逆矩阵的几种求法与解析(很全很经典)

合集下载

归纳求矩阵的逆矩阵的方法

归纳求矩阵的逆矩阵的方法
因AK= 0 ,于是得
(E-A)(E+A+A2+-+AK 1)=E,
同理可得(E+A+A2+-+AK 1)(E-A)=E,
因此E-A是可逆矩阵,且
2.1
矩阵的基本概念
矩阵,是由“w个数组成的一个比 行列的矩形表格,通常用大写字母
…表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其 元素"-表示,其中下标都是正整数,他们表示该元素在矩
「% 先…叮
乂_如如…%
■■■ ■ ■ ■ BI■B
阵中的位置。比如,」或表示一个^匸 矩阵,
下标'表示元素' 位于该矩阵的第;行、第」列。元素全为零的矩阵称为零
the solution of inverse matrix nature has become one of the main research contents of lin ear algebra. The paper will give
some method of finding inv erse matrix.
从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对 角线。若一个H阶方阵的主对角线上的元素都是],而其余元素都是零,则称
0
C1
0
0r
[%
A=

血…
0
B~
0

血…
■ •

%…
旦一於卞二存
0

角线上
方的元素都是零,
(下)

则称为下(上)三角矩阵,例如,
阶上三角矩阵。今后我们用表示数域B上的巳矩阵构成
Abstract:

矩阵求逆的方法

矩阵求逆的方法
埙 埙 1 埙 埙 埙 埙 埙 埙 埙 埙 埙
A
A2 埙
A
埙 埙 埙 埙 埙 埙 埙 埙 埙 埙 n 埙
-1
=
埙 -1 埙 埙 1 埙 埙 埙 埙 埙 埙 埙 埙 埙 埙A源自A2-1埙A
埙 埙 埙 埙 埙 埙 埙 埙 埙 埙 -1 埙 埙 n 埙

这样求矩阵的逆就转化为求子块的逆。 6、 使用技巧求逆 技巧的使用依赖于题目条件, 这需要具体问题具体分析。 在这里举 一个例子来说明。比如已知矩阵 A 的具体表达式, 求(A*)- 1。若直接来求 然后利用上述提到的第三种方法在求出 (A*)- 1, 这 的话, 需要先计算 A*, 样处理的话, 运算量较大。 若利用 A* 与 A- 1 之间的关系及逆矩阵的性质 计算就比较简单。 因为 A*= A A- 1 所以(A*)- 1=( A A- 1)- 1= 1 A。 从而这个 A 题目只需要求出 A 的行列式, 让矩阵 A 的每一个元素乘上 A 的行列式 的倒数便是所要的答案了。 总之,矩阵求逆的方法很多, 这需要大家多总结, 同时在遇到题目 时根据题目条件选择合适的方法, 这有利于知识的巩固与掌握。 参考文献 [1] 苏德矿, 裘哲勇.线性代数.高等教育出版社,2005,7. 望 [J ] .汽车技术,2007,设计 · 计算 · 研究(4):21- 24. [2] 董敬,庄志,常思勤编.汽车拖拉机发动机(第 3 版[ ) M] .北京:机械 工业出版社,2000:51- 52. [3] 姚春德 . 甲醇在柴油机上应用的技术进展 [J ] . 中外能源 ,2009, (14):38- 44. [4] 王明扬,卢贵忠,毛明华等.柴油机混燃汽化醇类燃料的试验研究 [J ] .云南农业大学学报.2008,23(2):277- 280. [5] 陈强福 . 醇类燃料在车用发动机上的研究现状 [J ] . 甘肃科技纵 横,2006,35(2):19,43- 44. [6] 蒋德明, 黄佐华编. 内燃机替代燃料燃烧学 [M] . 西安:西安交通 大学出版社, 2007:3,6,10- 12. [7] 李冠峰 , 梁爱琴 , 李遂亮等 . 我国车用代用燃料研发与应用现状 [J ] .农机化研究,2007,5:197- 201. [8] 徐美同, 王立华. 二甲醚的生产工艺技术比较 [J ] . 甘肃石油和化 工,2008,1:32- 34. [9] 祁东辉,陈昊,刘津.柴油机燃用生物柴油的燃烧和排放特性研究 [J ] .汽车工程,2008,30(7):581- 584. [10] 谭天伟 , 王芳 , 邓立 . 生物柴 油 的 生 产 和 应 用 [J ] .现代化工, 2002,22(2):4- 6.

第三章 矩阵的逆

第三章 矩阵的逆

唯一性: 是可逆矩阵, 的逆矩阵唯一. 唯一性:若A是可逆矩阵,则A的逆矩阵唯一 是可逆矩阵 的逆矩阵唯一 证明: 证明: 设B、C都是 的逆矩阵,则 都是A的逆矩阵 、 都是 的逆矩阵,
AB = BA = E ,
AC = CA = E
⇒ B = EB = (CA) B = C ( AB) = CE = C.
逆矩阵的求法二: 逆矩阵的求法二:伴随矩阵法
A11 ∗ A12 A = M A1n A21 A22 M A2 n L L M L An1 An 2 , M Ann
(1)
A
−1
1 ∗ = A , A
其中 A * 为A的伴随矩阵。 的伴随矩阵。 的伴随矩阵
2a + c 2b + d 1 0 ⇒ = − b 0 1 −a
a = 0, 2a + c = 1, b = −1, 2b + d = 0, ⇒ ⇒ c = 1, − a = 0, d = 2. − b = 1,
又因为
BA AB 2 1 0 − 1 0 − 1 2 1 1 0 , = = − 1 0 1 2 1 2 − 1 0 0 1
所以
0 − 1 A = . 1 2
−1
0 A 例: 设n阶矩阵 及s阶矩阵 都可逆,求 阶矩阵A及 阶矩阵 都可逆, 阶矩阵B都可逆 阶矩阵 . B O X 11 X 12 解:设所求逆矩阵为 , X 21 X 22
∴ A 存在
−1
A
−1
A∗ = A
0 0 0 0 2⋅ 3⋅ 4⋅ 5 1⋅ 3⋅ 4⋅ 5 0 0 0 0 1 = 0 0 1⋅ 2⋅ 4⋅ 5 0 0 5! 0 0 1⋅ 2⋅ 3⋅ 5 0 0 0 0 0 0 1⋅ 2⋅ 3⋅ 4

矩阵逆及其求法

矩阵逆及其求法
1
5 2 例1 求 A 1 3 的逆矩阵。
5 x1 2 x3 1
5x2 2 x4 0 解得
x1 3x3 0 x2 3x4 1

3 x1 17 2 x2 17 1 x3 17 5 x4 17
1 0 0 1
1 0
0 A21
1 1
1 0
1 A31
1 1

1
证 !
1 3 1 3 2 3 1 3 2 3 1 3 13

13
23
33


例5
0 1 2 A 1 1 4 , 求 A1 2 1 3

A11 7 , A12 5 , A13 3 , A 1 1 4 1 A 5 , A22 4 , A23 2 , 21 2 1 3 A31 2 , A32 2 , A33 1 ,
An1 An 2 Ann
A 0 0 0 A 0 0 0 A

A En A A
* *

A* A1 由定义1知, A可逆, 且 A
A A 当 A 0 时, AA A E 则 A( ) E ( ) A A A
三、逆矩阵的基本性质 6、
可逆,且 ( AT ) 1 ( A1 )T A 可逆,则 A
T
( A1 )T AT ( AA1 )T E T E
7、
A 可逆,则
1
A
1
1
1 , A
1
A A

n 1
.
1 , A
AA E AA A A E 1

逆矩阵的概念矩阵可逆的条件逆矩阵的求法-毕业论文-全文在线阅读-

逆矩阵的概念矩阵可逆的条件逆矩阵的求法-毕业论文-全文在线阅读-
上页 下页 返回
上页 下页 返回
例10 设
求矩阵X使满足AXB= C。 分析:
若A-1,B -1存在,则由A-1左乘AXB=C,又
用B-1右乘AXB= C,

A-1AXBB-1= A-1CB-1,

X = A-1CB-1。
上页 下页 返回

上页 下页 返回
矩阵的运算小结
一、已定义过的运算:
★ 矩阵与矩阵的加、减法; ★ 矩阵与数的乘积; ★ 矩阵与矩阵的乘积; ★ 方阵的行列式; ★ 逆矩阵; ★ 矩阵的转置。
Ex.4


上页 下页 返回
于是
上页 下页 返回
也可以直接按定义来验证这一结论。
上页 下页 返回
Ex.5 解
上页 下页 返回
Ex.6 解
上页 下页 返回
上页 下页 返回上页Fra bibliotek返回设给定一个线性变换: 它的系数矩阵是一个 n 阶方阵A,
上页 下页 返回

则线性变换(7)可记为 Y =AX.
逆矩阵。
例如
因为AB= BA= E,所以B是A的逆矩阵,同样A也 是B的逆矩阵。
上页 下页 返回
如果方阵A是可逆的,则 A的逆阵一定是唯一 的。 这是因为:设 B、C都是 A的逆矩阵, 则有
B=BE =B(AC)=(BA)C =EC =C, 所以 A的逆阵是唯一的。
A的逆阵记作A-1。 即若AB=BA=E,则 B=A-1。
§3 逆 阵
★ 逆矩阵的概念 ★ 矩阵可逆的条件 ★ 逆矩阵的求法
矩阵之间没有定义除法,而数的运算有 除法,本节相对于实数中的除法运算,引入 逆矩阵的概念。
下页 关闭
逆阵的概念

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。

(完整版)逆矩阵的几种求法与解析(很全很经典)

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

逆矩阵 算法-概述说明以及解释

逆矩阵 算法-概述说明以及解释

逆矩阵算法-概述说明以及解释1.引言1.1 概述逆矩阵是矩阵理论中一个非常重要的概念,它在线性代数、数值计算等领域中都有广泛的应用。

简单来说,对于一个可逆的方阵A,存在另一个方阵B,使得A与B的矩阵乘积等于单位矩阵I,那么我们称B为A的逆矩阵。

逆矩阵在很多实际问题中起到了至关重要的作用。

本文将主要介绍逆矩阵的定义、性质以及计算方法。

首先,我们将给出逆矩阵的定义,并讨论什么样的矩阵会存在逆矩阵以及如何判断一个矩阵是否可逆。

然后,我们将深入探讨逆矩阵的性质,比如逆矩阵的唯一性以及逆矩阵与矩阵的乘法规则等。

接下来,我们将介绍一些常见的逆矩阵计算方法,包括伴随矩阵法、初等变换法以及利用矩阵的特征值和特征向量来求逆矩阵等。

逆矩阵算法在数值计算中具有广泛的应用领域。

例如,在线性方程组的求解中,我们可以利用逆矩阵的性质来求解未知数向量。

此外,在图像处理、信号处理、网络优化等领域也都可以看到逆矩阵算法的应用。

逆矩阵算法的发展前景非常广阔,随着计算机计算能力的不断提升,逆矩阵算法将能够承担更加复杂和庞大的计算任务。

总之,逆矩阵算法是一项重要且充满潜力的计算方法,它在线性代数和数值计算领域具有重要的地位。

通过深入研究和应用逆矩阵算法,我们可以更好地理解矩阵的性质和应用,从而为实际问题的求解提供有效的数学工具。

在接下来的正文中,我们将详细介绍逆矩阵的定义、性质以及计算方法,以期帮助读者更好地理解和应用逆矩阵算法。

文章结构部分的内容如下所示:1.2 文章结构本文将按照以下结构组织内容:引言部分将首先概述逆矩阵算法的背景和重要性,介绍本文的目的,并对整篇文章进行总结。

正文部分将着重介绍逆矩阵的定义,包括数学上对逆矩阵的准确描述。

随后,我们将详细探讨逆矩阵的性质,包括逆矩阵与原矩阵之间的关系,以及逆矩阵的特点和作用。

最后,我们将介绍逆矩阵的计算方法,包括传统的高斯消元法和基于分解的LU分解法等。

结论部分将重点探讨逆矩阵算法的重要性,阐述逆矩阵算法在实际问题中的应用领域,如线性方程组的求解、图像处理和机器学习等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且(E-A)1-= E + A + A2+…+A1-K证明因为E 与A 可以交换, 所以(E- A )(E+A + A2+…+ A1-K)= E-A K,因A K= 0 ,于是得(E-A)(E+A+A2+…+A1-K)=E,同理可得(E + A + A2+…+A1-K)(E-A)=E,因此E-A是可逆矩阵,且(E-A)1-= E + A + A2+…+A1-K.同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A2+…+(-1)1-K A1-K.由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使(1)s p p p Λ21A=I ,用A 1-右乘上式两端,得:(2) s p p p Λ21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001 故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111 其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (2122212)12111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00, 其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡221100A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A=⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

例1 计算(A+4E )T (4E-A )1-(16E-A 2)的行列式,其中 A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-141021001 解 令 )16()4()4(21A E A E E A T --+-=DD=)16()4()4(21A E A E E A T --+- =)4)(4()4()4(1A E A E A E A E T +--+-=T A E A E )4)(4(++=2)4(A E +.虽然题目中出现了(4E-A )1-.但是经过化简之后不再出现此式,因此得D=24A E -=22500.例2 已知 n 阶矩阵A 满足A 2+2A-3E=0.求证:A+4E 可逆并求出A+4E 的逆. 证明 把A 2+2A-3E=0变形为A 2+2A-8E=5E ,即(A+4E )(A-2E )=-5E ,可得(A+4E )(-A/5+2E/5)=E ,所以存在一个矩阵B=-A/5+2E/5,使(A+4E )B=E ,由定义得A+4E 可逆,且(A+4E )1-=B=-A/5+2E/5.另外,有些计算命题中虽出现逆矩阵,但通过适当的矩阵运算可消去,因而不必急于求出逆矩阵.6.利用线性方程组求逆矩阵若n 阶矩阵A 可逆,则A A 1-=E ,于是A 1-的第i 列是线性方程组AX=E 的解,i=1,2,…,n,E 是第i 个分量是I 的单位向量.因此,我们可以去解线性方程组AX=B , 其中B=(b 1,b 2,…,b n )T , 然后把所求的解的公式中的b 1,b 2,…,b n 分别用E 1=(1,0,0,…,0), E 2=(0,1,0,…,0),......, E n =(0,0,0, (1)代替,便可以求得A 1-的第1,2,…n 列,这种方法在某些时候可能比初等变换法求逆矩阵稍微简一点.下面例子说明该方法的应用.例 求矩阵A=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡3000013000013000013000013的逆矩阵.解 设X=(x 1,x 2,x 3,x 4,x 5)T ,B=(b 1,b 2,b 3,b 4,b 5)T 解方程组 AX=B ,即:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+=+=+5545434323212133333b x bx x b x x b x x b x x 解得: ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+-=-+-=+-+-=-----51554245432335432234254322314513)3(3)33(3)333(3)3333(3b x b b x b b b x b b b b x b b b b b x 然后把B=(b 1,b 2,…,b n )列,分别用E 1=(1,0,0,…,0), E 2=(0,1,0,…,0),……,E n =(0,0,0, (1)代入,得到矩阵A 1-的第1,2 ,3,4,5列,分别用x 1=(13-,0,0,0,0)T , x 2=(32-,13-,0,0,0)T , x 3=(33-,32-,13-,0,0)T , x 4=(34-,33-,32-,13-,0)T , x 5=(35-,34-,33-,32-,13-)TA 1-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------------1213214321543213000033000333003333033333. 这种方法特别适用于线性方程组AX=B 比较容易求解的情形,也是很多工程类问题的解决方法.以上各种求逆方法只是我的一些粗浅的认识,也许有很多的不当之处,我希望我的这篇文章能给大家带来帮助,能帮助我们更快更准地解决好繁琐的求逆矩阵问题.同时,它还是我们更好的学习线性代数的必备基础知识,认真掌握它,可供我们以后继续在数学方面深造打下坚实的基础.但我很希望各位老师和同学给于指导.能使我的这篇文章更加完善和实用.参 考 文 献[1] 北京大学数学系几何与代数教研室代数小组. 高等代数[M ]. 北京: 高等教育出版社, 2001.[2] 杨明顺. 三角矩阵求逆的一种方法[J ]. 渭南师范学院学报, 2003. [3] 丘维声. 高等代数[M ]. 北京: 高等教育出版社,2001.[4] 杨子胥. 高等代数习题集[M] . 济南:山东科学技术出版社,1984. [5] 赵树原. 线性代数[M] . 北京:中国人民大学出版社,1997. [6] 李宗铎. 求逆矩阵的一个方法[ J ] . 数学通报,1983.[7] 贺福利等. 关于矩阵对角化的几个条件[J ] . 高等函授学报(自然科学版) ,2004 ,(1)[8] 张禾瑞.郝炳新.高等代数[M]. 北京: 高等教育出版社.1999.[9] 王永葆. 线性代数[M].长春:东北大学出版社.2001.[10] 同济大学遍.线性代数(第二版). 北京: 高等教育出版社,1982.[11] 王萼芳,丘维声编,高等代数讲义. 北京大学出版社,1983.[13] 华东师范大学数学系编.数学分析.人民教育出版社,1980[14] 杜汉玲求逆矩阵的方法与解析高等函授学报(自然科学版) 第17卷第4期2004年8月[15] 苏敏逆矩阵求法的进一步研究河南纺织高等专科学校学报,2004 年第16卷第2 期。

相关文档
最新文档