若x(x) ≤ x,则x(x) ≤ x,其中x∈ℝ。

三、凸集与凸函数的应用1. 最优化问题凸集与凸函数在最优化问题中有着广泛的应用。

凸函数的性质保证了在一定条件下的最优解存在且唯一。

在优化问题中,我们可以将目标函数设为凸函数,将约束条件设为凸集,从而利用凸函数的性质来求解最优解,简化了问题的求解过程。

2. 经济学凸集与凸函数在经济学中也有重要的应用。

例如,生产函数、效用函数等都是凸函数,它们描述了在一定约束下的最优决策。

同时,凸集与凸函数也被应用在市场均衡理论、优化分配问题等经济学中的重要概念和工具中。

3. 机器学习凸集与凸函数在机器学习中也占据重要地位。

凸函数和凸的

凸函数和凸的

凸函数和凸的凸函数和凸集是数学中的两个重要概念,在数学和工程应用中非常常见。

本文将着重介绍这两个概念的定义、性质和应用。

一、凸函数1. 定义对于实数集合X上的函数f,如果对于任意的x1,x2∈X及实数α(0≤α≤1),都有f(αx1+(1−α)x2)≤αf(x1)+(1−α)f(x2)则称f是X上的凸函数。

简单来说,就是图像上任意两点连线在函数图像下方时,该函数为凸函数。

如下图:2. 性质(1)凸函数的一阶导数单调增加。

(2)如果f(x)在[a,b]内是凸函数,则∀x∈(a,b),有f(x)≤f(a)+f'(a)(x−a)或f(x)≤f(b)+f'(b)(x−b)(即解析式可以被类比为斜率大于等于零的直线),同时也可以得出:f(a)+f(b)2≥f(a+b2)即弦比切的定理。

(3)如果f(x)在[a,b]上是二次凸函数,则额外满足:f(a+x+b−a−2x2b−a)≤f(a)+f(b)2−f'(a)(b−a)4根据其定义可知,凸函数有一个很好的性质,即对于任意一个凸函数f(x),其局部最小值也是全局最小值。

这个性质在优化问题中非常有用。

3. 应用凸函数在优化问题中很常见,比如线性规划、非线性规划、半正定规划以及凸优化等。

此外,凸函数在机器学习中也有非常广泛的应用,比如核方法、支持向量机等。

二、凸集1. 定义凸集是指对于一个实数集合X,如果对于其中的任意两个点x1,x2∈X及实数α(0≤α≤1),有αx1+(1−α)x2∈X则称X是凸集。

也就是说,凸集内的任意两点连线上的任意一点也在凸集内。

如下图:2. 性质(1)凸集的交仍为凸集。

(2)凸集的凸组合一定在该凸集内。

(3)凸集的闭包也是凸集。

(4)如果X是凸集,则对于x∈X,X是以x为球心的超球体内的凸集。

3. 应用凸集和凸函数在很多方面都是密切相关的,比如凸优化和半正定规划等都涉及到凸集的概念。

凸集也被广泛应用于统计学和经济学中,例如一些概率模型的凸包上界(convex hull upper bound)和有效边界(efficient set)等等。

凸函数及其性质

凸函数及其性质

凸函数及其性质1. 定义1.1 定义⼀如果对任意x1、x2总有f[αx1+(1−α)x2]≥αf(x1)+(1−α)f(x2),其中0≤α≤1,则称f(x)为上凸函数如果对任意x1、x2且x1≠x2,总有f[αx1+(1−α)x2]>αf(x1)+(1−α)f(x2),其中0<α<1,则称f(x)为严格上凸函数1.2 定义⼆如果对任意x1、x2总有f[αx1+(1−α)x2]≤αf(x1)+(1−α)f(x2),其中0≤α≤1,则称f(x)为下凸函数如果对任意x1、x2且x1≠x2,总有f[αx1+(1−α)x2]<αf(x1)+(1−α)f(x2),其中0<α<1,则称f(x)为严格下凸函数2. 琴⽣(Jenson)不等式对于上凸函数,f(E[X])≥E[f(x)]或q∑k=1λk f(x k)≤f(q∑k=1λk x k),其中λ1,λ2,⋯,λq为正实数(或⾮负实数,后者去除⽆影响的λi=0的项即为前者,故⼆者等价)且q∑k=1λk=1;对于严格上凸函数,上述等号成⽴当且仅当x1=x2=⋯=x q。

对于下凸函数,f(E[X])≤E[f(x)]或q∑k=1λk f(x k)≥f(q∑k=1λk x k),其中λ1,λ2,⋯,λq为正实数(或⾮负实数,后者去除⽆影响的λi=0的项即为前者,故⼆者等价)且q∑k=1λk=1;对于严格下凸函数,上述等号成⽴当且仅当x1=x2=⋯=x q。

↓证明过程如下↓2.1 上凸函数证明:因为λi均为正实数,故有 f(q ∑k=1λk x k)=f(λ1x1+q∑k=2λk∑q k=2λk x k∑q k=2λk)≥λ1f(x1)+q∑k=2λk⋅f(∑q k=2λk x k∑q k=2λk) =λ1f(x1)+q∑k=2λk⋅f(λ2∑q k=2λk x2+∑q k=3λk∑q k=2λk⋅∑q k=3λk x k∑q k=3λk) ≥λ1f(x1)+λ2f(x2)+q∑k=3λk⋅f(∑q k=3λk x k∑q k=3λk) ≥⋯≥q∑k=1λk f(x k)2.2 严格上凸函数证明:由定义可知,对于严格上凸函数,f[αx1+(1−α)x2]≥αf(x1)+(1−α)f(x2)等号成⽴时当且仅当x1=x2。

第三节 凸函数

第三节 凸函数

d)f(x)=x12+4x1x2-x22
解 a)
∂f( x ) ∂x
2 1
= 10x 1+
2
x
2
- 5,
∂f( x ) ∂x
2
=
x
1
+ 2x 2+ 4
∂ f( x ) ∂x
2 2 1
= 10,
∂ f( x ) ∂x
2 1
= 1
x
2
∂ f( x ) ∂x
2
= 1,
∂ f( x ) ∂x 2
2
= 2
x
表明▽2f(x)负定,f(x)是严格凹函数。
c)

2 2 f (x) 0 0
0 12 x 2 0
0 0 0
▽2f(x)的一阶主子式分别为2,12x2,0均非 负(x2≥0);二阶主子式分别为
2 0 0 12 x2 2 4 x 2≥ 0 , 2 0 0 0 =0, 12 x 2 0 0 0 0
凸函数。
证明:设x,y∈R,且x≠y,λ∈(0 ,1)都有:
f[λx+(1-λ)y]-[λf(x)+(1-λ)f(y)]
=[λx+(1- λ)y-1]2 - λ(x-1)2 - (1- λ)(y-1)2
= -λ(1- λ)(x-y)2<0
因此f(x)在(-∞,+∞)上是严格凸函数。
例2:试证线性函数是Rn上的凸函数。
f[λx1+(1-λ)x2]= ≤
fα i 1+(1-λ)x2) i (λx
i=1
k
αi [λfi(x1)+(1-λ)f(x2)]
i 1
k

凸集和凸函数

凸集和凸函数

凸集和凸函数凸集和凸函数是数学中一些重要的概念。

它们的应用范围广泛,涉及到诸如优化、几何学、经济学、物理学等领域。

本文将分步骤阐述凸集和凸函数的定义、性质及应用。

一、凸集的定义和性质凸集是指在欧几里得空间中,对于其中的任意两点,它们之间的连线都落在该集合内。

换句话说,凸集中的任何一条线段都是完全落在凸集内的。

要说明集合是凸的,需要证明其满足如下两个条件:①对于其中的任意两点x和y,它们之间的任意一个点z,都应该满足z=λx+(1-λ)y(其中0≤λ≤1);②该集合是一个凸组合的闭包。

凸集有以下性质:1. 任意两个凸集的交集也是凸集;2. 凸集的闭包是凸集;3. 凸集的凸壳是凸集;4. 凸集的极小凸包是凸集;5. 凸集是连通的。

二、凸函数的定义和性质凸函数是指在函数图像下方的区域是凸集。

凸函数有以下几个特征:1. 任意两个点的线段都落在函数图像下方;2. 函数的一阶导数递增或数值非负;3. 函数的二阶导数数值非负。

凸函数具有以下性质:1. 任意两个凸函数的和是一个凸函数;2. 凸函数的下凸包是凸函数;3. 凸函数的上凸包是凸函数;4. 若函数f在定义域D内是凸的,那么其上任意一点的全体支撑线构成的集合是非空凸集。

在实际应用中,凸函数可用于优化问题、光学物理等方面。

因为凸函数有唯一的最小值和全局最小值,这种性质对于优化问题非常重要。

光学物理中,利用凸函数可对某些照明系统进行设计。

三、凸集和凸函数的应用凸集和凸函数的应用非常广泛。

它们在很多领域都得到了充分的应用,下面将简单介绍一些常见应用:1. 最优化问题。

凸函数有唯一的最小值和全局最小值,因此可以用于优化问题中,如线性规划、非线性规划等。

2. 几何形状分析。

凸集的定义是指一个区域内的两点连线都在该区域内,因此凸集可以用于分析几何形状。

3. 光学物理。

利用凸函数可以对光学系统进行设计,尤其是在非均匀照明下平均照度问题的解决中可以应用到凸函数。

4. 机器学习。

凸函数的判定与应用

凸函数的判定与应用

凸函数的判定与应用凸函数是数学中一种常见的函数类型。

它在优化问题、经济学、工程和自然科学等领域中得到广泛应用。

本文将介绍凸函数的判定准则,以及凸函数在各个领域中的应用。

一、凸函数的定义与性质在数学中,凸函数可以通过其定义和性质来进行判定。

定义:设函数f在区间[a, b]上连续,在(a, b)内可导。

如果对于任意x1、x2∈[a, b],以及任意0≤t≤1,都满足f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2),则称函数f为[a, b]上的凸函数。

性质:凸函数具有以下性质:1. 对于凸函数f(x),若f''(x)存在且恒大于等于0,则f(x)是凸函数。

2. 若函数f(x)在[a,b]上是凸函数且在(a,b)内可导,则在(a,b)内f'(x)是递增函数。

二、凸函数与判定方法凸函数的判定方法包括一阶导数、二阶导数和Jensen不等式等。

1. 一阶导数判定法若函数f(x)在区间[a,b]上可导,且对于任意x1、x2∈(a,b),有f'(x)在[a,b]上单调递增,则f(x)是在[a,b]上的凸函数。

2. 二阶导数判定法若函数f(x)在区间[a,b]上两次可导,且对于任意x∈(a,b),有f''(x)≥0,则f(x)是在[a,b]上的凸函数。

3. Jensen不等式对于凸函数f(x),若λ1、λ2、...、λn为非负实数,且满足λ1+λ2+...+λn=1,以及x1、x2、...、xn为任意n个区间[a,b]上的数,则有以下不等式成立:f(λ1x1+λ2x2+...+λnxn)≤λ1f(x1)+λ2f(x2)+...+λnf(xn)三、凸函数的应用领域凸函数广泛应用于各个领域,包括优化问题、经济学、工程和自然科学。

1. 优化问题在优化问题中,凸函数常被用来描述目标函数或约束条件。

由于凸函数具有良好的性质,如弱凹性和全局极小值,因此可以通过凸优化算法来求解各种优化问题。

凸函数的定义

凸函数的定义

凸函数的定义凸函数是数学中一种非常基础且重要的概念,其在优化理论、微观经济学等领域都有着广泛的应用。

本文就来介绍凸函数的定义及其一些基本性质。

一、凸函数的定义在介绍凸函数之前,我们先来了解一下凸集的概念。

凸集是指对于该集合中任意两个点,它们之间的连线上的所有点也都属于该集合。

例如,一个圆形就是一种凸集,而一条线段则不是。

有了凸集的定义,我们就可以引出凸函数的定义了。

如果函数f 的定义域上的任意两点构成的线段都落在函数的上方,则该函数被称为凸函数。

反之,如果这些线段都落在函数的下方,则该函数被称为上凸函数。

这里需要注意的是,对于凸函数来说,图形上的“上方”指的是函数图像的上面,即函数值更大的区域。

而对于上凸函数,则是函数图像的下面,即函数值更小的区域。

二、凸函数的基本性质1.一阶导数单调递增对于凸函数来说,其一阶导数具有单调性。

也就是说,如果 f是一个凸函数,则其一阶导数 f' 是单调递增的。

反之,如果 f 的一阶导数是单调递增的,则 f 是凸函数。

这个性质非常重要,因为它可以用来证明很多凸函数的性质。

例如,如果我们知道了某个函数的一阶导数的单调性,就可以进一步证明该函数的二阶导数不小于零,从而证明该函数是凸函数。

2.上凸函数和下凸函数的判定对于一个函数 f,如果其一阶导数 f' 单调递减,则该函数是上凸函数。

反之,如果其一阶导数 f' 单调递增,则该函数是下凸函数。

这个判定方法可以用来判断很多函数的凸性。

例如,如果我们知道某个函数的一阶导数的单调性,并且该函数的一阶导数单调递增,则该函数是下凸函数。

3.凸函数的次导数函数的次导数是指它的 n 阶导数。

对于凸函数来说,它的次导数也具有一定的性质。

如果 f 是一个凸函数,则其次导数都不小于零。

这个性质可以用于推断一个函数是否是凸函数。

例如,如果我们知道某个函数的一阶和二阶导数都不小于零,则可以推断该函数是凸函数。

三、凸函数应用实例凸函数在优化理论、微观经济学等领域都有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于凸函数的定义和性质
作者:宋方, SONG Fang
作者单位:东华大学,人文学院,法学0601,上海,201620
刊名:
数学的实践与认识
英文刊名:MATHEMATICS IN PRACTICE AND THEORY
年,卷(期):2007,37(8)
被引用次数:4次
1.华东师范大学数学系数学分析 1991
2.孙本旺数学分析中的典型例题和解题方法 1981
3.李文荣;徐本顺凸函数-不等式-平均值 1990
1.罗超群凸函数在分析中的应用初探[期刊论文]-科教文汇2010(27)
2.阿荣.敖日格乐.A Rong.Aorigele凸函数的性质[期刊论文]-内蒙古农业大学学报(自然科学版)2008,29(1)
3.唐忠华.王传卫.朱根林.孟庆麟.TANG Zhong-hua.ZHU Gen-lin.WANG Chuan-wei.MENG Qing-lin关于凸函数的一个分析性质的充要条件[期刊论文]-大学数学2009,25(4)
4.蒋善利.普丰山.JIANG Shan-li.PU Feng-shan凸函数的性质与判断[期刊论文]-新乡学院学报(自然科学版)2009,26(6)
5.林木元.Lin Muyuan用凸函数性质证明数项级数的敛散性[期刊论文]-广西梧州师范高等专科学校学报2003,19(2)
6.杨露关于几何凸函数的不等式[期刊论文]-河北大学学报(自然科学版)2002,22(4)
7.张小明几何凸函数的几个定理及其应用[期刊论文]-首都师范大学学报(自然科学版)2004,25(2)
8.张彦民.ZHANG Yan-min应用凸函数性质证明几个不等式[期刊论文]-商洛学院学报2006,20(4)
9.王霞.江晓武.WANG Xia.JIANG Xiao-wu连续凸函数的判据及几何特征[期刊论文]-数学的实践与认识
2006,36(12)
10.冯育强.FENG Yu-qiang凸函数的次微分与微分中值定理的逆定理[期刊论文]-数学的实践与认识2009,39(12)
1.罗超群凸函数在分析中的应用初探[期刊论文]-科教文汇 2010(27)
2.江芹.杨溪有关凸函数的一些性质的注记[期刊论文]-黄冈师范学院学报 2011(6)
3.张广计用单侧导数和对称导数结合的方式研究函数的凸性[期刊论文]-中国科技信息 2009(11)
4.赵丹凸函数定义的等价性证明[期刊论文]-乐山师范学院学报 2008(12)
本文链接:/Periodical_sxdsjyrs200708035.aspx。

相关文档
最新文档