分块矩阵求逆公式

合集下载

分块矩阵求逆特殊公式

分块矩阵求逆特殊公式

分块矩阵求逆特殊公式分块矩阵求逆特殊公式,这可真是个让人又爱又恨的数学知识。

在数学的海洋里,它就像是一座神秘的小岛,等待着我们去探索。

我还记得当年在大学的课堂上,教授在黑板上写下分块矩阵求逆的公式时,那密密麻麻的符号和复杂的结构,让整个教室都弥漫着一种紧张的气氛。

同学们有的紧皱眉头,有的咬着笔头,都在努力理解这个看似深奥的概念。

咱先来说说分块矩阵是啥。

简单来讲,就是把一个大矩阵分成几个小块,就像把一个大蛋糕切成几块一样。

而分块矩阵求逆,就是要找出这些小块组合起来的逆矩阵。

这可不像切蛋糕那么简单,得有特定的公式和方法。

比如说,有一个分块矩阵是这样的:\[\begin{pmatrix}A &B \\C & D\end{pmatrix}\] 其中 A 是可逆矩阵,D 是可逆矩阵。

那它的逆矩阵就有一个特殊公式:\[\begin{pmatrix}A &B \\C & D\end{pmatrix}^{-1} =\begin{pmatrix}A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\-(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1}\end{pmatrix}\]看起来是不是很复杂?别担心,咱们慢慢捋一捋。

就拿实际解题来说吧。

假设 A 是一个 2×2 的可逆矩阵\[\begin{pmatrix}2 & 1 \\1 & 3\end{pmatrix}\] ,B 是\[\begin{pmatrix}1 &2 \\0 & 1\end{pmatrix}\] ,C 是\[\begin{pmatrix}1 & 0 \\2 & 1\end{pmatrix}\] ,D 是\[\begin{pmatrix}4 & 1 \\1 & 2\end{pmatrix}\] 。

分块矩阵的逆矩阵 和原矩阵逆矩阵

分块矩阵的逆矩阵 和原矩阵逆矩阵

标题:分块矩阵的逆矩阵与原矩阵逆矩阵1.概述分块矩阵是指将一个矩阵按行或列分割成多个子矩阵,常用于简化复杂的线性方程组的求解问题。

在矩阵运算中,矩阵的逆矩阵是一个重要的概念,它在解决线性方程组、矩阵方程和求解特征值等问题中发挥着重要作用。

分块矩阵的逆矩阵和原矩阵的逆矩阵是矩阵理论中的重要内容,本文将对此进行详细的探讨。

2.分块矩阵的逆矩阵2.1分块矩阵的定义分块矩阵是将一个大矩阵按行或列分割成多个小矩阵的形式,通常用子矩阵的形式表示。

一个矩阵可以被分割成四个子矩阵的形式,即: A = [A11 A12][A21 A22]其中,A11、A12、A21、A22为子矩阵。

2.2分块矩阵的逆矩阵对于分块矩阵A的逆矩阵A^-1,有以下性质:若A可分块为A=[A11 A12; A21 A22],且A11和A22可逆,则A可逆的充要条件是A11和A22都可逆,并且存在逆矩阵A^-1=[B11 B12; B21 B22]。

具体而言,A可逆的充要条件是A11和A22都可逆,反之亦然。

并且可以通过分块矩阵的形式求得A的逆矩阵A^-1。

2.3分块矩阵逆的计算方法分块矩阵的逆矩阵的计算方法大致为:- 计算A11的逆B11和A22的逆B22;- 利用B11、B22和A12、A21计算出B12和B21;- 最终得到A的逆矩阵A^-1=[B11 B12; B21 B22]。

3.原矩阵的逆矩阵3.1原矩阵的逆矩阵定义在矩阵运算中,矩阵A的逆矩阵表示为A^-1,它满足矩阵A与其逆矩阵的乘积为单位矩阵:AA^-1=I。

若矩阵A存在逆矩阵,则称矩阵A为可逆矩阵,也称为非奇异矩阵。

3.2原矩阵逆的求解方法计算原矩阵的逆矩阵可以通过多种方法,其中包括高斯消元法、伴随矩阵法、逆矩阵的初等变换法等。

这些方法都是为了求得原矩阵的逆矩阵,从而解决线性方程组、矩阵方程和求解特征值等问题。

4.分块矩阵的逆矩阵与原矩阵的逆矩阵的关系4.1逆矩阵的性质对于分块矩阵A的逆矩阵A^-1和原矩阵A的逆矩阵A^-1,它们有以下关系:- 若A可逆,则A的逆矩阵A^-1亦可逆,且(A^-1)^-1=A。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。

矩阵求逆方法大全-1

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例苏红杏广西民院计信学院00数本(二)班[摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面的读者参考。

[关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。

但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。

为此,我介绍下面几种求逆矩阵的方法,供大家参考。

定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B方法 一. 初等变换法(加边法)我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。

即,必有一系列初等矩阵 m Q Q Q 21使E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2)把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。

例 1 . 设A= ⎪⎪⎪⎭⎫ ⎝⎛-012411210 求1-A 。

解:由(3)式初等行变换逐步得到:⎪⎪⎪⎭⎫ ⎝⎛-100012010411001210→ ⎪⎪⎪⎭⎫ ⎝⎛-100012001210010411 →⎪⎪⎪⎭⎫ ⎝⎛----123200124010112001→⎪⎪⎪⎪⎭⎫ ⎝⎛----21123100124010112001于是1-A = ⎪⎪⎪⎪⎭⎫ ⎝⎛----21123124112说明:此方法适用于求元素为具体数字的矩阵的逆矩阵,比较简便,特别是当阶数较高时,使用初等变换法的优点更明显。

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法矩阵的逆矩阵是线性代数中的重要概念,它在解线性方程组、计算行列式和求解线性变换等问题中具有重要的应用价值。

在实际问题中,我们经常需要求解矩阵的逆矩阵,因此掌握求解逆矩阵的方法对于深入理解线性代数具有重要意义。

本文将介绍几种常用的求解矩阵逆的方法,希望能够帮助读者更好地理解和掌握这一重要概念。

方法一,代数余子式法。

对于一个n阶矩阵A,如果它的行列式|A|不等于0,则矩阵A是可逆的,即存在逆矩阵A^(-1)。

我们可以通过代数余子式的方法来求解矩阵的逆矩阵。

首先,我们需要计算矩阵A的伴随矩阵adj(A),然后利用公式A^(-1) = adj(A)/|A|来求解逆矩阵。

这种方法在理论上是可行的,但在实际计算中可能会比较复杂,尤其是对于高阶矩阵来说,计算量会非常大。

方法二,初等变换法。

初等变换法是一种比较直观和简单的方法,它通过一系列的初等行变换将原矩阵变换为单位矩阵,然后将单位矩阵通过相同的初等行变换变换为逆矩阵。

这种方法在实际计算中比较方便,并且适用于各种情况,但是需要进行大量的计算,对于高阶矩阵来说,计算量也会比较大。

方法三,矩阵分块法。

矩阵分块法是一种比较灵活和高效的方法,它将原矩阵分解为若干个子矩阵,然后通过一定的变换将原矩阵变换为单位矩阵,再将单位矩阵变换为逆矩阵。

这种方法在理论上和实际计算中都比较方便,尤其适用于特殊结构的矩阵,如对称矩阵、三对角矩阵等。

但是对于一般的矩阵来说,可能会比较繁琐。

方法四,Gauss-Jordan消元法。

Gauss-Jordan消元法是一种经典的求解逆矩阵的方法,它通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为逆矩阵。

这种方法在实际计算中比较高效和方便,尤其适用于计算机程序实现。

但是对于特殊结构的矩阵,可能会存在一些特殊情况需要处理。

综上所述,求解矩阵的逆矩阵有多种方法,每种方法都有其适用的场景和特点。

在实际问题中,我们可以根据具体的情况选择合适的方法来求解逆矩阵,以达到高效、准确地计算的目的。

分块对角矩阵求逆

分块对角矩阵求逆

分块对角矩阵求逆分块对角矩阵是一种特殊类型的矩阵,它由多个对角块组成,每个对角块可以是任意大小的矩阵。

对于一个n×n的分块对角矩阵,它可以表示为下面的形式:$$A = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\0 & A_2 & \cdots & 0 \\\vdots & \vdots & \ddots & \vdots \\0 & 0 & \cdots & A_k\end{pmatrix}$$其中$A_i$表示第i个对角块,$A_i$的大小可以是任意的。

我们的目标是求解分块对角矩阵$A$的逆矩阵$A^{-1}$,即满足$AA^{-1} = I$,其中$I$是单位矩阵。

求解分块对角矩阵的逆矩阵可以使用分块矩阵求逆的方法。

分块矩阵求逆的基本思想是根据分块矩阵的结构将矩阵分解为更小的块状子矩阵,然后利用这些块状子矩阵的性质来求解逆矩阵。

对于分块对角矩阵,我们可以利用每个对角块的逆矩阵来构造整个矩阵的逆矩阵。

设$A_i^{-1}$表示对角块$A_i$的逆矩阵,那么整个矩阵$A$的逆矩阵可以表示为:$$A^{-1} = \begin{pmatrix} A_1^{-1} & 0 & \cdots & 0 \\0 & A_2^{-1} & \cdots & 0 \\\vdots & \vdots & \ddots & \vdots \\0 & 0 & \cdots & A_k^{-1}\end{pmatrix}$$利用分块对角矩阵的逆矩阵的性质可以简化计算过程,因为每个对角块是一个独立的矩阵,它们之间没有相互影响,所以可以分别计算每个对角块的逆矩阵。

对于每个对角块$A_i$,可以使用一般矩阵求逆的方法来求解它的逆矩阵。

二阶分块矩阵求逆公式

二阶分块矩阵求逆公式

二阶分块矩阵求逆公式1.引言分块矩阵在线性代数中占据重要地位,它可以帮助我们更好地理解和处理复杂的线性方程组。

在这篇文档中,我们将介绍二阶分块矩阵的求逆公式,探讨其应用和解决实际问题的方法。

2.二阶分块矩阵的表示二阶分块矩阵可以用如下形式来表示:$$A=\b eg in{b ma tr ix}A_{11}&A_{12}\\A_{21}&A_{22}\e nd{b ma tr ix}$$其中$A_{11}$、$A_{12}$、$A_{21}$、$A_{22}$均为$n\t im es n$的方阵。

3.二阶分块矩阵的求逆公式对于二阶分块矩阵$A$,其逆矩阵的求解公式如下:$$A^{-1}=\be gi n{bma t ri x}(A_{11}-A_{12}A_{22}^{-1}A_{21})^{-1}&-A_{11}^{-1}A_{12}(A_{22}-A_{21}A_{11}^{-1}A_{12})^{-1}\\-A_{22}^{-1}A_{21}(A_{11}-A_{12}A_{22}^{-1}A_{21})^{-1}&(A_{22}-A_{21}A_{11}^{-1}A_{12})^{-1}\e nd{b ma tr ix}$$这个公式为我们提供了计算二阶分块矩阵逆矩阵的方法,下面将详细解释其中的推导。

4.推导过程我们假设$A_{11}$、$A_{12}$、$A_{21}$、$A_{22}$均存在逆矩阵,并将其表示为$A_{11}^{-1}$、$A_{12}^{-1}$、$A_{21}^{-1}$、$A_{22}^{-1}$。

首先,我们来计算逆矩阵$A^{-1}$的各个分块元素:$$\b eg in{a li gn ed}(A^{-1})_{11}&=(A_{11}-A_{12}A_{22}^{-1}A_{21})^{-1}\\(A^{-1})_{12}&=-A_{11}^{-1}A_{12}(A_{22}-A_{21}A_{11}^{-1}A_{12})^{-1}\\(A^{-1})_{21}&=-A_{22}^{-1}A_{21}(A_{11}-A_{12}A_{22}^{-1}A_{21})^{-1}\\(A^{-1})_{22}&=(A_{22}-A_{21}A_{11}^{-1}A_{12})^{-1}\e nd{a li gn ed}$$通过计算可得以上结果,可以使用代数运算的性质和规则进行验证。

【优选精文】矩阵求逆方法大全

【优选精文】矩阵求逆方法大全

求逆矩阵的若干方法和举例苏红杏广西民院计信学院00数本(二)班[摘要]本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面的读者参考。

[关键词]逆矩阵初等矩阵伴随矩阵对角矩阵矩阵分块多项式等引言在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。

但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。

为此,我介绍下面几种求逆矩阵的方法,供大家参考。

定义:n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法一.初等变换法(加边法)我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21,从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。

即,必有一系列初等矩阵m Q Q Q 21使E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2)把A ,E 这两个n 阶矩阵凑在一起,做成一个nR2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A )(3) 这样就可以求出矩阵A 的逆矩阵1-A 。

例1.设A=⎪⎪⎪⎭⎫⎝⎛-012411210求1-A 。

解:由(3)式初等行变换逐步得到:⎪⎪⎪⎭⎫⎝⎛-100012010411001210→⎪⎪⎪⎭⎫ ⎝⎛-100012001210010411→⎪⎪⎪⎭⎫⎝⎛----123200124010112001→⎪⎪⎪⎪⎭⎫⎝⎛----21123100124010112001 于是1-A =⎪⎪⎪⎪⎭⎫ ⎝⎛----21123124112说明:此方法适用于求元素为具体数字的矩阵的逆矩阵,比较简便,特别是当阶数较高时,使用初等变换法的优点更明显。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档