迭代法

合集下载

迭代法

迭代法

迭代方法也称为滚动方法。

Bai是一个过程,其中变量Du的旧值用于重现新值。

迭代算法是解决计算机问题的基本方法。

它利用了运算速度快的特点,并且适合重复操作,因此计算机可以重复执行一组指令(或某些步骤)。

每次执行指令组(或这些步骤)时,都会从变量的原始值中得出一个新值。

迭代方法分为精确迭代和近似迭代。

典型的迭代方法(例如二分法和牛顿迭代)属于近似迭代。

扩展数据:
对于区间[a,b]和f(a)·f(b)<0上的连续函数y=f(x),通过连续除以函数f(x)零点所在的区间,间隔的两个端点逐渐接近零点,然后获得零点的近似值称为二分法。

令[a,b]为R的封闭区间。

连续二等分方法将创建以下区间序列([an,BN]),如下所示:A0=a,B0=B,并且对于任何自然数n,[an+1,BN+1]等于[an,cn]或等于[cn,BN],其中CN表示[an,BN]的中点。

方法介绍
迭代法是一类利用递推公式或循环算法通过构造序列来求问题近似解的方法。

例如,对非线性方程,利用递推关系式,从开始依次计算,来逼近方程的根的方法,若仅与有关,即,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组,由关系从开始依次计算来过近方程的解的方法。

若对某一正整数,当时,与k无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。

称所构造的序
列为迭代序列。

迭代法求通项公式

迭代法求通项公式

迭代法求通项公式在我们的数学世界里,有一种神奇的方法叫做迭代法求通项公式。

这玩意儿听起来好像有点高深莫测,但其实只要我们一步步来,就会发现它并没有那么可怕。

先来说说什么是通项公式吧。

比如说,有一个数列 1,3,5,7,9......你能找到一个公式,让不管是第 100 个数,还是第 1000 个数,都能通过这个公式轻松算出来吗?这就是通项公式的魅力所在啦!那迭代法又是啥呢?我给你举个例子。

比如说有个数列,第一项是1 ,后面的每一项都是前一项加上 2 。

那第二项就是 1 + 2 = 3 ,第三项就是 3 + 2 = 5 ,第四项就是 5 + 2 = 7 ,以此类推。

那我们要是想找出第 n 项的通项公式,就可以用迭代法。

我们假设第 n 项是 aₙ ,那么 a₁ = 1 ,a₂ = a₁ + 2 = 1 + 2 ,a₃ = a₂ + 2 = (1 + 2) + 2 ,a₄ = a₃ + 2 = ((1 + 2) + 2) + 2 ...... 这么一直迭代下去,你是不是发现规律啦?咱们再细致点说。

有一次我给学生们讲这个迭代法求通项公式的时候,有个小家伙一脸迷茫地看着我,说:“老师,这也太复杂了,我搞不懂啊!”我就跟他说:“别着急,咱们慢慢来。

”我拿起一支笔,在纸上一步一步地写给他看。

我先从最简单的例子开始,就像刚才那个每项加 2 的数列。

我跟他一起算,每一步都解释得清清楚楚。

然后我让他自己试试算一个类似的数列。

一开始他还是有点磕磕绊绊的,但慢慢地,他的眼睛亮了起来,兴奋地跟我说:“老师,我好像懂了!”那一刻,我心里别提多有成就感了。

回到迭代法求通项公式,其实就是不断地通过前面的项来推导后面的项的规律。

有时候可能会有点繁琐,但只要我们耐心点,多算几步,规律往往就会自己跳出来。

比如说,有个数列,第一项是 2 ,第二项是 5 ,从第三项开始,每一项都是前两项的和。

那我们来用迭代法试试。

a₁ = 2 ,a₂ = 5 ,a₃= a₁ + a₂ = 2 + 5 = 7 ,a₄ = a₂ + a₃ = 5 + 7 = 12 ,a₅ = a₃ + a₄ = 7 + 12 = 19 ...... 这样一直算下去,然后观察数字的变化规律。

2.2 迭代法

2.2 迭代法

= ϕ ' (ξ )( x * − x * *) ≤ L x * − x * *
又, L < 1
⇒ x* = x * *
计算方法
② ∀x0 ∈ [a, b] 则 xk +1 − x *= ϕ ( xk ) − ϕ ( x*) = ϕ ' (ξ )( xk − x*)
≤ L xk − x * ≤ L2 xk −1 − x * x k +1 − x *
计算方法
二、收敛性分析
定理2.1 (全局收敛定理) 全局收敛定理) 定理
在区间[a,b]上可导 上可导 设ϕ ( x )在[a, b] 在区间
a (1)当a ≤ x ≤ b时, ≤ ϕ ( x ) ≤ b;
( 2) ∀x ∈ [a, b], | ϕ ' ( x ) |≤ L < 1 ( L为常数) 为常数)
ϕ ′( x ) ≤ L < 1
计算方法
则对于任意的初始值 x0 ∈ S ,由迭代公式 收敛于方程的根。 产生的数列 { xn } 收敛于方程的根。 (这时称迭代法在 α 的S邻域具有局部收敛性。) 邻域具有局部收敛性。)
x n +1 = ϕ ( x n )
Remark1:全局与局部收敛定理中的条件都是充分 Remark1: 条件,条件满足则迭代法收敛,不满足则不能判定, 条件,条件满足则迭代法收敛,不满足则不能判定, 此时可以用试算来判定迭代法的是收敛性。 此时可以用试算来判定迭代法的是收敛性。
p! p!
由迭代公式 xk +1 = ϕ ( xk ) 及 x * = ϕ ( x * ) 有 ϕ ( p ) (ξ ) * * p
′( x* ) = ϕ ′′( x* ) = L = ϕ ( p−1) ( x* ) = 0, ϕ ( p ) ( x* ) ≠ 0 ϕ 邻域是p阶收敛的。 则迭代过程在 x * 邻域是p阶收敛的。

迭代法(iterative method

迭代法(iterative method

迭代法(iterative method
迭代法是一种数学方法,通过不断地迭代逼近来求解数学问题。

这种方法通常用于求解方程、优化问题、积分问题等。

迭代法的基本思想是:给定一个初始值或初始解,然后根据一定的规则进行迭代,每次迭代都得到一个新的解,直到满足某个终止条件为止。

这个终止条件可以是精度要求、迭代次数限制等。

常见的迭代法包括:
1.牛顿迭代法:用于求解非线性方程的根,通过不断地逼近方程的根来求解。

2.梯度下降法:用于求解最优化问题,通过不断地沿着负梯度的方向搜索来找到最优
解。

3.牛顿-拉夫森方法:结合了牛顿法和二分法的优点,用于求解非线性方程的根。

4.雅可比迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

5.高斯-赛德尔迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

使用迭代法时需要注意初始值的选择、迭代规则的合理性、终止条件的设定等问题,以确保迭代过程的收敛性和有效性。

同时,迭代法也有一定的局限性,对于一些非线性问题或复杂问题,可能需要进行多次迭代或者采用其他方法进行求解。

迭代法

迭代法

迭代法
迭代法也叫辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。

对非线性方程,利用递推关系式,从开始依次计算,来逼近方程的根的方法,若仅与有关,即,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组,由关系从开始依次计算来过近方程的解的方法。

若对某一正整数,当时,与k 无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。

称所构造的序列为迭代序列。

求通项公式的方法(用迭代法)已知数列{An},a1=2,an=2a(n-1)-1(n>或=2)求通项公式
an=2a(n-1)-1 an-1=2(a(n-1)-1 ) n>或=2
所以an-1 为等比数列
an-1=(a1-1)*2^(n-1)
an-1=2^(n-1)
an=2^(n-1)+1
牛顿迭代法求开方
数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数的泰勒级数的前面几项来寻找方程的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收
敛。

另外该方法广泛用于计算机编程中。

用迭代法求平方根
对于A>1,求其平方根可构造用如下公式迭代:
f(x)=(1/a)(x+a/x),a=A/(A-1),迭代初值x0=[√A]+1,[x]为x的取整.如想求70的平方根,可令初值x0=9.
对于A1,用如上方法求出平方根后,在成10^(-n),即得结果.。

迭代法和收敛性

迭代法和收敛性

x1(k x2(k
1) 1)
0.2x2(k) 0.1x3(k) 0.3
0.2x1(k )
0.1x3(k) 1.5 , k
0,1, 2,
x3(k
1)
0.2x1(k )
0.4x2(k )
2
迭代计算
x(0) 0 [0, 0, 0]T
x(1) 1
0.3
x(1) 2
1.5
x1(k x2(k
其中系数矩阵非奇异,且主对角元aii≠0,(i
=1,2,…,n),由第i 个方程解出xi,有
x1
1 a11
(b1
a12 x2
a13 x3
x2
1 a22
(b2
a21x1
a23x3
xn
1 ann
(bn
an1x1
an2 x2
a1n xn ) a2n xn )
ann1xn1)
建立迭代格式
aij
x
( j
k
)
)
j i 1
加速
x ( k 1) i
( k 1)
xi
(1 ) xi(k )
i 1, 2, , n
或合起来写成迭代加速的形式
x (k 1) i
aii
(bi
i 1
a x (k 1) ij j j 1
n
aij
x
(k j
)
)
(1
)
xi( k
)
j i1
参数 称为松弛因子, 1 时迭代格式就是高斯-
x (k1) i
1 aii
(bi
n
aij x j(k ) ),
j1
(i 1,2,, n)

常用算法——迭代法

常用算法——迭代法

常用算法——迭代法常用算法,迭代法迭代法(iteration method)是一种通过重复执行相同的步骤来逐步逼近问题解的方法。

它在计算机科学和数学中被广泛应用,可以解决各种问题,比如求近似解、优化问题、图像处理等。

迭代法的基本思想是通过不断迭代的过程,逐渐逼近问题的解。

每一次迭代都会将上一次迭代的结果作为输入,并进行相同的操作,直到满足其中一种停止条件。

在每次迭代中,我们可以根据当前的状态更新变量的值,进而改善我们对问题解的估计。

迭代法最常用的应用之一是求解方程的近似解。

对于一些复杂方程,很难通过解析方法求得解析解,这时我们可以利用迭代法来逼近方程的解。

具体地,我们可以选择一个初始的近似解,然后将其代入方程,得到一个新的近似解。

重复这个过程,直到得到一个满足我们要求的解。

这个方法被称为迭代法求解方程。

另一个常用的迭代法示例是求解优化问题。

在优化问题中,我们需要找到能使一些目标函数取得最大或最小值的变量。

迭代法可以通过不断优化变量值的方法来求解这种问题。

我们可以从一个初始解开始,然后根据目标函数的导数或近似导数的信息来更新变量的值,使得目标函数的值逐步接近最优解。

这种方法被称为迭代优化算法。

迭代法还可以应用于图像处理等领域。

在图像处理中,我们常常需要对图片进行修复、增强或变形。

迭代法可以通过对图片像素的重复操作来达到修复、增强或变形的目的。

例如,如果我们想要修复一张受损的图片,可以通过迭代地修复每个像素点,以逐渐恢复整个图片。

除了上述示例,迭代法还有很多其他应用,比如求解线性方程组、图像压缩、机器学习等。

总之,迭代法是一种非常灵活和强大的算法,可以解决各种问题。

在实际应用中,迭代法的效果往往受到选择合适的初始值、迭代次数和停止条件的影响。

因此,为了获得较好的结果,我们需要在迭代过程中不断优化这些参数。

同时,迭代法也可能会陷入局部最优解的问题,因此我们需要设计合适的策略来避免这种情况。

总的来说,迭代法是一种重要的常用算法,它可以解决各种问题。

2.2 迭代法

2.2 迭代法
* lim | x xk | 0 要证结论(1)成立,即要证 k
首先用归纳假设证明如下不等式
| x* xk | Lk | x* x1 |
38
当k=1时 x x1 L x x0 ,已证成立。
k 1 x x L x x0 成立,可得 假设 k 1
不动点迭代的几何解释 y=f(x)=x y=g(x)
38
不动点判定定理
设g是一连续函数,且 { pn } 是由不动点迭代 n 0
生成的序列。若 lim pn p ,则p是g(x)的不动点
n
pn 1 p pn p ,则 lim 证:lim n n
g ( p ) g (lim pn ) lim g( pn ) lim pn1 p
1 1 x xk x k 1 x k ( x k ) ( x k 1 ) 1 L 1 L L Lk x k x k 1 x1 x0 1 L 1 L

L越小,收敛越快
38
不动点迭代的图形解释
一般来说从 f ( x ) 0 , 构造 ( x )不止一种,有的
38
由介值定理,存在 x [a , b] 使 f ( x ) 0



x ( x ).
②设方程 x ( x ) 还有一根 , 即 a (a ). 则由微分中值定理有
x ( x ) ( ) ( )( x ) L x
x4 2x 2 x 3 0 x 2 ( x)
x 4 1
x 3 ( x) x4 2x2 3
(其中第二式 x4 2 x 2 1=x 4 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、收敛性分析
计算方法
(全局收敛定理)
设 ( x)在[a, b] (1)当a x b时,a ( x) b;
(2) x [a, b], |'( x) | L 1 (L为常数)
则 :(1)方 程x ( x)在[a, b]有 唯 一 根;
(2)x0 [a, b], xn1 ( xn) 收 敛 到
则对于任意的初始值 x0 S ,由迭代公式
xn1 ( xn )
产生的数列 xn 收敛于方程的根。
(这时称迭代法在 的S邻域具有局部收敛性。)
计算方法
例3 设 ( x) x a( x2 5),要使迭代过程 xk1 ( xk )
局部收敛到 x* 5,求 a 的取值范围。 解: ( x) x a( x2 5)
xk1 ( xk )
又 x* (x*)
根据中值定理有
x* xk1 ( x* ) ( xk ) ( )( x* xk ) ( x*, xk )
局部收敛性 当隔根区间确定时,通常只需要更简单的条件
就可以保证迭代过程在根的邻域(局部)收敛。
定理2.2 设 是方程 x ( x)的根,如果满足
条件 :
(1)迭代函数 ( x) 在 的邻域可导; (2)在 的某个邻域 S {x x },对于任
意 x S ,有
(x) L 1
计算方法
xn xn1
Ln 1-L
x1
x0
注:L越小,收敛越快。
计算方法
实际计算中当然不可能也没必要无穷多步地做
下去, 对预先给定的精度要求ε,只要某个n满足
x x
n
n1
即可结束计算并取
x n
当然,迭代函数 ( x ) 的构造方法是多种多样的。
计算方法
例2 证明函数 ( x) 3 x 1 在区间[1,2]
(3)| xn
|
L 1 L
xn
xn1
Ln 1 L
x1
x0
计算方法
①存在唯一性
做辅助函数 ( x) x ( x),则有 (a) 0, (b) 0
所以,存在点 x*, s.t., ( x*) 0 x* ( x*)
若 x ** ( x **) ,则有:
x * x ** (x*) (x **)
计算方法
③误差估计
xn1 xn ( xn ) ( xn1) L xn xn1
L2 xn1 xn2 Ln x1 x0 xn1 xn ( xn ) ( xn1 ) xn xn1 xn L xn (1 L) xn
计算方法
xn
1 1-L
xn1 xn 1 -LL
( x) 1 2ax
由在根 x* 5 邻域具有局部收敛性时, 收敛条件
(x*) 1 2a 5 1
1 1 2a 5 1
2 2a 5 0
所以
1 a0 5
计算方法
计算方法
四、 迭代过程的加速 (1)迭代-加速公式(加权法)
设 xk是根 x*的某个近似值,用迭代公式校正一次得
3
33 4
所以 ( x)满足条件(2)。
故 (x) 3 x 1在[1,2]满 足 收 敛 条 件 。
计算方法
若取迭代函数 (x) x3 1
因为 |'( x) || 3x2 | 3 x [1,2]
不满足定理,故不能肯定
xn1 ( xn ) n 0,1,....收敛 Nhomakorabea方程的根。
计算方法
x1 ( x0)
再将 x1代入式 x ( x) 的右端,得到 x2 ( x1 )
计算方法
依此类推, 得到一个数列
x3 ( x2 ), x4 ( x3 ),
其一般表示
xn1 ( xn ), (n 0,1,2,)
(2.4)
式(2.4)称为求解非线性方程的简单迭代公式,
称 ( x)为迭代函数 。
计算方法
例1 试用迭代法求方程 f ( x) x3 x 1 0
在区间(1,2)内的实根。
解:由 x 3 x 1 建立迭代关系
xk1 3 xk 1
计算结果如下:
k=0,1,2,3…….
k
xk
k
0
1.5
5
1
1.35721
6
2
1.33086
7
3
1.32588
8
4
1.32494
精确到小数点后五位
简单迭代收敛情况的几何解释
y
y=x
p1
y=g(x)
p0

y
y=g(x) p0
y=x
p1
x
x0
x1 x*
x x0 x* x1






k+1k

x1 x0

开始
输 入 x0,ε,N
1k
( x0 ) x1
|x1- x0|<ε?
y
n
k<N? n
输出迭代 失败标志
结束
计算方法
y 输出近似 根 x1
计算方法
x 1.32472 1 105
2
计算方法
xk
1.32476 1.32473 1.32472 1.32472
但如果由 x x3 1建立迭代公式
计算方法
xk1 xk3 1 k 1,2,... 仍取 x0 1.5 ,则有
x1 2.375 x2 12.39
显然结果越来越大,{ xk } 是发散序列
'( )(x * x **) L x * x **
又, L 1 x* x **
计算方法
② x0 [a, b] 则 xk1 x * ( xk ) ( x*) '( )( xk x*) xk1 x * L xk x * L2 xk1 x *
Lk1 x0 x *
所以,任意的初值都收敛
§ 2.2 迭代法
计算方法
它是一种逐次逼近的方法,用某个固定公式反复 校正根的近似值,使之逐步精确化,最后得到满足精 度要求的结果。
计算方法
一、迭代法的基本思想: 为求解非线性方程f(x)=0的根,先将其写成便于
迭代的等价方程
x ( x) (2.3)
其中 ( x)为x的连续函数。
计算方法
即如果数 使 f(x)=0, 则也有 ( ) 反之, 若 ( ),则也有 f ( ) 0 取一合适初值 x0 ,代入式 x ( x)的右端, 得到
上满足迭代收敛条件。
证明:
因为
'(x)
1
(x
2
1) 3
0
x [1,2]
3
所以 ( x)是区间[a, b]上严格单调增函数。
而 (1) 3 2 1, (2) 3 3 2
计算方法
即[ (1), (2)] [1,2],所以 ( x)满足条件(1)。

|
'(
x)
||
1
(
x
2
1) 3
|
1
L1
x [1,2]
相关文档
最新文档