八年级数学竞赛辅导题型及解题技巧

八年级数学竞赛辅导题型及解题技巧
八年级数学竞赛辅导题型及解题技巧

第一讲:因式分解(一) (1)

第二讲:因式分解(二) (4)

第三讲实数的若干性质和应用 (7)

第四讲分式的化简与求值 (10)

第五讲恒等式的证明 (13)

第六讲代数式的求值 (16)

第七讲根式及其运算 (18)

第八讲非负数 (22)

第九讲一元二次方程 (26)

第十讲三角形的全等及其应用 (29)

第十一讲勾股定理与应用 (33)

第十二讲平行四边形 (36)

第十三讲梯形 (39)

第十四讲中位线及其应用 (42)

第十五讲相似三角形(一) (45)

第十六讲相似三角形(二) .............................................. 48 第十七讲* 集合与简易逻辑. (51)

第十八讲归纳与发现 (56)

第十九讲特殊化与一般化 (59)

第二十讲类比与联想 (63)

第二十一讲分类与讨论 (67)

第二十二讲面积问题与面积方法 (70)

第二十三讲几何不等式 (73)

第二十四讲* 整数的整除性 (77)

第二十五讲* 同余式 (80)

第二十六讲含参数的一元二次方程的整数根问题 (83)

第二十七讲列方程解应用问题中的量 (86)

第二十八讲怎样把实际问题化成数学问题 (90)

第二十九讲生活中的数学(三) ——镜子中的世界 (94)

第三十讲生活中的数学(四)──买鱼的学问 (99)

第一讲:因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n 为正整数;

(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n 为偶数;

(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n 为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:

(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)

=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]

=-2x n-1y n(x2n-y2)2

=-2x n-1y n(x n-y)2(x n+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4) =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c >0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.

解因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),

所以

说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解 (1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明本题也可将x2+x+1看作一个整体,比如今

x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析先将两个括号内的多项式分解因式,然后再重新组合.

解原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

第二讲:因式分解(二)

1.双十字相乘法

分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.

例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为

2x2-(5+7y)x-(22y2-35y+3),

可以看作是关于x的二次三项式.

对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

即:-22y2+35y-3=(2y-3)(-11y+1).

再利用十字相乘法对关于x的二次三项式分解

所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1).

上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:

它表示的是下面三个关系式:

(x+2y)(2x-11y)=2x2-7xy-22y2;

(x-3)(2x+1)=2x2-5x-3;

(2y-3)(-11y+1)=-22y2+35y-3.

这就是所谓的双十字相乘法.

用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进

行因式分解的步骤是:

(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);

(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.

例1 分解因式:

(1)x2-3xy-10y2+x+9y-2;

(2)x2-y2+5x+3y+4;

(3)xy+y2+x-y-2;

(4)6x2-7xy-3y2-xz+7yz-2z2.

解 (1)

原式=(x-5y+2)(x+2y-1).

(2)

原式=(x+y+1)(x-y+4).

(3)原式中缺x2项,可把这一项的系数看成0来分解.

原式=(y+1)(x+y-2).

(4)

原式=(2x-3y+z)(3x+y-2z).

说明 (4)中有三个字母,解法仍与前面的类似.2.求根法

我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如

f(x)=x2-3x+2,g(x)=x5+x2+6,…,

当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)

f(1)=12-3×1+2=0;

f(-2)=(-2)2-3×(-2)+2=12.

若f(a)=0,则称a为多项式f(x)的一个根.

定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.

根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.

定理2

的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n 的约数.

我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.

例2 分解因式:x3-4x2+6x-4.

分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有

f(2)=23-4×22+6×2-4=0,

即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.

解法1 用分组分解法,使每组都有因式(x-2).

原式=(x3-2x2)-(2x2-4x)+(2x-4)

=x2(x-2)-2x(x-2)+2(x-2)

=(x-2)(x2-2x+2).

解法2 用多项式除法,将原式除以(x-2),

所以

原式=(x-2)(x2-2x+2).

说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.

例3 分解因式:9x4-3x3+7x2-3x-2.

分析因为9的约数有±1,±3,±9;-2的约数有±1,±

为:

所以,原式有因式9x2-3x-2.

解 9x4-3x3+7x2-3x-2

=9x4-3x3-2x2+9x2-3x-2

=x2(9x3-3x-2)+9x2-3x-2

=(9x2-3x-2)(x2+1)

=(3x+1)(3x-2)(x2+1)

说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式

可以化为9x2-3x-2,这样可以简化分解过程.

总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.

3.待定系数法

待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.

在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.

例4 分解因式:x2+3xy+2y2+4x+5y+3.

分析由于

(x2+3xy+2y2)=(x+2y)(x+y),

若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.

解设

x2+3xy+2y2+4x+5y+3

=(x+2y+m)(x+y+n)

=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,

比较两边对应项的系数,则有

解之得m=3,n=1.所以

原式=(x+2y+3)(x+y+1).

说明本题也可用双十字相乘法,请同学们自己解一下.

例5 分解因式:x4-2x3-27x2-44x+7.

分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±

7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.

解设

原式=(x2+ax+b)(x2+cx+d)

=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,

所以有

由bd=7,先考虑b=1,d=7有

所以

原式=(x2-7x+1)(x2+5x+7).

说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.

本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.

第三讲实数的若干性质和应用

实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.

用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.

例1

分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.

证设

两边同乘以100得

②-①得

99x=261.54-2.61=258.93,

无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理

是说,无理数对四则运算是不封闭的,但它有如下性质.

性质2 设a为有理数,b为无理数,则

(1)a+b,a-b是无理数;

有理数和无理数统称为实数,即

在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.

例2

分析

所以

分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.

证用反证法.

所以p一定是偶数.设p=2m(m是自然数),代入①得

4m2=2q2,q2=2m2,

例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.

证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则

反之,显然成立.

说明本例的结论是一个常用的重要运算性质.

是无理数,并说明理由.

整理得:

由例4知

a=Ab,1=A,

说明本例并未给出确定结论,需要解题者自己发现正确的结

有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).

分析只要构造出符合条件的有理数,题目即可被证明.

证因为a<b,所以2a<a+b<2b,所以

说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.

例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?

由①,②有

存在无理数α,使得a<α<b成立.

b4+12b3+37b2+6b-20

的值.

分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.

14=9+6b+b2,所以b2+6b=5.

b4+12b3+37b2+6b-20

=(b4+2·6b3+36b2)+(b2+6b)-20

=(b2+6b)2+(b2+6b)-20

=52+5-20=10.

例9 求满足条件

的自然数a,x,y.

解将原式两边平方得

由①式变形为

两边平方得

例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.

分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.

证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即

下面证明a k+20=a k.

令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数

时,表明f(n+20)与f(n)有相同的个位数,而

f(n+20)-f(n)

=(n+1)2+(n+2)2+…+(n+20)2

=10(2n2+42·n)+(12+22+…+202).

由前面计算的若干值可知:12+22+…+202是10的倍

数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.

第四讲分式的化简与求值

分式的有关概念和性质与分数相类似,例如,分式

的分母的值不能是零,即分式只有在分母不等于零

时才有意义;也像分数一样,分式的分子与分母都

乘以(或除以)同一个不等于零的整式,分式的值不

变,这一性质是分式运算中通分和约分的理论根

据.在分式运算中,主要是通过约分和通分来化简

分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.

例1 化简分式:

分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.

=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.

例2 求分式

当a=2时的值.

分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),

可将分式分步通分,每一步只通分左边两项.

例3 若abc=1,求

分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.

解法1 因为abc=1,所以a,b,c都不为零.

解法2 因为abc=1,所以a≠0,b≠0,c≠0.

例4 化简分式:

分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.

说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.

例5 化简计算(式中a,b,c两两不相等):

似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.

说明本例也是采取“拆项相消”法,所不同的是利用

例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求

分析本题字母多,分式复杂.若把条件写成

(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a 有关,为简化计算,可用换元法求解.

解令x-a=u,y-a=v,z-a=w ,则分式变为

u2+v2+w2+2(uv+vw+wu)=0.

由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有

说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.

例7 化简分式:

适当变形,化简分式后再计算求值.

(x-4)2=3,即x2-8x+13=0.

原式分子

=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10

=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10

=10,

原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.

解法1 利用比例的性质解决分式问题.

(1)若a+b+c≠0,由等比定理有

所以

a+b-c=c,a-b+c=b,-a+b+c=a,

于是有

(2)若a+b+c=0,则

a+b=-c,b+c=-a,c+a=-b,

于是有

说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.

解法2 设参数法.令

a+b=(k+1)c,①

a+c=(k+1)b,②

b+c=(k+1)a.③

①+②+③有

2(a+b+c)=(k+1)(a+b+c),

所以 (a+b+c)(k-1)=0,

故有k=1或 a+b+c=0.

当k=1时,

当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.

第五讲恒等式的证明

代数式的恒等变形是初中代数的重要内容,它涉及

的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.

两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.

证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.

1.由繁到简和相向趋进

恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).

例1 已知x+y+z=xyz,证明:

x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.

证因为x+y+z=xyz,所以

左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)

=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz

=4xyz=右边.

说明本例的证明思路就是“由繁到简”.

例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且

证令1989x2=1991y2=1993z2=k(k>0),则

又因为

所以

所以

说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.

2.比较法

a=b(比商法).这也是证明恒等式的重要思路之一.

例3 求证:

分析用比差法证明左-右=0.本例中,

这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.

证因为

所以

所以

说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.

全不为零.证明:

(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).

同理所以

所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).

说明本例采用的是比商法.

3.分析法与综合法

根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.

证要证 a2+b2+c2=(a+b-c)2,只要证

a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,

只要证 ab=ac+bc,

只要证 c(a+b)=ab,

只要证

这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.

说明本题采用的方法是典型的分析法.

例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.

证由已知可得

a4+b4+c4+d4-4abcd=0,

(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,

所以

(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.

因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,

所以 (a+b)(a-b)=(c+d)(c-d)=0.

又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以

a=b,c=d.

所以

ab-cd=a2-c2=(a+c)(a-c)=0,

所以a=c.故a=b=c=d成立.

说明本题采用的方法是综合法.

4.其他证明方法与技巧

求证:8a+9b+5c=0.

a+b=k(a-b),b+c=2k(b-c),

(c+a)=3k(c-a).

所以

6(a+b)=6k(a-b),

3(b+c)=6k(b-c),

2(c+a)=6k(c-a).以上三式相加,得

6(a+b)+3(b+c)+2(c+a)

=6k(a-b+b-c+c-a),

即 8a+9b+5c=0.

说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.

例8 已知a+b+c=0,求证

2(a4+b4+c4)=(a2+b2+c2)2.

分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2

=a4+b4+c4-2a2b2-2b2c2-2c2a2

=(a2-b2-c2)2-4b2c2

=(a2-b2-c2+2bc)(a2-b2-c2-2bc)

=[a2-(b-c)2][a2-(b+c)2]

=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.

说明本题证明过程中主要是进行因式分解.

分析本题的两个已知条件中,包含字母a,x,y 和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.

证由已知

说明本题利用的是“消元”法,它是证明条件等式的常用方法.

例10 证明:

(y+z-2x)3+(z+x-2y)3+(x+y-2z)3

=3(y+z-2x)(z+x-2y)(x+y-2z).

分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令

y+z-2x=a,①

z+x-2y=b,②

x+y-2z=c,③

则要证的等式变为

a3+b3+c3=3abc.

联想到乘法公式:

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有

a+b+c=y+z-2x+z+x-2y+x+y-2z=0,

所以 a3+b3+c3-3abc=0,

所以

(y+z-2x)3+(z+x-2y)3+(x+y-2z)3

=3(y+z-2x)(z+x-2y)(x+y-2z).

说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.

例11 设x,y,z为互不相等的非零实数,且

求证:x2y2z2=1.

分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的

所以x2y2=1.三元与二元的结构类似.

证由已知有

①×②×③得x2y2z2=1.

说明这种欲进先退的解题策略经常用于探索解决问题的思路中.

总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基

础上,深刻体会例题中的

常用变形技能与方法,这对以后的数学学习非常重要.

第六讲代数式的求值

代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.

1.利用因式分解方法求值

因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.

分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.

解已知条件可变形为3x2+3x-1=0,所以

6x4+15x3+10x2

=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1

=(3x2+3x-1)(2z2+3x+1)+1

=0+1=1.

说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.

例2 已知a,b,c为实数,且满足下式:

a2+b2+c2=1,①

求a+b+c的值.

解将②式因式分解变形如下

所以

a+b+c=0或bc+ac+ab=0.

若bc+ac+ab=0,则

(a+b+c)2=a2+b2+c2+2(bc+ac+ab)

=a2+b2+c2=1,

所以 a+b+c=±1.所以a+b+c的值为0,1,-1.

说明本题也可以用如下方法对②式变形:

前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.

2.利用乘法公式求值

例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.

解因为x+y=m,所以

m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,

所以

求x2+6xy+y2

的值.

分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.

解 x2+6xy+y2=x2+2xy+y2+4xy

=(x+y)2+4xy

3.设参数法与换元法求值

如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.

分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.

x=(a-b)k,y=(b-c)k,z=(c-a)k.

所以

x+y+z=(a-b)k+(b-c)k+(c-a)k=0.

u+v+w=1,①

由②有

把①两边平方得

u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,

两边平方有

所以

4.利用非负数的性质求值

若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.

例8 若x2-4x+|3x-y|=-4,求y x的值.

分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.

因为x2-4x+|3x-y|=-4,所以

x2-4x+4+|3x-y|=0,

即 (x-2)2+|3x-y|=0.

所以 y x=62=36.

例9 未知数x,y满足

(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.

分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.

将已知等式变形为

m2x2+m2y2-2mxy-2mny+y2+n2=0,

(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即

(mx-y)2+(my-n)2=0.

5.利用分式、根式的性质求值

分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:

分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.

解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.

同理

分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是

分利用这种对称性,或称之为整齐性,来简化我们的计算.

同样(但请注意算术根!)

将①,②代入原式有

第七讲根式及其运算

二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养

同学们综合运用各种知识和方法的能力.下面先复习有关基础知识,然后进行例题分析.

二次根式的性质:

二次根式的运算法则:

设a,b,c,d,m是有理数,且m不是完全平方数,则当且仅

当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式.

例1 化简:

法是配方去掉根号,所以

因为x-2<0,1-x<0,所以

原式=2-x+x-1=1.

=a-b-a+b-a+b=b-a.

说明若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简.

例2 化简:

分析两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.

解法1 配方法.

配方法是要设法找到两个正数x,y(x>y),使

x+y=a,xy=b,则

解法2 待定系数法.

例4 化简:

(2)这是多重复合二次根式,可从里往外逐步化简.

分析被开方数中含有三个不同的根式,且系数都是2

,可以看成

解设

两边平方得

②×③×④得

(xyz)2=5×7×35=352.

因为x,y,z均非负,所以xyz≥0,所以

xyz=35.⑤

⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z 显然满足①,所以

解设原式=x,则

解法1 利用(a+b)3=a3+b3+3ab(a+b)来解.

2017七年级,下册数学期末试卷

E D A 2017七年级下册数学期末模拟试卷 一、选择题(本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一个是正确的.) 1、下面四个图形中,∠1与∠2为对顶角的图形是() A、B、C、D、 2、调查下面问题,应该进行抽样调查的是() A、调查我省中小学生的视力近视情况 B、调查某校七(2)班同学的体重情况 C、调查某校七(5)班同学期中考试数学成绩情况 D、调查某中学全体教师家庭的收入情况 3、点3 (- P,)2位于() A、第一象限 B、第二象限 C、第三象限 D、第四象限 4、如图是某机器零件的设计图纸, 在数轴上表示该零件长度(L)合格尺寸, 正确的是( ) A、 B、 C、 D、 5、下列命题中,是假命题的是() A、同旁内角互补 B、对顶角相等 C、直角的补角仍然是直角 D、两点之间,线段最短 6、下列各式是二元一次方程的是() A.0 3= + -z y x B. 0 3= + -x y xy C. 0 3 2 2 1 = -y x D. 0 1 2 = - +y x 7、某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半. 若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x,y的是(). A、 ? ? ?x–y= 49 y=2(x+1)B、?? ?x+y= 49 y=2(x+1)C、?? ?x–y= 49 y=2(x–1)D、?? ?x+y= 49 y=2(x–1) 8、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多 少道题?如果设小明答对x道题,则他答错或不答的题数为20-x. 根据题意得:() A、10x-5(20-x)≥120 B、10x-5(20-x)≤120 C、10x-5(20-x)> 120 D、10x-5(20-x)<120 二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在答案卷上. 9、电影票上“6排3号”,记作(6,3),则8排6号记作__________ . 10、 ? ? ? = - = + = 9 6 2 _________ y x y ax a时,方程组 ? ? ? - = = 1 8 y x 的解为. 11、如图,直线a、b被直线c所截,若要a∥b,需增加条件(填一个即可). 12、为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200 名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约 有名学生“不知道”. 13、甲地离学校4km,乙地离学校1km,记甲乙两地之间的距离为km d,则d的取值范围为. 三、解答题(本大题共5小题,每小题7分,共35分) 14、解方程组 1 528 y x x y =- ? ? += ? . 15、解不等式 1 32 2 x x - ≥+,并把它的解集在数轴上表示出来. 16、将一副直角三角尺如图放置,已知∠EAD=∠E=450,∠C=300, AE BC ∥,求AFD ∠的度数. 17、已知等腰三角形的周长是14cm.若其中一边长为4cm,求另外两边长. 9.9 10.1 9.9 10.1 L=10±0.1

初二数学竞赛辅导资料(共12讲)

初二数学竞赛辅导资料(共12讲) 目录 本内容适合八年级学生竞赛拔高使用重点落实在奥赛方面的基础知识和基本技能培训和提高本内容难度适中讲练结合由浅入深讲解与练习同步重在提高学生的数学分析能力与解题能力另外在本次培训中内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容其中《因式分解》为初二下册内容但是考虑到它的重要性和工具性将在本次培训进行具体解读注有标注的为选做内容 本次培训具体计划如下以供参考 第一讲实数一 第二讲实数二 第三讲平面直角坐标系函数 第四讲一次函数一 第五讲一次函数二 第六讲全等三角形 第七讲直角三角形与勾股定理 第八讲株洲市初二数学竞赛模拟卷未装订在内另发 第九讲竞赛中整数性质的运用 第十讲不定方程与应用 第十一讲因式分解的方法

第十二讲因式分解的应用 第十三讲考试未装订在内另发 第十四讲试卷讲评 第1讲实数一 知识梳理 一非负数正数和零统称为非负数 1几种常见的非负数 1实数的绝对值是非负数即a≥0 在数轴上表示实数a的点到原点的距离叫做实数a的绝对值用a来表示设a为实数则 绝对值的性质 ①绝对值最小的实数是0 ②若a与b互为相反数则a=ba=ba=b ③对任意实数a则a≥a a≥-a ④a·b=ab b≠0 ⑤a-b≤a±b≤a+b 2实数的偶次幂是非负数 如果a为任意实数则≥0n为自然数当n=1≥0 3算术平方根是非负数即≥0其中a≥0 算术平方根的性质 a≥0 = 2非负数的性质 1有限个非负数的和积商除数不为零是非负数

2若干个非负数的和等于零则每个加数都为零 3若非负数不大于零则此非负数必为零 3对于形如的式子被开方数必须为非负数 4推广到的化简 5利用配方法来解题开平方或开立方时将被开方数配成完全平方式或完全立方 例题精讲 ◆专题一利用非负数的性质解题 例1已知实数xyz满足求x+y+z的平方根 巩固 1已知则的值为______________ 2若 的值 拓展 设abc是实数若求abc的值 ◆专题二对于的应用 例2已知xy是实数且 例3 已知适合关系式求的值 巩固 1已知b=且的算术平方根是的立方根是试求的平方根和立方根 2已知则

分数运算的技巧——小学数学奥林匹克竞赛辅导讲座

小学数学奥林匹克竞赛辅导讲座——分数运算的技巧 分数的四则混合运算,与整数四则混合运算一样,按先乘除后加减有顺序进行,整数四则混合运算中的定律和性质,在分数运算中同样适用。但是,要提高分数运算的速度和正确率,除了掌握这些常规的运算法则外,我们还应该掌握一些特殊的运算技能和技巧,常用的分数运算技巧和方法,主要有凑整法、裂项法、约分法等。 【例1】计算2002× [分析]本题可以按照整数乘以分数的计算法则计算,但这样做很显然比较麻烦,可以根据题中数的特点,合理灵活地选择计算方法,把题目中的因数拆成两数和或两数差的形式。 [解]方法—:2002×=2002×(1-) =2002×1-2002× =2002-1 方法二:2002×=(2001+1)× =2001×+1× =2000 点评:在一些分数乘法计算中,可根据数字的特点,合理地把参加运算的数拆成两数和或两数差的形式,在拆数时要注意:一要使参加运算的数变形不变值,二要达到便于简化计算目的。 【例2】计算3×25+37.9×6

[分析]注意观察3和6,它们的和为10,但是,只有当分别与它们相乘的另一个因数相同时,才能运用乘法分配律来进行简算,因此不难想到把37.9分拆成25.4和12.5两部分。当12.5与6.4相乘时,又可以将6.4看成8×0.8,这样计算就简便多了。 [解]3×25+37.9+6 =3+25+(25.4+12.5)×6.4 =3.6×25.4+25.4×6.4+12.5×6.4 =(3.6+6.4)×25.4+12.5×8×0.8 =254+85 =334 点评:有时可以结合题中数字可以凑整的特点,来对数进行合理的分拆。 【例3】× [分析]可以发现181818,818181都是两位数连写三遍得到的六位数,所以分别有约数18与81,同样,218218和182182分别有约数218与182,所以先把各分子、分母写成乘积的形式,把相同因数约分后再计算。 [解]×=× = = 点评:本题所用的方法为约分法,可以把分子分母中相同的因数通过约分来化简运算。同样,如果分子分母含有相同的因式,也可把它直接约去进行化简。 【例4】计算++++……+

九年级数学(上)竞赛试题及答案

九年级数学(上)竞赛试题 一. 选择题(每小题3分,共36分) 1.一元二次方程的解是 A . B .1203x x ==, C .12 10,3 x x == D . 2.顺次连结任意四边形各边中点所得到的四边形一定是 A .平行四边形 B .菱形 C .矩形 D .正方形 3. 若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何 体可能是 A .球 B .圆柱 C .圆锥 D .棱锥 4. 在同一时刻,身高1.6m 的小强,在太阳光线下影长是1.2m ,旗杆的影长是15m , 则旗杆高为 A 、22m B 、20m C 、18m D 、16m 5. 下列说法不正确的是 A .对角线互相垂直的矩形是正方形 B .对角线相等的菱形是正方形 C .有一个角是直角的平行四边形是正方形 D .一组邻边相等的矩形是正方形 6. 直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是 A .4.8 B .5 C .3 D .10 7. 若点(3,4)是反比例函数221m m y x +-=图像上一点 ,则此函数图像必经过点 A .(3,-4) B .(2,-6) C .(4,-3) D .(2,6) 8. 二次三项式2 43x x -+配方的结果是( ) A .2(2)7x -+ B .2 (2)1x -- C .2(2)7x ++ D . 2(2)1x +- 9.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( ) 第9题图 A . 3√10 2 B . 3√105 C .√10 5 D .3√55 10. 函数x k y =的图象经过(1,-1),则函数2-=kx y 的图象是 11.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动 A .变短 B .变长 C .不变 D .无法确定 12.如图,点A 在双曲线6 y x = 上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为 A .47 B .5 C .27 D .22 二:填空题.(每小题3分,共12分) 13.如图,△ABC 中,∠C=090,AD 平分∠BAC ,BC=10,BD=6,则点D 到AB 的距离是 。 14.如图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则此反比例函数的解析式是 。 2 30x x -=0x =1 3x = 2 2 2 2 -2 -2 -2 -2 O O O O y y y y x x x x A . B . C . D . A B C R D M E F 第11题图

(新)浙教版七年级下册数学基础竞赛试卷(最新整理)

武康中学七(下)第一次数学基础知识竞赛 班级 姓名 学号 一、选一选(每小题 4 分,共 32 分) 1.下列各式从左到右的变形中,是因式分解的为( ) (A ) x (a - b ) = ax - bx (B ) ax + bx + c = x (a + b ) + c (C ) x 2 - 2x +1 = (x -1)2 (D ) x 2 -1+ y 2 = (x -1)(x +1) + y 2 2. 已知某种植物花粉的直径为 0.00035 米,用科学记数法表示 该种花粉的直径是( ) (A )3.5×10 4 米 (B )3.5×10 -4 米 (C )3.5×10 -5 米 (D )3.5×10 -6 米 3. 如图,由△ABC 平移得到的三角形有几个 ( ) (A )3 (B )5 (C )7 (D )15 4.小马虎在下面的计算中做对的题目是( ) (A ) a 7 + a 6 = a 13 (B ) a 7 ? a 6 = a 42 (C ) (a 7 )6 = a 42 (D ) a 7 ÷ a 6 = 7 6 5. 下列图形中,∠1 与∠2 不是同位角的是( ) ( A ) ( B ) ( C ) ( D ) 1

7.方程组? 6. 下列多项式中,不能运用平方差公式因式分解的是( ) (A ) -m 2 + 4 (B ) -x 2 - y 2 ( C ) x 2 y 2 -1 (D ) (m - a )2 - (m + a ) 2 ?2x - y = 3 ? 4x + 3y = 1 的解是( ) (A ) ??x = 1 (B ) ??x = -1 (C ) ??x = 2 (D ) ?x = -2 ? y = -7 ? y = -1 ? y = -1 ? y = 1 8. 古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不 同袋数的货物,每袋货物都是一样重的。驴子抱怨负担太重, 骡子说:“你抱怨干嘛,如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!” 那么驴子原来所驮货物的袋数是( ) (A )5 (B )6 (C )7 (D )8 二、填一填(每小题 4 分,共 28 分) 9. 当 x = 时,分式 3x - 9 的值为零. x - 2 10. 如图,请添一个使 EB//AC 的条件 。 11.分解因式:16a 2 - 9b 2 = . 12.计算: (- 1)0 ? 3-2 = . 3 13. 如图,直线 AB ,CD 被 EF 所截,且 AB ∥ CD , 如 果 ∠ 1=125° , 那 么 ∠ 2= . 14. 若 非 零 实 数 a , b 满 足 2 a 2 - ab + 1 b 2 = 0 , 则 b 4 a =

初二数学竞赛辅导资料 勾股定理

初二数学竞赛辅导资料勾股定理 内容提要 1.勾股定理及逆定理:△ABC中∠C=Rt∠a2+b2=c2 2.勾股定理及逆定理的应用 1 作已知线段a的,,……倍 2 计算图形的长度,面积,并用计算方法解几何题 3 证明线段的平方关系等. 3.勾股数的定义:如果三个正整数a,b,c满足等式a2+b2=c2,那么这三个正整数a,b,c 叫做一组勾股数. 4.勾股数的推算公式 4 罗士琳法则(罗士琳是我国清代的数学家1789――1853) 任取两个正整数m和n(m>n,那么m2-n2,2mn,m2+n2是一组勾股数. 5 如果k是大于1的奇数,那么k,,是一组勾股数. 6 如果k是大于2的偶数,那么k,,是一组勾股数. 7 如果a,b,c是勾股数,那么na,nb,nc (n是正整数也是勾股数. 5.熟悉勾股数可提高计算速度,顺利地判定直角三角形.简单的勾股数有:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41. 例题

例1.已知线段a a a 2a 3a a 求作线段 a a 分析一:a==2a ∴a是以2a和a为两条直角边的直角三角形的斜边. 分析二:a= ∴a是以3a为斜边,以2a为直角边的直角三角形的另一条直角边.作图(略) 例2.四边形ABCD中∠DAB=60,∠B=∠D=Rt∠,BC=1,CD=2 求对角线AC的长 解:延长BC和AD相交于E,则∠E=30 ∴CE=2CD=4, 在Rt△ABE中 设AB为x,则AE=2x 根据勾股定理x2+52=(2x2, x2=

在Rt△ABC中,AC===例3.已知△ABC中,AB=AC,∠B=2∠A 求证:AB2-BC2=AB×BC 证明:作∠B的平分线交AC于D, 则∠A=∠ABD, ∠BDC=2∠A=∠C ∴AD=BD=BC 作BM⊥AC于M,则CM=DM AB2-BC2=(BM2+AM2)-(BM2+CM2) =AM2-CM2=(AM+CM)(AM-CM) =AC×AD=AB×BC 例4.如图已知△ABC中,AD⊥BC,AB+CD=AC+BD 求证:AB=AC 证明:设AB,AC,BD,CD分别为b,c,m,n 则c+n=b+m, c-b=m-n ∵AD⊥BC,根据勾股定理,得 AD2=c2-m2=b2-n2 ∴c2-b2=m2-n2, (c+b(c-b=(m+n(m-n

浙江省九年级数学竞赛辅导系列 讲座九 圆练习

数学竞赛辅导系列讲座九——圆 1、如图,已知P 是边长为a 的正方形ABCD 内一点,△PBC 是等边三角形,则△PAD 的外接圆半径是( ) A 、a B 、 2 a C 、 3 2 a D 、12 a 2、如图,在矩形ABCD 中,AB=3,BC=2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则Sin ∠CBE=( ) A 、63 B 、2 3 C 、1 3 D 、 1010 3、如图,圆心在原点,半径为2的圆内有一点P (22 ,22 ),过P 点作弦AB 与劣弧AB 组成一个弓形,则该弓形面积的最小值为( ) A 、π-1 B 、π-2 C 、4 3 π-1 D 、4 3 π- 3 4、如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴切与点Q ,与y 轴交于点M (0,2),N (0,8),则点P 的坐标是( ) A 、(5,3) B 、(3,5) C 、(5,4) D 、(4,5) 5、在底面直径是2,母线长为4的圆锥,若一只小虫子以点A 出发,绕侧面一周又回到点A ,则它爬行的最短路线长是( ) A 、2π B 、 4 2 C 、4 3 D 、5 6、如果一个三角形的面积和周长都被一直线所平分,则这条直线必经过这个三角形的( ) A 、内心 B 、外心 C 、重心 D 、垂心 7、如图,⊙O 与Rt △ABC 的斜边AB 切于点D ,与直角边AC 交于点E 且,DE ∥BC ,已知AE=2 2 ,AC=3 2 ,BC=6,则⊙O 的半径是( ) A 、3 B 、4 C 、4 3 D 、2 3 D A C P D E Y X A O P B y x N M O P Q

2019-2020学年九年级数学上学期知识竞赛试题

2019-2020学年九年级数学上学期知识竞赛试题 (时间:100分钟 满分:100) 一、选择题(本大题共10小题,每小题2分,共计20分,请将唯一正确答案填入下表中) 1的结果是 ( ) A 、6 B C 、2 D 2.如图所示,其中是中心对称图形的是 ( ) 3.下列各组二次根式化简后,被开方数相同的一组是 ( ) A 、93和 B 、31 3 和 C 、318和 D 、2412和 4.下列解方程中,解法正确的是 ( ) A 、,两边都除以2x ,可得 B 、 C 、(x -2)2=4,解得x -2=2,x -2=-2,∴x 1=4,x 2=0 D 、,得x =a 5.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程程正确的是( ) A 、200(1+a%)2=148 B 、200(1-a%)2=148 C 、200(1-2a%)=148 D 、200(1+2a%)=148 6.下列命题是假命题的是 ( ) A 、三点确定一个圆 B 、三角形的内心到三角形各边的距离都相等 C 、在同一个圆中,同弧或等弧所对的圆周角相等 D 、垂直于弦的直径平分弦 7、如上图、一只小虫子欲从A 点不重复的经过图中的每一个 点或每一条线段而最终到达目的地E ,试问这只小虫子沿 E P A →→行走的概率是( ) A 、31 B 、61 C 、91 D 、121 8.中心角90AOB ∠=的扇形面积为24πcm ,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为( ) A .1cm B .2cm C D .4cm 9.在Rt △ABC 中,∠C=90°,AC=3cm ,BC=4cm ,以C 为圆心,2.5cm 长为半径的圆与 AB 的位置关系是( ) (A )相切 (B )相交 (C )相离 (D )不能确定 10.如图所示,EF 为⊙O 的直径,OE=5cm,弦MN=8cm,那么E 、F 两点到直线MN 的距离之和等于 ( ) A. 12cm B. 8cm C. 6cm D.3cm 二、填空题(每小题2分,共计20分)

《小学数学竞赛辅导》教学大纲

《小学数学竞赛辅导》教学大纲 课程编号:12307057 总学时: 14 课程学分:1 开课对象:小学教育专业本科学生 课程类别:专业任选课 课程英文译名:Tutorship of Mathematics Competition in Primary School 一、课程任务和目的 任务:使学生了解小学数学竞赛选手的选拔与培养的方式、途径和策略,了解小学数学竞赛题型,掌握小学数学竞赛题的解题规律,培养学生研究小学数学的兴趣,提高学生的解题能力和数学思维能力。 目的:小学数学竞赛辅导是为将来从事小学数学教学打下坚实基础。 二、课程教学内容与要求 (一)绪论(2学时) 教学要求:明确开设小学数学竞赛辅导课程的意义,教学的方式和要求,了解小学数学竞赛的内容,发展趋势,以及小学数学竞赛选手的选拔与培养的方式、途径和策略。 教学重点:小学数学竞赛选手的选拔与培养的方式、途径和策略。 教学难点:数学竞赛的题型 教学内容: 1.课程的意义 2.小学数学竞赛的教学内容,发展趋势 3.小学数学竞赛选手的选拔与培养的方式、途径和策略 4.小学数学竞赛的题型介绍 (二) 假设法问题(2学时) 教学要求:掌握假设法解题的方法、步骤,了解应用假设法解决的典型题型及基本解法。 教学重点:假设法解题的方法、步骤。 教学难点:假设法解题。 教学内容: 1.假设法解题的方法、步骤 2.鸡免同笼问题的解决方法及推广 3.分数应用题应用假设法解题举例 (三) 盈亏、还原问题(2学时)

教学要求:掌握盈亏、还原问题的类型,解法,介绍应用方程思想解决此类问题的方法及典型题的介绍。 教学重点:掌握盈亏、还原问题的类型,解法。 教学难点:确定类型 教学内容: 1.盈亏、还原问题的类型 2.盈亏、还原问题的解题思想、方法 3.典型题的介绍,应用方程思想解决的方法 (四)相遇和追及问题(2学时) 教学要求:掌握相遇和追及问题的类型,解法,以及变异问题。 教学难点:较难相遇与追及问题的解法。 教学重点:变异问题—追及问题在钟面上数学问题中的应用。 1.相遇和追及问题的类型,求解的方法 2.典型题的介绍 3.钟面上的数学问题 (五) 整除问题(2学时) 教学要求:深刻理解整除的概念、性质、数的整除特征,以及整除问题的具体应用实例。 教学重点:数的整除特征及其应用。 教学难点:数的整除特征。 教学内容: 1.整除的概念、性质 2.数的整除特征 3.整除问题的应用实例 4.典型题的介绍 (六) 工程问题(2学时) 教学要求:掌握工程问题的类型、计算公式,解法。 教学重点:工程问题的分数应用题。 教学难点:工程问题的分数应用题。 教学内容: 1.工程问题的类型 2.工程问题的计算公式、解法 3.工程问题的分数应用题 4.典型题的介绍 (七) 抽屉原理(2学时)

人教版九年级数学上册 2016年全国初中数学联合竞赛试题及详解

2016年全国初中数学联合竞赛试题 第一试 (3月20日上午8:30 - 9:30) 一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.) 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知 t =a 是t 的小数部分,b 是t -的小 数部分,则 11 2b a -= ( ) .A 1 2 .B 2 .C 1 .D 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方 案有 ( ) .A 9种 .B 10种 .C 11种 .D 12种 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如: 33 3 321(1),26 31,=--=- 2和 26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ) .A 6858 .B 6860 .C 9260 .D 9262 3(B ).已知二次函数2 1(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab = ( ) .A 0 . B 14 . C 3 4 - .D 2- 4.已知 O 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O 于点E ,若8,AB =2CD =,则BCE ?的面积为 ( ) .A 12 .B 15 .C 16 .D 18 5.如图,在四边形ABCD 中,0 90BAC BDC ∠=∠=,AB AC == 1CD =,对角线的交点为M ,则DM = ( ) . A 2 . B 3 . C 2 . D 12 6.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( )

七年级数学下册 竞赛辅导资料(4)经验归纳法

初中数学竞赛辅导资料(14)经验归纳法 甲内容提要 1.通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。 通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归 纳法,也叫做经验归纳法。例如 ①由 ( - 1)2= 1 ,(- 1 )3=- 1 ,(- 1 )4= 1 ,……, 归纳出- 1 的奇次幂是- 1,而- 1 的偶次幂是 1 。 ②由两位数从10 到 99共 90 个( 9 × 10 ), 三位数从 100 到 999 共900个(9×102), 四位数有9×103=9000个(9×103), ………… 归纳出n 位数共有9×10n-1 (个) ③由1+3=22, 1+3+5=32, 1+3+5+7=42…… 推断出从1开始的n个連续奇数的和等于n2等。 可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。 2. 经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明 朗化,必须进行足夠次数的试验。 由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或 否定猜想的结论,都必须进行严格地证明。(到高中,大都是用数学归 纳法证明) 乙例题 例1 平面内n条直线,每两条直线都相交,问最多有几个交点? 解:两条直线只有一个交点, 1 2 第3条直线和前两条直线都相交,增加了2个交点,得1+2 3 第4条直线和前3条直线都相交,增加了3个交点,得1+2+3 第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4 ……… 第n条直线和前n-1条直线都相交,增加了n-1个交点 由此断定n 条直线两两相交,最多有交点1+2+3+……n-1(个), 这里n≥2,其和可表示为[1+(n+1)]× 21 + n , 即 2)1 (- n n 个交点。

全国初中数学竞赛辅导(八年级)教学案全集第10讲整式的乘法与除法

全国初中数学竞赛辅导(八年级)教学案全集 第十讲整式的乘法与除法 中学代数中的整式是从数的概念基础上发展起来的,因而保留着许多数的特征,研究的内容与方法也很类似.例如,整式的四则运算就可以在许多方面与数的四则运算相类比;也像数的运算在算术中占有重要的地位一样,整式的运算也是代数中最基础的部分,它在化简、求值、恒等变形、解方程等问题中有着广泛的应用.通过整式的运算,同学们还可以在准确地理解整式的有关概念和法则的基础上,进一步提高自己的运算能力.为此,本讲着重介绍整式运算中的乘法和除法. 整式是多项式和单项式的总称.整式的乘除主要是多项式的乘除.下面先复习一下整式计算的常用公式,然后进行例题分析. 正整数指数幂的运算法则: (1)a M· a n=a M+n; (2)(ab)n=a n b n; (3)(a M)n=a Mn; (4)a M÷a n=a M-n(a≠0,m>n); 常用的乘法公式: (1)(a+b)(a+b)=a2-b2; (2)(a±b)2=a2±2ab+b2; (4)(d±b)3=a3±3a2b+3ab2±b3; (5)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca. 例1 求[x3-(x-1)2](x-1)展开后,x2项的系数. 解 [x3-(x-1)2](x-1)=x3(x-1)-(x-1)3.因为x2项只在-(x-1)3中出现,所以只要看-(x-1)3=(1-x)3中x2项的系数即可.根据乘法公式有 (1-x)3=1-3x+3x2-x3,

所以x2项的系数为3. 说明应用乘法公式的关键,是要理解公式中字母的广泛含义,对公式中的项数、次数、符号、系数,不要混淆,要达到正确、熟练、灵活运用的程度,这样会给解题带来极大便利. (x-2)(x2-2x+4)-x(x+3)(x-3)+(2x-1)2. 解原式=(x3-2x2+4x-2x2+4x-8)-x(x2-9)+(4x2-4x+1) =(x3-4x2+8x-8)-(x3-9x)+(4x2-4x+1) =13x-7=9-7=2. 说明注意本例中(x-2)(x2-2x+4)≠x3-8. 例3化简(1+x)[1-x+x2-x3+…+(-x)n-1],其中n为大于1的整数. 解原式=1-x+x2-x3+…+(-x)n-1 +x-x2+x3+…-(-x)n-1+(-x)n =1+(-x)n. 说明本例可推广为一个一般的形式: (a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=a n-b n. 例4 计算 (1)(a-b+c-d)(c-a-d-b); (2)(x+2y)(x-2y)(x4-8x2y2+16y4). 分析与解 (1)这两个多项式对应项或者相同或者互为相反数,所以可考虑应用平方差公式,分别把相同项结合,相反项结合. 原式=[(c-b-d)+a][(c-b-d)-a]=(c-b-d)2-a2 =c2+b2+d2+2bd-2bc-2cd-a2. (2)(x+2y)(x-2y)的结果是x2-4y2,这个结果与多项式x4-8x2y2+16y4相乘时,不能直接应用公式,但

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

2019-2020年七年级数学下册竞赛试题北师大版

2019-2020年七年级数学下册竞赛试题北师大版 一、选择题: 1、已知数轴上三点A、B、C分别表示有理数、1、-1,那么表示() (A)A、B两点的距离(B)A、C两点的距离 (C)A、B两点到原点的距离之和(D)A、C两点到原点的距离之和 2、王老伯在集市上先买回5只羊,平均每只元,稍后又买回3只羊,平均每只元,后来他以每只的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是() (A)(B)(C)(D)与、的大小无关 3、两个正数的和是60,它们的最小公倍数是273,则它们的乘积是() (A)273 (B)819 (C)1199 (D)1911 4、某班级共48人,春游时到杭州西湖划船,每只小船坐3人,租金16元,每只大船坐 5 人,租金24元,则该班至少要花租金() (A)188元(B)192元(C)232元(D)240元 5、已知三角形的周长是,其中一边是另一边2倍,则三角形的最小边的范围是()(A)与之间(B)与之间(C)与之间(D)与之间 6、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的容积之比为 :1,另一个瓶子中酒 精与水的容积之比是 :1,把两瓶溶液混在一起,混合液中酒精与水的容积之比是( )(A)(B) (C)(D) 二、填空题: 7、已知,,,且>>,则=; 8、设多项式,已知当=0时,;当时,, 则当时,=; 9、将正偶数按下表排列成5列: 第1列第2列第3列第4列第5列 第一行 2 4 6 8 第二行 16 14 12 10 第三行 18 20 22 24 第四行 32 30 28 26 ………………  根据表中的规律,偶数2004应排在第行,第列; 10、甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已 知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是 __________米; 11、有人问李老师:“你班里有多少学生?”,李老师说:“我班现在有一半学生在参加数 学竞赛,四分之一的学生在参加音乐兴趣小组,七分之一的学生在阅览室,还剩三个女同学在看电视”。则李老师班里学生的人数是; 12、如图,B、C、D依次是线段AE上三点,已知AE=8.9cm,BD=3cm,则图中以A、B、C、 D、E这五个点为端点的所有线段长度之和等于。 13、某个体服装经销商先以每3件160元的价钱购进一批童装,又以每4件210元的价钱购进比上一次多一倍的童装. 他想把这两批童装全部转手,并从中获利20%,那么,他需要以每3件______元出手。

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

九年级数学竞赛

九年级数学抽测试题 一、选择题(本大题共10个小题,每小题3分,共30分. ) 1.下列一元二次方程没有实数根的是( ) A .x 2+6x +9=0 B .x 2-5=0 C .x 2+x +3=0 D .x 2-2x -1=0 2.用配方法解方程x 2+1=8x ,变形后的结果正确的是( ) A .(x +4)2=15 B .(x +4)2=17 C .(x -4)2=15 D .(x -4)2=17 3.把抛物线y =-1 2x 2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线 解析式为( ) A .y =-12(x +1)2+1 B .y =-1 2(x +1)2-1 C .y =-12(x -1)2+ 1 D .y =-1 2 (x -1)2-1 4.如图,将△ABC 绕点A 顺时针旋转60°得到△AED.若线段AB =3,则BE =( ) A .2 B .3 C .4 D .5 5.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若?=∠55ABD , 则BCD ∠的度数为( ) A .?25 B .?30 C .?35 D .?40 6.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC =BC =2,则图中阴影部分的面积是( ) A.π4 B.12+π4 C.π2 D.12+π2 7.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,△OAB 是边长为4的等边三角形,以O 为旋转中心,将△OAB 按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为 C A O B D

( ) A.(2,23) B.(-2,4) C.(-2,22) D.(-2,23) 8.关于抛物线y=x2-4x+4,下列说法错误的是( ) A.开口向上B.与x轴有两个重合的交点 C.对称轴是直线x=2 D.当x>2时,y随x的增大而减小 9.如图,一边靠墙(墙有足够长),其它三边用12 m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是( ) A.16 m2B.12 m2C.18 m2D.以上都不对 10.函数y=mx+n与y=n mx,其中m≠0,n≠0,那么它们在同一直角坐标系中的图象可能是() 二、填空题(每小题3分,共15分) 11.在国家政策的宏观调控下,某市的商品房成交价由去年10月份的7 000元/m2下降到12月份的5 670元/m2,则11、12两月平均每月降价的百分率是。 12.一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的频率稳定在0.2,则袋中约有绿球个. 13. 如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例 函数 6 y x (x>0)的图象上,则点C的坐标为。

七年级下学期数学竞赛试题

七年级下学期数学竞赛试题 一、选择题(每小题4分,共40分) 1、如果m 是大于1的偶数,那么m 一定小于它的………………………….. ( ) A 、相反数 B 、倒数 C 、绝对值 D 、平方 2、当x=-2时, 的值为9,则当x=2时,的值是( ) A 、-23 B 、-17 C 、23 D 、17 3、2 ,3 ,5 ,6 这四个数中最小的数是……………………………….. ( ) A. 2 B. 3 C. 5 D. 6 4、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立体,然后将露出的表 面部分染成红色.那么红色部分的面积为 …………………………….. ( ). A 、21 B 、24 C 、33 D 、37 5、有理数 的大小关系如图2所示,则下列式子中一定成立的是…… ( ) A 、c b a ++>0 B 、c b a <+ C 、c a c a +=- D 、a c c b ->- 6、某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打 ( )。 A 、9折 B 、8.5折 C 、8折 D 、7.5折 37ax bx +-3 7ax bx +-55 44 33 22 55 44 33 22 图1 图2

7、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数, 那么第2005名学生所报的数是……………………………………………………………… ( ) A 、1 B 、2 C 、3 D 、4 8、 方程 |x|=ax+1有一负根而无正根, 则a 的取值范围…………………… ( ) A. a>-1 B. a>1 C. a ≥-1 D. a ≥1 9、 的最小值是…………………………………………………… ( ) A. 5 B.4 C.3 D. 2 10、某动物园有老虎和狮子,老虎的数量是狮子的2倍。每只老虎每天吃肉4.5千克,每只狮子每天吃肉3.5千克,那么该动物园的虎、狮平均每天吃肉…… …… ( ) A 、 625千克 B 、 725千克 C 、825千克 D 、9 25千克 二、填空题(每小题5分,共40分) 11、定义a*b=ab+a+b,若3*x=27,则x 的值是_____。 12、三个有理数a、b、c之积是负数,其和是正数,当x = c c b b a a + + 时,则 。 13、当整数m =_________ 时,代数式 1 36 -m 的值是整数。 14、A 、B 、C 、D 、E 、F 六足球队进行单循环比赛,当比赛到某一天时,统计出A 、B 、C 、D 、E 、五队已分别比赛了5、4、3、2、1场球,则还没与B 队比赛的球队是______ 。 15、甲从A 地到B 地,去时步行,返回时坐车,共用x 小时,若他往返都座车,则全程只需x 3 小时,,若他往返都步行,则需____________小时。 16、李志明、张斌、王大为三个同学毕业后选择了不同的职业,三人中只有一个当了记者。一次有人问起他们的职业,李志明说:“我是记者。”张斌说:“我不是记者。”王大为说:“李志明说了假话。” 如果他们三人的话中只有一句是真的, 那么_______是记者。 17、._______200720061431321211=?+?+?+? 18、若正整数x ,y 满足2004x =15y ,则x +y 的最小值是_______________。 1 22-+-++x x x ______29219=+-x x

相关文档
最新文档