半导体激光器的应用与前景
2微米半导体激光器

2微米半导体激光器激光技术是一种重要的光学技术,在科学研究、医疗、工业制造等领域都有广泛的应用。
而2微米半导体激光器作为一种新兴的激光器件,具有许多独特的特性和应用潜力。
本文将对2微米半导体激光器的原理、性能、应用以及发展前景进行探讨。
一、2微米半导体激光器的原理2微米半导体激光器是利用半导体材料的能带结构产生激光的器件。
其基本结构包括激光腔、半导体材料和光波导等。
通过注入电流,激发半导体材料中的载流子,使其发生迁移和复合过程,从而产生光子。
利用正反馈和谐振腔效应,实现光子产生和放大,最终形成激光输出。
二、2微米半导体激光器的性能2微米半导体激光器具有很多独特的性能优势。
首先,2微米波段是近红外光谱中的一个重要窗口,具有较好的透明性和低吸收特性,能够穿透水和大部分生物组织。
其次,2微米半导体激光器具有较高的发光效率和较宽的工作温度范围。
此外,它还具有紧凑结构、高光束质量和较低的热失配等优点。
三、2微米半导体激光器的应用由于其独特的性能特点,2微米半导体激光器在许多领域中都有广泛的应用。
首先,医疗领域是2微米激光器的一个重要应用领域。
2微米光具有较强的水吸收能力,能够对水分子进行高效吸收,因此在激光手术、皮肤美容、眼科治疗等方面有着广泛的应用。
其次,2微米激光器还可以应用于光通信领域,实现光信号的传输和处理。
此外,2微米激光器还可以用于材料加工、环境监测以及国防安全等领域。
四、2微米半导体激光器的发展前景随着激光技术的不断发展和应用的不断扩大,2微米半导体激光器作为一种新兴的激光器件,具有巨大的发展潜力。
目前,研究人员正在不断改进半导体材料的性能和制备工艺,提高2微米激光器的效率和可靠性。
同时,针对不同领域的应用需求,开展了一系列的研究和应用探索。
未来,随着相关技术的不断突破和应用场景的不断拓展,2微米半导体激光器有望在更多领域发挥重要作用。
总结2微米半导体激光器作为一种新兴的激光器件,在医疗、光通信、材料加工等领域有着广泛的应用前景。
半导体激光器在通讯领域中的应用

半导体激光器在通讯领域中的应用近年来,半导体激光器在通讯领域中得到了越来越广泛的应用。
这种先进的激光器设备已经成为现代通讯系统中不可或缺的一部分。
在这篇文章中,我们将讨论半导体激光器在通讯领域中的应用,以及它的优势。
一、半导体激光器的基本原理半导体激光器在通讯领域中的应用离不开它基本原理的支持。
激光器的基本原理是由电子和空穴之间转移的能量所释放的光。
在半导体材料中,存在着多个不同的能带。
当电子激发了一个位于更高能级的能量状态时,空穴会填补上一个位于较低能级的状态,这样电子与空穴之间就形成了一个正负电荷的耦合。
随后,这个耦合状态会因为这个系统释放光而形成激光。
而半导体激光器的核心是p型的半导体和n型半导体之间的p-n结。
通过加上电压或注入电流激发载流子,半导体激光器中的激光被产生和放出。
因此,这种半导体激光器能够在高速率上产生激光,并具有峰值功率之间的高能量转换效率。
二、半导体激光器在通讯领域中的应用由于其高效、小巧、低成本和可定制的设计,半导体激光器已经成为现代通讯系统中不可或缺的一部分,其应用范围包括:1、光纤通讯:光纤通讯是目前最重要的应用。
在这种通讯方式中,激光器被用于激励光纤中的模态,将信号从一端传送到另一端。
半导体激光器的优点是具有较高的峰值功率、不需要大容量的电源,并且体积小巧,容易制造和维护。
2、激光雷达:激光雷达是一种无线感测技术,可用于距离测量和目标识别。
在激光雷达系统中,半导体激光器会定向激发能向远距离传播的光波。
3、光学计算:光学计算是一种基于光子的电子替代技术,半导体激光器在其中扮演着重要的角色,在数据处理和长距离存储方面得到了广泛应用。
4、光学存储器:半导体激光器在光学存储器中的应用,能够进行高速存储及高速检索。
5、生物医学:此领域也是半导体激光器应用的一个领域。
半导体激光器被应用于光治疗、皮肤美容、牙科和眼科等方面。
此外,它也用于医学成像和病理学探讨。
三、半导体激光器的优势与传统激光器相比,半导体激光器有许多优点。
半导体激光器的应用

半导体激光器的应用医疗领域是半导体激光器的主要应用领域之一、激光器可以通过光热效应将光能转化为热能,用于治疗皮肤病、血管瘤、青春痘等病症。
此外,激光刀也是目前广泛使用的治疗癌症的手术工具,激光光束能够定点破坏癌细胞,保护周围健康组织,达到肿瘤切除的目的。
通信领域是半导体激光器的另一个重要应用领域。
半导体激光器可以产生高度单色的光束,被广泛应用于光纤通信中的光源。
激光器可将电信号转化为光信号,通过光纤传输,具有传输距离远、带宽大等优点。
目前,光纤通信已经成为主要的通信方式,而激光器又是光纤通信的关键设备之一激光显示器也是一种半导体激光器的应用。
激光显示器利用激光束扫描方式进行图像显示,能够实现高清晰度和高亮度的图像效果。
与传统液晶显示器相比,激光显示器具有色彩饱和度高、对比度大等优势,并且能够生产超薄、柔性显示器,因此广受关注。
材料加工领域也是半导体激光器的重要应用之一、激光束的光能可以在物体上产生高温,从而实现快速切割、焊接、打孔等加工工艺。
激光加工具有加工速度快、无接触、操作灵活等特点,被广泛应用于制造业中的精密加工、微细加工等领域。
半导体激光器还在军事领域、光电子器件领域、生物医学领域、环境监测领域等得到广泛应用。
例如,激光雷达可以实现精确测距,被广泛应用于军事侦察、安防监控等领域;激光测距仪可以应用于仪器仪表、工程测量等领域;激光扫描仪可以实现三维重建,被广泛应用于航空测绘、地质勘探等领域。
总之,半导体激光器在各个领域中都有着重要的应用,随着科技的不断进步和发展,半导体激光器的应用前景也将越来越广阔。
半导体激光器应用于光纤通信领域的研究与分析

半导体激光器应用于光纤通信领域的研究与分析随着信息时代的发展,高速、大容量的数据传输需求越来越高。
在这样的背景下,光纤通信技术日益被人们所重视。
光纤通信是利用光的物理性质实现的高速数据传输技术,其传输速度远远高于传统有线通信技术,而且信号损耗小、抗干扰性强、安全可靠等特点,使得它具有广泛的应用前景。
半导体激光器是光纤通信技术中的关键组成部分,它可以作为光发射器或光放大器,在光纤通信系统中发挥着极其重要的作用。
本文将重点探讨半导体激光器在光纤通信领域中的研究和应用。
一、半导体激光器的基本原理半导体激光器是一种利用电子与空穴在半导体材料中复合释放能量的器件。
激光产生的基本原理是:当外加电场作用于半导体材料时,电子被可控地激发至导带、空穴被激发至价带,当电子和空穴在一定能量下复合时,会释放处于激发状态的能量,从而激发原子中电子的跃迁,产生与激发单元之间的相位同步、波长一致、光束聚束的激光光束。
半导体激光器因其结构简单、体积小、功耗低等特点,在通信,医学,工业等领域都得到了广泛的应用。
光纤通信系统需要一套完整的发射与接收系统来传输和检测信息。
半导体激光器广泛应用于光纤通信系统的光发射器和光放大器中。
1.光发射器光发射器是光纤通信系统中的关键组成部分,其主要作用是把通过电子方式表示的数字信号转换成光脉冲信号,并将它们输送到光纤中,使得信息能够在光纤中进行高速传输。
半导体激光器作为一种高功率、长寿命的光源,其在光传输中具有广泛的应用前景。
半导体激光器作为光发射器,在光纤通信系统中广泛应用,因其大小小、功率大、结构简单、易得性好而得到了广泛的应用。
2.光放大器光放大器是光纤通信系统的重要装置之一,它的主要作用是增加信号的强度。
由于光信号在光纤传输过程中会受到衰减,一旦强度低于特定阈值,信号就会在光纤中被衰减,影响信息的传输。
半导体激光器在光放大器中也得到的广泛应用。
主要分为两种放大器,即半导体光纤放大器和半导体光放大器。
半导体激光行业报告

半导体激光行业报告激光技术作为一种高精度、高效率的光学技术,在各个领域都有着广泛的应用。
而半导体激光作为激光技术中的重要一环,其在通信、医疗、工业制造等领域都有着重要的地位。
本报告将对半导体激光行业的发展现状、市场规模、技术趋势等进行深入分析,以期为相关行业的发展提供参考。
一、半导体激光行业概况。
半导体激光是利用半导体材料发射激光的一种激光器件。
相比于其他类型的激光器件,半导体激光器件具有体积小、功耗低、寿命长等优势,因此在通信、医疗、工业制造等领域有着广泛的应用。
随着科技的不断进步,半导体激光技术也在不断发展,其在各个领域的应用也在不断扩大。
二、半导体激光行业发展现状。
1. 通信领域。
随着5G技术的不断普及,对于高速、高精度的光通信需求也在不断增加。
半导体激光器件作为光通信中的重要组成部分,其在光纤通信、光纤传感等方面有着重要的应用。
目前,全球各大通信设备厂商都在加大对半导体激光器件的研发投入,以满足日益增长的通信需求。
2. 医疗领域。
在医疗领域,半导体激光器件被广泛应用于医疗诊断、激光治疗等方面。
例如,激光手术、激光治疗等技术都需要半导体激光器件的支持。
随着人们对医疗技术的不断追求,对于半导体激光器件的需求也在逐渐增加。
3. 工业制造领域。
在工业制造领域,半导体激光器件被广泛应用于激光切割、激光焊接、激光打标等方面。
随着工业自动化程度的不断提高,对于高效、高精度的激光器件需求也在不断增加。
因此,半导体激光器件在工业制造领域有着广阔的市场前景。
三、半导体激光行业市场规模。
目前,全球半导体激光器件市场规模不断扩大。
根据市场研究机构的数据显示,2019年全球半导体激光器件市场规模达到了数百亿美元,预计未来几年还将保持较快的增长速度。
其中,通信、医疗、工业制造等领域对于半导体激光器件的需求将会持续增加,为行业的发展提供了良好的市场环境。
四、半导体激光技术趋势。
1. 高功率、高效率。
随着科技的不断进步,对于半导体激光器件的功率、效率要求也在不断提高。
半导体激光器光放大,粒子数反转及产生激光的条件

一、概述半导体激光器是一种应用广泛的激光器组件,其工作原理主要基于光放大、粒子数反转和产生激光的条件。
本文将从这三个方面展开探讨,分析半导体激光器在光放大、粒子数反转和激光产生方面的原理和条件,以及其在实际应用中的重要性和发展前景。
二、光放大1. 光放大的原理半导体激光器的光放大原理基于电子和空穴在半导体材料中的复合过程。
当外加电压作用下,电子和空穴通过与材料内部的能带结构相互作用,发生辐射复合,并释放出光子。
这些光子在光波导中不断反射,形成光放大。
2. 光放大的条件光放大的条件主要包括外加电压、半导体材料的能带结构和波导结构等因素。
其中,外加电压的大小决定了电子和空穴的注入浓度,能带结构则决定了光子的发射和吸收过程,波导结构则影响了光子的传播和反射。
三、粒子数反转1. 粒子数反转的概念粒子数反转是指在半导体材料中,处于激发态的粒子数多于处于基态的粒子数,从而形成了非热平衡态。
这种粒子数反转是产生激光的前提条件。
2. 粒子数反转的实现粒子数反转的实现需要通过外界光激发或电子注入的方式,将处于材料的基态的电子或空穴激发到高能级,从而实现处于高能级的粒子数多于基态的粒子数,进而实现粒子数反转。
四、产生激光的条件1. 情况一:光放大条件下的粒子数反转在光放大条件下,外界光激发或电子注入导致了粒子数反转,此时,当光子在材料中反射、被吸收和发射后达到一定数量和分布时,就会产生激光。
2. 情况二:激射阈值条件在光放大条件下,粒子数反转达到一定程度时,即达到了激射阈值,此时将会出现放大因子大于1的现象,从而产生了激射效应。
五、半导体激光器的应用和发展半导体激光器作为一种重要的激光器组件,具有体积小、效率高、响应速度快等优势,广泛应用于通信、医疗、材料加工等领域。
随着半导体材料、器件技术的不断发展,半导体激光器的性能和应用领域也在不断拓展和深化,具有广阔的发展前景。
六、结论半导体激光器的光放大、粒子数反转和激光产生是其实现激光放大的基本原理和条件。
半导体微纳激光器

半导体微纳激光器
半导体微纳激光器是一种基于半导体制程技术,将微纳技术与激光技术相结合,通过在微纳量级的尺度上设计和制备具有特定功能的激光器件。
其具有体积小、效率高、稳定性好、寿命长、易集成等优点,因此在光通信、光计算、传感、生物成像等领域有广泛的应用前景。
半导体微纳激光器可以采用不同的材料和结构来实现,如基于InP材料的波长可调谐激光器、基于GaAs材料的单频激光器、基于Si材料的CMOS兼容激光器等。
其制作过程通常包括材料生长、光刻、刻蚀、镀膜等微纳加工技术。
随着技术的不断发展,半导体微纳激光器的性能和应用范围也在不断拓展。
例如,利用二维材料或者纳米线结构可以制作出更小尺寸的激光器,利用光子晶体或者表面等离激元可以制作出具有特殊光场分布的激光器,利用光热效应或者电注入机制可以制作出具有温度或电流调谐功能的激光器等。
总之,半导体微纳激光器是一种具有重要应用前景的微纳光电子器件,其研究和发展对于推动微纳光电子技术的发展和进步具有重要意义。
半导体激光器的原理及应用论文

半导体激光器的原理及应用论文半导体激光器是使用半导体材料作为激光活性介质的激光器。
其工作原理主要是通过半导体材料中的电子与空穴的复合过程产生光辐射,然后通过光放大与反射来形成激光输出。
半导体激光器具有小体积、高效率、快速调谐和易集成等特点,广泛应用于光通信、激光雷达、光储存等领域。
半导体激光器的基本结构包括激活区、pn结以及光反射与光增强结构。
激活区是半导体材料的核心部分,通过电流注入产生电子空穴复合过程来产生光辐射。
pn结是半导体激光器的结电阻,通过透明导电薄膜使电流从n区流入p区,进而在激活区形成电子空穴复合。
光反射与光增强结构包括反射镜和波导,用于增加激光器输出的光强度与方向性。
半导体激光器具有广泛的应用领域。
在光通信领域,半导体激光器被广泛用于光纤通信和光纤传感器系统。
半导体激光器通过调制光信号,可以实现高速传输,并且具有高能效和稳定性。
在激光雷达领域,半导体激光器用于提供高亮度、窄线宽和快速调谐的激光源,用于实现高分辨率的距离测量和目标识别。
在光储存领域,半导体激光器用于光盘、蓝光光盘等储存介质的读写操作,具有高速、高信噪比和长寿命等特点。
近年来,半导体激光器的研究重点主要是提高其性能和功能。
例如,通过调制技术可以实现高速调制,将半导体激光器应用于光通信的需要;通过外腔技术可以实现单纵模输出,提高激光的空间一致性和色散特性,扩展其应用领域;通过量子阱技术可以实现更高的量子效率和辐射效率,提高激光器的功率和效能。
总之,半导体激光器作为一种重要的激光器件,在光通信、激光雷达、光储存等领域具有广泛的应用前景。
随着相关技术的不断发展与进步,半导体激光器的性能与功能将得到进一步的提升,为相关领域的应用带来更多的机遇和挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于半导体激光器作者摘要:目前半导体激光器发展非常快。
随着技术的成熟,半导体激光器的应用也越来越广泛。
本文主要分析半导体激光器的国内外发展现状,总结其原理、应用。
评估半导体激光在未来的发展。
关键词:半导体激光器原理与应用未来前景Abstract:Nonadays,the semiconductor laser develop very fast.with the technology becomed more and more adultness, the semiconductor laser was application in kinds of filed.This essay analysis the semiconductor laser statu of develop in home and foreige,at the same time ,summarizing its principle and applicat- Ion.estimating the semiconductor laser develop in future.Keywords:the semiconductor laser principleand application the prospest国内外发展状况:相对于固体激光器和气体激光器来说,半导体激光器真可谓是姗姗来迟,但是它具有效率高、体积小、寿命长、成本低、等优点,目前在激光器领域中已占据一半以上的市场份额,而且还在不断扩大,大有取代传统激光器的趋势[1]。
半导体激光是目前各种激光中发展最快的,它占有激光市场的最大份额。
半导体激光器又称为二极管激光器(LD),随着生长技术的进步、器件量产化能力的提高、性能的改善及成本的下降 , LD 陆续扩展到许多其它应用领域,包括 CDROM驱动、激光打印、可擦除光存储驱动、条码扫描、文娱表演、光纤通信 ,以及航空和军事应用如军训模拟装置、测距机、照明器、CI等。
由于LD的开发始终与迅速增长的用户终端和消费市场 , 尤其是与计算机、通信技术和军事应用市场紧密结合 ,其技术和市场一直呈现高速增长趋势。
在国外各大电子、半导体公司纷纷投入巨资在研究半导体激光器方面,也收到了良好的效益。
1995 年12 月,索尼、菲力浦、Time Warner、东芝与松下、日立、三菱、胜利、先峰 ,以及后来参加的 ThomsonCSF 就通用型 DVD 的标准细节达成最后协议,这不仅掀起一场音像市场的革命,更为红光 LD的生产开辟了巨大的潜在市场。
目前主要分为大功率LD和小功率LD。
用于信息技术领域的小功率LD发展极快。
大功率 LD 研制生产水平最高的是美国的,SDL 和 Optical Power 公司。
它们提供的大功率器件占世界市场的 60 % 以上。
高效率、高功率LD及其列阵的迅速发展也为全固化激光器,亦即半导体激光泵浦(LDP)的固体激光器的迅猛发展提供了强有力的条件。
LD 泵浦的固体激光器应用市场年增长率达80%以上, 1996年民用市场为3114台, 1997年增长到4753台,产值分别达到5298万美元和87721万美元。
军用市场的产量少于民品,但产值较高,因军用器件功率和可靠性等要求高于民品。
同时,光纤系统在中短距离和中容量的巨大市场 ,半导体器件市场潜力很大。
在军用上,主要是成像雷达、激光测距1500 m 左右、武器引爆、武器模拟和卫星之间的大气通信等。
在民用方面,材料加工和印刷以及医疗是增长最块的市场,年增长率在 50 %左右。
所以说, 800 nm 波长大功率LD是整个半导体激光市场上最耀眼的明星,子阱LD最早实用化的波长区[2]。
原理或机理。
半导体激光二极管是把电能转换为光能的器件,半导体物理发展的最新成果,采用了量子阱(Q W)和应变量子阱(SL-QW)等新颖性结构,引进了折射率调制Bragg发射器以及增强调制Bra -gg发射器最新技术,同时还发展了MBE、MOC -VD及CBE等晶体生长技术新工艺,使得新的外延生长工艺能够精确地控制晶体生长,达到原子层厚度的精度,生长出优质量子阱以及应变量子阱材料。
半导体激光器的工作原理:半导体激光器基本结构[3]:图1-1 半导体PN结PN结LD的特点:阈值电流高,常温下不能连续工作。
激光器是利用受激辐射原理使光在某些受激发的物质中放大或振荡发射的器件。
必须满足以下基本条件。
1.有源区载流子反转分布。
2.谐振腔:使受激辐射多次反馈,形成振荡。
3.满足阈值条件,使增益>损耗,有足够的注入电流。
谐振腔的三功能:光放大、频率选择、正反馈。
阈值条件:增益必须大于损耗;图1-1 受激辐射受激辐射:在高能级E2的电子,受到入射光的作用,被迫跃迁到低能级E1上与空穴复合,释放的能量产生光辐射,这种跃迁称为受激辐射。
粒子数反转分布:粒子数反转分布是产生激光的必备条件。
图1-2 粒子数反转分布光增益:光学谐振腔的正反馈,使受激辐射得到放大。
图1-3 光学谐振腔半导体激光器的应用:目前半导体激光器的应用非常广泛:包括军用、商用、民用。
军用方面[4]:半导体激光雷达:早在70年代,半导体激光雷达采用合作目标探测,就已用于舰船入港时避障和防撞,空间会合和高速或超高速干道上车辆的测距。
例如美国国际电话公司在1967 年就研制出了第一代用于飞船交会制导的GaAs 扫描激光雷达,1977年研制出了第二代,作用距离90km,这种飞船载雷达机动性好,总重量为18kg。
半导体激光雷达已用于卫星对接系统,该雷达系统由几个子系统组成,一部分安装在第一卫星上,另一部分安装在第二个卫星上。
此外,在1977年之前美国就开发出了一种便携式GaAs激光雷达,它用GaAs激光器照明。
半导体激光雷达曾用于直升机在甲板上的起降控制和防止直升机夜间飞行中与沙丘碰撞。
研制这种半导体激光雷达有美国Laser Technology和Laser Atlata等公司。
此外,美国的休斯公司、Schwatz 公司、Sparta公司、洛雷尔系统公司以及法国的汤姆逊公司等在80年代末至90年代初还分别研制出半导体激光成像雷达,用于战场侦察、低空飞行器下视和防撞以及主动激光制导等。
新型半导体激光雷达除了具备上述半导体激光雷达的优点外,还具备以下特性;(1)与被动探测(红外系统)相结合;(2)多种成像功能,包括强度成像、距离成像和速度成像;(3)具有先进的实时图像处理功能,包括各种成像的综合、图像跟踪和目标的自动识别等。
半导体激光测距:二极管激光测距仪开发较早,小于1km测量距离的商用测距仪已达到实用水平,用于测距报警系统、航海浮标测距、集装箱检查等。
GaAs激光测距仪以数千次/s 的脉冲重复频率工作,在距离几公里内精度可达几厘米。
随着半导体激光泵浦固体激光器的发展,美国麦道公司已将它引入军事市场,1990 年初开始在F / A -18 战斗机上进行试验,1991 年春季投入生产。
用气冷的激光二极管泵浦Nd;YAG ,输出波长为 1.064µm或532nm ,脉冲能量达200mJ ,工作温度-35 ℃~+60 ℃,该装置的重量为4 .5kg - 5 .7 kg。
半导体激光制导跟踪:激光制导跟踪在军事上具有十分广泛的应用,一种方法是光纤制导通过一根放出的光纤把传感器的信息传送到导弹控制器,观察所显示的图像并通过同一光纤往回发送控制指令,以达到控制操纵导弹的目的。
半导体激光瞄准和告警:瞄准具有两类。
一类以发射红外激光的GaAs激光器为基础,士兵须佩戴夜视镜才能看到目标上的激光光斑,以解决夜间士兵的瞄准射击问题。
另一类激光瞄准具是以发射红色激光和可见光的半导体激光器为基础。
美国激光装置公司在80年代推出的FA-4型激光瞄准具,重量仅99g,长11.4cm,该瞄准具可装在手枪上。
半导体激光引信:半导体激光器是唯一能用于弹上引信的激光器,激光近炸引信可以准确地确定起爆点,使弹头适时起爆,激光发射装置与接收装置均置于弹的头部,当弹丸接近目标到最佳炸点时,反射激光信号强度就达到一定程度,使执行机构执行起爆任务,保险和自炸机构是引信独有的,炸弹一旦未捕获或失丢目标以及引信失灵后,自炸机构可以引爆弹丸自毁。
半导体激光武器模拟:激光模拟主要是以半导体激光为基础发展起来的新型军训、演习技术。
通过调节激光射束、周期和范围以达到模拟任何武器特征的目的。
军用光纤陀螺:光纤陀螺技术是军用光纤领域中用途最广,对目标监视和测量方面不可缺少的技术手段。
光纤陀螺仪由于其精度高、质量轻、可靠性优于机械陀螺和激光陀螺,在军用民用光纤通信、光纤制导导弹、制导鱼雷、发射遥控飞行器和布雷等方面不可缺少,其中声响用于反潜武器,旋转用于改善战术导弹和飞机的惯性导航系统,以加强地面或空中发射的巡航导弹及空-地、地-空导弹的性能。
半导体激光器的民用、商用:半导体激光器还广泛应用于电子元器件、手机通讯、钟表眼镜、汽车摩托车配件、塑料按键、五金、餐具、五金工具、仪表、卫浴洁具、医疗器械、工艺品、PVC管材、家用电器、标牌和包装等行业。
在光纤通信中,由于激光是相干光,是比较理想的光源。
而且尺寸小,耦合效率高,响应速度快,波长和尺寸与光纤尺寸适配,可直接调制,相干性好。
适用于高效率、大容量的光纤通信系统。
1978年,半导体激光器开始应用于光纤通信系统,半导体激光器可以作为光纤通信的光源和指示器以及通过大规模集成电路平面工艺组成光电子系统。
由于半导体激光器有着超小型、高效率和高速工作的优异特点,所以这类器件的发展,一开始就和光通信技术紧密结合在一起,它在光通信、光变换、光互连、并行光波系统、光信息处理和光存贮、光计算机外部设备的光祸合等方面有重要用途。
半导体激光器的问世极大地推动了信息光电子技术的发展,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.半导体激光器再加上低损耗光纤,对光纤通信产生了重大影响,并加速了它的发展。
因此可以说,没有半导体激光器的出现,就没有当今的光通信。
结束语:本文主要介绍了半导体激光器在国内为的发展情况。
接着描述了半导体激光器的基本原理。
最后介绍了其在军事领域受到重视的程度和在民用市场的特别在通信方面的应用。
显示了半导体激光器的光明前景。
参考文献[1].光电子技术。
姚建铨于意仲编[2].半导体激光器发展现状与趋势何兴仁编[3].半导体激光器的原理及在光纤通信中的应用来自百度文库;[4].半导体激光器在军事领域的应用及研究百度文库。