2010年中考反比例函数检测题精选

合集下载

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。

中考数学总复习《反比例函数》专项测试卷-带参考答案

中考数学总复习《反比例函数》专项测试卷-带参考答案

中考数学总复习《反比例函数》专项测试卷-带参考答案一、单选题(共12题;共24分)1.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═ k x(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4B.8C.12D.162.已知反比例函数y=k−2x的图象在第二、四象限内,则k的值不可能是()A.3B.1C.0D.−123.已知反比例函数y=k x的图象经过点(1,2),则函数y=-kx可为()A.y=-2x B.y=12x C.y=-12x D.y=2x4.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=−5x(x>0)和y=3x(x>0)的图象交于A,B两点.若点C是y轴上任意一点,点D是AP的中点,连接DC,BC,则△DBC的面积为()A.94B.4C.5D.11 45.如图,直线y=n交y轴于点A,交双曲线y=kx(x>0)于点B,将直线y=n向下平移2个单位长度后与y轴交于点C,交双曲线y=kx(x>0)于点D,若ABCD=13,则n的值()A.4B.3C.2D.56.如图,反比例函数y= yx(x<o)的图象经过点P,则k的值为()A.-6B.-5C.6D.57.函数y=ax(a≠0)与y=ax2-1(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.8.反比例函数y=2x的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限9.如图,平面直角坐标系中,矩形OABC的边与函数y= 8x(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定10.已知二次函数y=ax2+bx+c的图象如图所示,则在同一直角坐标系中,一次函数y=ax+b和反比例函数y= cx的图象大致是()A.B.C.D.11.某反比例函数的图象过点(1,-3),则此反比例函数解析式为()A.y=3x B.y=-3x C.y=13x D.y=-13x12.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1二、填空题(共6题;共6分)13.如图,在反比例函数y1=4x和y2=k x的图象上取A,B两点,若AB//x轴,ΔAOB的面积为5,则k=.14.如图,点A是反比例函数y=k x的图象上的一点,过点A作AB△x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为3,则k的值=.15.如图,过原点的直线交反比例函数y=ax图象于P,Q两点,过点P分别作x轴,y轴的垂线,交反比例函数y=b x(x>0)的图象于A,B两点.若b−a=7,则图中阴影部分的面积为.16.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=k x的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE的面积是△OAB的面积2倍时,则k的值为.17.已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF△BD于点F,AE△x轴于点E,连接OB,AD,若△OBD△△DAE,则点A的坐标是.18.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点P(2,3),且与函数y=2x(x>0)的图象交于点Q(m,n).若一次函数y随x的增大而增大,则m的取值范围是.三、综合题(共6题;共60分)19.制作一种产品,需先将材料加热达到60△后,再进行操作.设该材料温度为(△),从加热开始计算的时间为(分钟).据了解,该材料加热时,则温度与时间成一次函数关系;停止加热进行操作时,则温度与时间成反比例关系(如图8所示).已知该材料在操作加工前的温度为15△,加热5分钟后温度达到60△.(1)分别求出将材料加热和停止加热进行操作时,则与的函数关系式;(2)根据工艺要求,当材料的温度低于15△时,则须停止操作,那么从开始加热到停止操作,共经历了多少时间?20.如图所示,直线y=12x与反比例函数y=kx(k≠0,x>0)的图象交于点Q(4,a),点P(m,n)是反比例函数图象上一点,且n=2m.(1)求反比例函数和直线PQ的解析式;(2)若点M在x轴上,使得△PMQ的面积为3,求点M的坐标.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.22.如图,一次函数y=﹣x+5的图象与反比例函数y= k x(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=k x (k≠0)的值时,则写出自变量x 的取值范围.23.如图所示,等边三角形ABC 放置在平面直角坐标系中,已知A (0,0)、B (6,0),反比例函数的图象经过点C .(1)求点C 的坐标及反比例函数的解析式.(2)将等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上,求n 的值.24.如图,在平面直角系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,△ABO =30°,AB =2,以AB 为边在第一象限内作等边△ABC ,反比例函数的图象恰好经过边BC 的中点D ,边AC 与反比例函数的图象交于点E .(1)求反比例函数的解析式; (2)求点E 的横坐标.参考答案1.【答案】B 2.【答案】A 3.【答案】A 4.【答案】D 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】A 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】D 13.【答案】14 14.【答案】-6 15.【答案】14 16.【答案】117.【答案】( √5 +1, 3√5−32)18.【答案】23<m <2 19.【答案】(1)解:材料加热时,则设由题意,有 ,解得 .材料加热时,则 与的函数关系式为:停止加热时,则设 ,由题意,有 ,解得停止加热进行操作时 与的函数关系式为:(2)解:把代入,得20+5=25(分钟)答:从开始加热到停止操作,共经历了25分钟20.【答案】(1)解:∵直线 y =12x 与反比例函数 y =kx(k ≠0,x >0) 的图象交于点 Q(4,a) ∴a =12×4=2, .则 Q(4,2)∴2=k 4∴k =8, ∴ 反比例函数的解析式为 y =8x(x >0)∵ 点 P(m,n) 是反比例函数图象上一点 ∴mn =8 ,且 n =2m,m >0 ∴m =2,n =4, ∴P(2,4) ; 设直线 PQ 的解析式为 y =kx +b,∴{2=4k +b4=2k +b解得 {k =−1b =6∴直线 PQ 的解析式为 y =−x +6 (2)解:∵直线 PQ 交x 轴于点A ∴令 y =0,−x +6=0 ,得 x =6 ,如图∴A(6,0) ,设 M(a,0)∵S △PQM =S △PAM −S △QAM 且 △PMQ 的面积为3∴3=12|6−a|×4−12|6−a|×2∴a =3 或 a =9∴点M 的坐标为 (3,0) 或 (9,0) .21.【答案】(1)解:由A (-2,0),得OA=2;∵点B (2,n )在第一象限内,S △AOB =4∴12OA•n=4; ∴n=4;∴点B 的坐标是(2,4);设该反比例函数的解析式为y= ax (a≠0),将点B 的坐标代入,得4= a2 ,∴a=8;∴反比例函数的解析式为:y= 8x;设直线AB 的解析式为y=kx+b (k≠0),将点A ,B 的坐标分别代入,得{−2k +b =02k +b =4 ,解得{k =1b =2;∴直线AB 的解析式为y=x+2(2)解:在y=x+2中,令x=0,得y=2.∴点C 的坐标是(0,2) ∴OC=2;∴S △OCB = 12 OC×2= 12×2×2=222.【答案】(1)解:∵一次函数y=﹣x+5的图象过点A (1,n )∴n=﹣1+5 ∴n=4∴点A 坐标为(1,4)∵反比例函数y=k x (k≠0)过点A (1,4)∴k=4∴反比例函数的解析式为y=4x;(2)解:联立{y =−x +5y =4x解得{x =1y =4或{x =4y =1即点B 的坐标(4,1)若一次函数y=﹣x+5的值大于反比例函数y=kx (k≠0)的值则1<x <4.23.【答案】(1)解:过C 点作CD△x 轴,垂足为D,设反比例函数的解析式为y= k x∵△ABC 是等边三角形 ∴AC=AB=6,△CAB=60°∴AD=3,CD=sin60°×AC= √32×6=3 √3∴点C 坐标为(3,3 √3 ) ∵反比例函数的图象经过点C ∴k=9 √3∴反比例函数的解析式y= 9√3x;第 11 页 共 11 (2)解:若等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上 则此时B 点的横坐标为6即纵坐标y= 9√36 = 3√32 ,也是向上平移n= 3√32. 24.【答案】(1)解:∵△ABO =30°,AB =2∴OA =1连接AD .∵△ABC 是等边三角形,点D 是BC 的中点∴AD△BC又△OBD =△BOA =90°∴四边形OBDA 是矩形∴D(1,√3)∴反比例函数解析式是 y =√3x. (2)解:由(1)可知,A (1,0), C(2,√3)设一次函数解析式为y =kx+b ,将A ,C 代入得 {k +b =02k +b =√3 ,解得 {k =√3b =−√3∴y =√3x −√3 .联立 {y =√3x −√3y =√3x,消去y ,得 √3x −√3=√3x 变形得x 2﹣x ﹣1=0解得 x 1=1+√52∵x E >1∴x E =1+√52.。

2010年中考数学真题分类汇编(150套)专题十七·反比例函数

2010年中考数学真题分类汇编(150套)专题十七·反比例函数

35.(2010湖北十堰)(本小题满分8分)如图所示,直线AB与反比例函数图像相交于A,B两点,已知A(1,4).(1)求反比例函数的解析式;(2)连结OA,OB,当△AOB的面积为15y=kx∵点A(1,4)在反比例函数的图象上∴4=1k,∴k=4,∴反比例函数的解析式为y=4x.(2)设直线AB的解析式为y=ax+b(a>0,b>0),则当x=1时,a+b=4即b=4-a.联立4yxy ax b⎧=⎪⎨⎪=+⎩,得ax2 +bx-4=0,即ax2 +(4-a)x-4=0,方法1:(x-1)(ax+4)= 0,解得x1=1或x=-4a,设直线AB交y轴于点C,则C(0,b),即C(0,4-a)由S△AOB=S△AOC+S△BOC=11415(4)1(4)222a aa-⨯+-⨯=,整理得a2+15a-16=0,∴a=1或a=-16(舍去)∴b=4-1=3∴直线AB的解析式为y=x+3方法2:由S△AOB=12|OC|·|x2-x1|=152而|x2-x14||aa+=4(0)aaa+>,|OC|=b=4-a,可得1415(4)()22aaa+-=,解得a=1或a=-16(舍去). 36.(2010 重庆江津)如图,反比例函数kyx=的图像经过点()4,A b,过点A作AB x⊥轴于点B,△AOB的面积为2.(1)求k和b的值;(2)若一次函数3y ax =-的图象经过点A , 求这个一次函数的解析式.【答案】解:(1)(4)AB BO A b ⊥,, 122AOB S AB BO ∴=⋅=△ 即1422b ⋅= 1b ∴=……………………………………………………………4分又 点A 在双曲线ky x=上144k ∴=⨯=……………………………………………………7分(2) 点A ()4,1又在直线3y ax =-上 143a ∴=- 1a ∴=3y x ∴=-……………………………………………………………10分 37.(2010广西梧州)如图,在平面直角坐标系中,点A (10,0),∠OBA =90°,BC ∥OA ,OB =8,点E 从点B 出发,以每秒1个单位长度沿BC 向点C 运动,点F 从点O 出发,以每秒2个单位长度沿OB 向点B 运动,现点E 、F 同时出发,当F 点到达B 点时,E 、F 两点同时停止运动。

(完整)反比例函数经典历年中考例题

(完整)反比例函数经典历年中考例题

反比例函数经典中考例题解析一一、填空题(每空3分,共36分)1、任意写出一个图象经过二、四象限的反比例函数的解析式:__________2、若正比例函数y =mx (m ≠0)和反比例函数y =n x(n ≠0)的图象有一个交点为点(2,3),则m =______,n =_________ 。

矚慫润厲钐瘗睞枥庑赖。

3、已知正比例函数y=kx 与反比例函数y=3x的图象都过A (m ,1)点,求此正比例函数解析式为________,另一个交点的坐标为________.聞創沟燴鐺險爱氇谴净。

4、已知反比例函数2k y x-=,其图象在第一、三象限内,则k 的值可为.(写出满足条件的一个k 的值即可)5、已知反比例函数x k y =的图象经过点)214(,,若一次函数1+=x y 的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标为______________残骛楼諍锩瀨濟溆塹籟。

6、已知双曲线xky =经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b .7、函数y=x2的图象如图所示,在同一直角坐标系内,如果将直线y=-x+1沿y 轴向上平移2个单位后,那么所得直线与函数y=x2的图象的交点共有个酽锕极額閉镇桧猪訣锥。

8、已知函数y kx =- (k≠0)与y=4x-的图象交于A 、B 两点,过点A 作AC 垂直于y轴,垂足为点C ,则△BOC 的面积为____彈贸摄尔霁毙攬砖卤庑。

9.如图,11POA 、212P A A 是等腰直角三角形,点1P 、2P 在函数4(0)y x x=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________。

謀荞抟箧飆鐸怼类蒋薔。

(第9题)10。

两个反比例函数x y 3=,xy 6=在第一象限内的图象如图所示, 点P 1,P 2,P 3,…,P 2 005在反比例函数xy 6=图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个线,与xy 3=连续奇数,过点P 1, P 2,P 3,…,P 2 005分别作y 轴的平行的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则y 2 005=.厦礴恳蹒骈時盡继價骚。

2010年全国中考数学试题汇编《反比例函数》

2010年全国中考数学试题汇编《反比例函数》

填空题1、(2010•南平)函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是①③④.考点:反比例函数综合题;反比例函数系数k的几何意义。

专题:动点型。

分析:①由A、B都在y=的图象上,根据反比例函数的比例系数k的几何意义,可以直接得出结果;②只有当点P的坐标为(2,2)时,PA与PB才相等;③由四边形PAOB的面积=矩形OCPD的面积﹣△ODB的面积﹣△OCA的面积.根据反比例函数的比例系数k的几何意义,可知△ODB、△OCA、矩形OCPD的面积都是常数,所以四边形PAOB的面积大小不会发生变化;④根据反比例函数的比例系数k的几何意义,可知△OPC面积等于2,△OCA的面积等于,又同底(OC作底)的两个三角形的面积比等于它们的高的比,得出AC:PC=1:4,所以CA=AP.解答:解:①因点A和B都在反比例函数y=的图象上,根据反比例函数K的几何意义可知,△ODB与△OCA的面积都等于,正确;②由图的直观性可知,P点至上而下运动时,PB在逐渐增大,而PA在逐渐减小,错误;③因△ODB与△OCA的面积都等于,它们面积之和始终等于1,而矩形OCPD面积始终等于4,所以四边形PAOB 的面积始终等于3,即大小不会发生变化,正确;④连接OP,△OPC面积始终等于2,△OCA的面积都等于,因它们同底(OC作底),所以它们面积的比等于高AC与PC的比,即AC:PC=1:4,所以CA=AP,正确.故正确结论的序号是①③④.点评:本题主要考查反比例函数比例系数k的几何意义.过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积等于|k|;反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S=|k|.该知识点是中考的重要考点,同学们应高度关注.2、(2010•南宁)如图所示,点A 1,A 2,A 3在x 轴上,且OA 1=A 1A 2=A 2A 3,分别过点A 1,A 2,A 3作y 轴的平行线,与反比例函数y=(x >0)的图象分别交于点B 1,B 2,B 3,分别过点B 1,B 2,B 3作x 轴的平行线,分别于y 轴交于点C 1,C 2,C 3,连接OB 1,OB 2,OB 3,那么图中阴影部分的面积之和为.考点:反比例函数综合题;反比例函数系数k 的几何意义。

2010年中考数学分类(含答案)反比例函数

2010年中考数学分类(含答案)反比例函数

反比例函数分类精选一、选择题1.(2010安徽芜湖)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是()A .B .C .D . 【答案】B2.(2010甘肃兰州) 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是 A .321y y y >> B .231y y y >> C .213y y y >> D . 132y y y >>【答案】B3.(2010山东青岛)函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( ) 【答案】D4.(2010山东日照)已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是 (A )(-2,1) (B )(1,-2) (C )(-2,-2) (D )(1,2) 【答案】D5.(2010四川凉山)已知函数25(1)my m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是A .2B .2-C .2±D .12- 【答案】B6.(2010浙江宁波)已知反比例函数1y x=,下列结论不正确...的是 (A)图象经过点(1,1) (B)图象在第一、三象限(C)当1x >时,01y << (D)当0x <时,y 随着x 的增大而增大 【答案】D7.(2010 浙江台州市)反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是(▲)A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 【答案】B8.(2010四川眉山)如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4 【答案】B9.(2010浙江绍兴)已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A. y 3<y 1<y 2B. y 2<y 1<y 3C. y 1<y 2<y 3D. y 3<y 2<y 1 【答案】A10.(2010 嵊州市)如图,直线)0(<=k kx y 与双曲线xy 2-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为( )A.-5B.-10C.5D.10 【答案】B11.(2010山东聊城)函数y 1=x (x ≥0),y 2=4x(x>0)的图象如图所示,下列结论:①两函数图象的交点坐标为A (2,2); ②当x >2时,y 2>y 1;③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少. 其中正确的是( )A .只有①②B .只有①③C .只有②④D .只有①③④【答案】D12.(2010 四川南充)如图,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ). (A )1 (B )2 (C )3 (D )4 【答案】C13.(2010江西)如图,反例函数4y x=图象的对称轴的条数是( ) A .0 B .1 C .2 D .3(第9题)yy 1=xy 2=4xx第11题图【答案】C14.(2010福建福州)已知反比例函数的图象y =kx过点P (1,3),则该反比例函数图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 【答案】B15.(2010江苏无锡)如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线k y x=交OB 于D ,且OD :DB=1:2,若△OBC 的面积等于3,则k 的值( )A . 等于2B .等于34C .等于245D .无法确定【答案】B16.(2010年上海)在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的量支分别在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限 【答案】B17.(2010山东临沂) 已知反比例函数7y x=-图象上三个点的坐标分别是1(2,)A y -、2(1,)B y -、3(2,)C y ,能正确反映1y 、2y 、3y 的大小关系的是(A )123y y y >>(B )132y y y >>(C )213y y y >>(D )231y y y >> 【答案】C18.(2010 山东莱芜)已知反比例函数xy 2-=,下列结论不正确...的是A .图象必经过点(-1,2)B .y 随x 的增大而增大(第6题图)C .图象在第二、四象限内D .若x >1,则y >-2【答案】B19.(2010福建宁德)反比例函数1y x=(x >0)的图象如图所示,随着x 值的增大,y 值( ).A .减小B .增大C .不变D .先减小后不变 【答案】A20.(2010年贵州毕节)函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-【答案】A. 21.(2010浙江湖州)如图,已知在直角梯形AOBC 中,AC ∥OB ,CB ⊥OB ,OB =18,BC =12,AC =9,对角线OC 、AB 交于点D ,点E 、F 、G 分别是CD 、BD 、BC 的中点,以O 为原点,直线OB 为x 轴建立平面直角坐标系,则G 、E 、D 、F 四个点中与点A 在同一反比例函数图像上的是( ) A .点G B .点E C .点D D .点F .【答案】A .22.(2010江苏常州)函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-【答案】A23.(2010 山东滨州)如图,P 为反比例函数y=kx的图象上一点,PA ⊥x 轴于点A, △PAO 的面积为6.下面各点中也在这个反比例函数图象上的点是( )A.(2,3)B. (-2,6)C. (2,6)D. (-2,3)【答案】B24.(2010湖北荆门)在同一直角坐标系中,函数y=kx+1和函数y=xk(k 是常数且k ≠0)的图象只可能是 A .B .C .D .【答案】B25.(2010山东潍坊)若正比例函数y =2kx 与反比例函数y =kx(k ≠0)的图象交于点A (m ,1),则k 的值是第8题图(第10题)( ). AB.2或-2 C.2D【答案】B26.(2010湖南怀化)反比例函数)0(1>-=x xy 的图象如图1所示, 随着x 值的增大,y 值( )A .增大B .减小C.不变 D.先增大后减小 【答案】A27.(2010湖北荆州)如图,直线l是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A ,B 在函数xky =的图象上. 那么k 的值是A .3B .6 C.12 D .415 【答案】D28.(2010湖北鄂州)正比例函数y=x 与反比例函数ky x=(k ≠0)的图像在第一象限交于点A,且,则k 的值为A.2D.2 【答案】B29.(2010山东泰安)函数y=2x+1与函数y=k x 的图象相交于点(2,m),则下列各点不在函数y=kx的图象上的是 ( )A.(-2,-5) B.(52,4) C.(-1,10) D.(5,2)【答案】C30.(2010云南红河哈尼族彝族自治州)不在函数xy 12=图像上的点是 A .(2,6) B.(-2,-6) C.(3,4) D.(-3,4) 【答案】D31.(2010黑龙江哈尔滨)反比例函数xk y 3-=的图像,当0>x 时,y 随x 的增大而增大,则k 的数值范围是( )图1(A )2<k (B )3≤k (C )3>k (D ).3≥k【答案】A32.(2010四川内江)函数y =x +1x中自变量x 的取值范围是 A .x ≥-1 B .x >-1C .x ≥-1且x ≠0D .x >-1且x ≠0【答案】C33.(2010四川内江)如图,反比例函数y =kx(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为A .1B .2C .3D .4【答案】B34.(2010 福建三明)在反比例函数xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可能是 ( )A .—1B .0C .1D .2【答案】D35.(2010 山东东营)如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为( )【答案】D36.(2010 湖北孝感)双曲线xy x y 21==与在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A 、B两点,连接OA 、OB ,则△AOB 的面积为( )A .1 B.2C .3D .4 【答案】A37.(2010 广东汕头)已知一次函数1-=kx y 的图像与反比例函数xy 2=的图像的一个交点坐标为(2,1),那么另一个交点的坐标是( )A .(-2,1)B .(-1,-2)C .(2,-1)D .(-1,2)【答案】B38.(2010 云南玉溪)如图2所示的计算程序中,y 与x 之间的函数关系对应的图象所在的象限是(A 图2A. 第一象限B. 第一、三象限C. 第二、四象限D. 第一、四象限 【答案】C39.(2010 湖南湘潭)在同一坐标系中,正比例函数x y =与反比例函数xy 2=的图象大致是【答案】B40.(2010 甘肃)如图,矩形ABOC 的面积为3,反比例函数ky x=的图象过点A ,则k =( ) A .3B .5.1-C .3-D .6-【答案】C41.(2010广西桂林)若反比例函数ky x=的图象经过点(-3,2),则k 的值为 ( ). A .-6 B .6 C .-5 D .5 【答案】A42.(2010湖北十堰)方程x 2+2x -1=0的根可看成函数y =x +2与函数1y x=的图象交点的横坐标,用此方法可推断方程x 3+x -1=0的实根x 所在范围为( ) A . 102x -<< B .102x << C .112x << D .312x << 【答案】C43.(2010 广西玉林、防城港)直线l 与双曲线C 在第一象限相交于A 、B 两点,其图象信息如图4所示,则阴影部分(包括边界)横、纵坐标都是整数的点(俗称格点)有: ( ) A .4个 B .5 个 C .6个 D .8个 【答案】B 44.(2010 山东荷泽)某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于120 kPa 时,气球将爆炸,为了安全,气球的体积应该A .不大于45m 3B .小于45m 3C .不小于54m 3D .小于54m 3第8题图【答案】C45.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2)。

2010年中考数学试题分类汇编 反比例函数(含详细解答)

第11题BC A x y1 O y 1=xy 2=4x 2010中考中的反比例函数问题(2010某某聊城)11.函数y 1=x (x ≥0),y 2=4x (x >0)的图象如图所示,下列结论:①两函数图象的交点坐标为A (2,2); ②当x >2时,y 2>y 1;③直线x =1分别与两函数图象交于B 、C 两点,则 线段BC 的长为3;④当x 逐渐增大时,y 1的值随着x 的增大而增大,y 2的 值随着x 的增大而减小. 则其中正确的是()A .只有①②B .只有①③C .只有②④D .只有①③④(2010某某某某)16.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数ky x=的图象相交于C ,D 两点,分别过C ,D 两 点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE . 有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =.其中正确的结论是.(把你认为正确结论的序号都填上)(2010某某某某)25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm<0的解集(直接写出答案).(2010某某某某)21.(本小题满分9分)如图,直线y x m =+与双曲线ky x=相交于A (2,1)、B 两点. (1)求m 及k 的值;A BOxy (第21题)2 1 23 -3 -1 -2 13 -3-1-2 y xDCA B O FE(第16题)(2)不解关于x 、y 的方程组,,y x m ky x =+⎧⎪⎨=⎪⎩直接写出点B 的坐标; (3)直线24y x m =-+经过点B 吗?请说明理由.(2010某某宿迁)23.(本题满分10分)如图,已知一次函数2-=x y 与反比例函数xy 3=的图象交于A 、B 两点. (1)求A 、B 两点的坐标;(2)观察图象,可知一次函数值小于反比例函数值的x 的取值X 围是___________.(把答案直接写在答题卡相应位置上)(2010某某某某)18.如图,已知反比例函数ky x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据 图象写出使反比例函数的值大于一次函数的值的x 的取值X 围.(2010某某某某)23.如右图,若反比例函数8y x=-与一次函数2y mx =-的图象都经过点(,2)A a . (1) 求A 点的坐标及一次函数的解析式;(2) 设一次函数与反比例函数图象的另一交点为B ,求B 点坐标,并利用函数图象写出使一次函数的值小于反比例函数的值的x 的取值X 围.(2010某某某某)14. 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是 A .321y y y >> B .231y y y >> C .213y y y >> D . 132y y y >>(2010某某某某)20.(7分)如图,正比例函数12y x =的图象与反比例函数k y x =(0)k ≠在第一象限的图象交于A 点,过A 点作x BA O xy(第23题)轴的垂线,垂足为M ,已知OAM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.(2010某某威海)22.(10分)如图,一次函数b kx y +=的图象与反比例函数x my =的图象交于点A ﹙-2,-5﹚,C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1) 求反比例函数x m y =和一次函数b kx y +=的表达式; (2) 连接OA ,OC .求△AOC 的面积.(2010某某)14.已知:正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M (a,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,求这两个函数的解析式.23.(2010某某某某,23,12分)已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6).(1)求m 的值;(2)如图9,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.OMxyA(第20题)O ABCxyD8. (2010某某某某)已知图7中的曲线函数5m y x-=(m 为常数)图象的一支. (1)求常数m 的取值X 围;(2)若该函数的图象与正比例函数2y x =图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.(2010某某某某)21.(1)求双曲线的解析式; (2)试比较b 与2的大小.(2010某某某某)26.(本题满分8(x >0)的图象经过点B . (1)求k 的值;(2)将正方形OABC 分别沿直线、NA′分别与函数ky x=(x >0)的图象交于点E 、F ,求线段EF 所在直线的解析式.(2010某某)17. 点P(1,a )在反比例函数xky =的图象上,它关于y 轴的对称点在一次函数42+=x y 的图象上,求此反比例函数的解析式。

2010中考反比例函数解答题

2010中考反比例函数(河北省22)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.22.解:(1)设直线DE 的解析式为b kx y +=,∵点D ,E 的坐标为(0,3)、(6,0),∴ ⎩⎨⎧+==.60,3b k b解得 ⎪⎩⎪⎨⎧=-=.3,21b k ∴ 321+-=x y .∵ 点M 在AB 边上,B (4,2),而四边形OABC 是矩形, ∴ 点M 的纵坐标为2.又 ∵ 点M 在直线321+-=x y 上,∴ 2 = 321+-x .∴ x = 2.∴ M (2,2). (2)∵xm y =(x >0)经过点M (2,2),∴ 4=m .∴x y 4=。

又 ∵ 点N 在BC 边上,B (4,2),∴点N 的横坐标为4. ∵ 点N 在直线321+-=x y 上, ∴ 1=y .∴ N (4,1).∵ 当4=x 时,y =4x = 1,∴点N 在函数 xy 4= 的图象上.(3)4≤ m ≤8.(福建省泉州市)25.(12分)我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题。

如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x 轴所在的直线绕着原点O 逆时针旋转α度角后的图形。

若它与反比例函数xy 3=的图象分别交于第一、三象限的点B 、D ,已知点)0,(m A -、)0,(m C .(1)直接判断并填写:不论α取何值,四边形ABCD 的形状一定是 ;(2)①当点B 为)1,(p 时,四边形ABCD 是矩形,试求p 、α、和m 有值;②观察猜想:对①中的m 值,能使四边形ABCD 为矩形的点B 共有几个?(不必说理)(3)试探究:四边形ABCD 能不能是菱形?若能, 直接写出B 点的坐标, 若不能, 说明理由。

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.一次函数y1=k1x+b(k1≠0)与反比例函数y2=k2x(k2≠0)的图象交于点A(−1,−2),点B(2,1).当y1<y2时,x的取值范围是()A.x<−1B.−1<x<0或x>2 C.0<x<2D.0<x<2或x<−12.关于函数y=−2x,下列说法中正确的是()A.图像位于第一、三象限B.图像与坐标轴没有交点C.图像是一条直线D.y的值随x的值增大而减小3.如图,在直角坐标系中,点A是双曲线y= 3x(x>0)上的一个动点,点B是x轴正半轴上的一个定点,当点A的横坐标逐渐增大时,△OAB的面积将会()A.逐渐减小B.不变C.逐渐增大D.先减小后增大4.在同一平面直角坐标系中,反比例函数y=-8x与一次函数y=-x+2交于A,B两点,O为坐标原点,则△AOB的面积为()A.2B.6C.10D.85.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y= k x在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤166.如图,过反比例函数y= 1x(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2B.S1=S2C.S l<S2D.大小关系不能确定7.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷8.在同一直角坐标系中,函数y=kx+1与y=−k x(k≠0)的图象大致是()A.B.C.D.9.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y= mx(m≠0)的图象相交于点A(-2,3),B(6,-1),则不等式kx+b>mx的解集为()A.x<−2B.−2<x<0或x>6 C.x<6D.0<x<6或x<−210.已知两个函数y1=k1x+b与y2= k2x的图象如图所示,其中A(-1,2),B(2,-1),则不等式k1x+b>k2x的解集为()A.x<−1或x>2B.x<−1或0<x<2 C.−1<x<2D.−1<x<0或0<x<211.在反比例函数y=−3x图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2 12.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

中考数学《反比例函数》专项练习题及答案

中考数学《反比例函数》专项练习题及答案一、单选题1.当a≠0时,函数y=ax+1与函数y=ax在同一直角坐标系中的图象可能是()A.B.C.D.2.如图,在直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数y= kx(k≠0,x>0)的图像上,点D的坐标为(-4,1),则K的值为()A.59B.54C.4D.-43.如图是一次函数y=kx+b与反比例函数y=2x的图象,则关于x的方程2x-kx=b的解是()A.x1=1,x2=2B.x1= -2,x2=-1C.x1=1,x2= -2D.x1=-1,x2=2.4.已知函数y={kx(x>0)−k x(x<0)(常数k≠0)的图象位于第一、第二象限,A(x1.y1)、B(x2,y2)两点在该图象上,下列四个命题:①过点A作AC⊥x轴,C为垂足,连接OA.若⊥ACO的面积为3.则k=6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1=y2;④若x1<0<x2,线段OA绕原点O旋转恰好能与线段OB重合,则x1=﹣x2或x1=﹣y2;其中真命题个数是()A.1B.2C.3D.45.如果反比例函数y=k+1x的图象经过点(﹣5,3),则k=()A.15B.﹣15C.16D.﹣166.如图,已知第一象限内的点A在反比例函数y=2x的图象上,第二象限内的点B在反比例函数y=kx的图象上,且OA⊥OB,cosA=√1010,则k的值为()A.-12 √3B.-16C.-6 √3D.-18 7.下列函数中,当x﹥0时,y随x的增大而减小的是:A.y=x+1B.y=x2−1C.y=πx D.y=−(x−1)2+18.如图,一次函数y1=x﹣1与反比例函数y2=2x的图象交于点A(2,1),B(﹣1,﹣2),则使y1>y2的x的取值范围是()A.x>2B.x>2 或﹣1<x<0C.﹣1<x<2D.x>2 或x<﹣19.如图,A是反比例函数y=k x图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,⊥ABP的面积为2,则K的值为()A.1B.2C.3D.410.已知点(﹣1,y1),(2,y2),(π,y3)在双曲线y= k 2+1x图象上,则()A.y1>y2>y3B.y2>y3>y1C.y2>y1>y3D.y3>y1>y211.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y =k x(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,12),连接OA,OE,AE,则⊥OAE的面积为()A.2B.52C.43D.8312.若点(−2,y1),(1,y2),(3,y3)在反比例函数y=√3x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y1<y3<y2二、填空题13.设函数y=x−3与y=2x的图象的两个交点的横坐标为a、b,则1a+1b=.14.若点A(−1,y1)、B(−14,y2)、C(1,y3)都在反比例函数y=k 2+1x(k为常数)的图象上,则y1、y2、y3的大小关系为.15.如图,直线AB经过原点O,与双曲线y=k x(k≠0)交于A、B两点,AC⊥y轴于点C,且△ABC的面积是3,则k的值是.16.如图,在反比例函数y= 10x(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,S n,则S1+S2+S3+…+S n=(用含n的代数式表示)17.如图,正方形ABOC与正方形EFCD的边OC、CD均在x轴上,点F在AC边上,反比例函数y=k x的图象经过点A、E,且S△OAE=5,则k=.18.如图,直线l与x轴,y轴分别交于A、B两点,且与反比例函数y=k x(x<0)的图象交于点C,若SΔAOB=SΔBOC=1,则k=.三、综合题19.张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.(1)求张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式;(2)求出a的值;(3)求张师傅途中加油多少升?20.如图,在平面直角坐标系xOy中,函数y=4x(x>0)的图象与一次函数y=kx-k的图象交点为A(m,2).(1)求一次函数的表达式;(2)设一次函数y=kx-k的图象与y轴交于点B,如果P是x轴上一点,且满足⊥PAB的面积是4,请直接写出P的坐标.21.如图,一次函数y1=kx+b的图象分别与x轴、y轴交于点A和点B,与反比例函数y2= mx的图象交于点C和点D,其中点A的坐标为(-2,0),点C的坐标为(1,3).(1)分别求出一次函数与反比例函数的表达式.(2)求出当y1≥y2时x的取值范围.(3)若(a-4,b)在y上,(a,c)在n上,当b<c时,求a的取值范围.22.如图所示,已知反比例函数y= k x的图象与一次函数y=ax+b的图象交于两点M(4,m)和N (﹣2,﹣8),一次函数y=ax+b与x轴交于点A,与y轴交于点B.(1)求这两个函数的解析式;(2)求⊥MON的面积;(3)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.23.如图,已知反比例函数y=k x与一次函数y=x+b的图象在第一象限相交于点A(1,−k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x取值范围.24.某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200立方米的生活垃圾运走:(1)假如每天能运x立方米,所需时间为y天,写出y与x之间的函数表达式;(2)若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?参考答案1.【答案】C2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】C8.【答案】B 9.【答案】D 10.【答案】B 11.【答案】B 12.【答案】D 13.【答案】-1.514.【答案】y 2<y 1<y 3 15.【答案】-3 16.【答案】10﹣ 10n+117.【答案】10 18.【答案】-419.【答案】(1)解:设加油前函数解析式为y=kt+b (k≠0)把(0,28)和(1,20)代入 得 {b =28k +b =20解得: {k =−8b =28故张师傅加油前油箱剩余油量y (升)与行驶时间t (小时)之间的关系式为:y=﹣8t+28 (2)解:当y=0时,﹣8t+28=0解得:t= 72故a= 72 ﹣ 50100=3(3)解:设途中加油x 升,则28+x ﹣34=8× 500100解得:x=46答:张师傅途中加油46升20.【答案】(1)解:∵点A (m ,2)在函数 y =4x (x >0)的图象上2m=4. 解得m=2∴点A 的坐标为(2,2).∵点A (2,2)在一次函数y=kx -k 的图象上 2k -k=2. 解得k=2.∴一次函数的解析式为y=2x -2(2)解:点P 的坐标为(3,0)或(-1,0).21.【答案】(1)解:把C(1,3)代入反比例函数关系式得,m=3∴反比例函数的表达式为y=把点A(−2,0),C(1,3)代入一次函数的关系式得.解得k=1,b=2∴一次函数的表达式为y=x+2.(2)解:由题意得,解得,又∵C(1,3),∴D(−3,−1)由图象可知,当y1≥y2时,即一次函数的值大于或等于反比例函数的值时自变量x的取值范围为−3≤x<0或x≥1.(3)解:点(a−4,b)在y1上,则b=a−4+2=a−2点(a,c)在y2上,则c=当b<c时,即:a−2<也就是一次函数y=a−2的值小于反比例函数y=的值时,相应的自变量的取值范围由(2)的方法可得,a<−1或0<a<3.22.【答案】(1)解:由题意得:﹣8= k−2∴k=16∴反比例函数的解析式是y= 16 x;∵反比例函数过M(4,m)∴m= 164=4∵一次函数y=ax+b的图象过点M(4,m)和N(﹣2,﹣8)∴{4a+b=4−2a+b=−8解得:{a=2b=−4∴一次函数解析式是y=2x﹣4(2)解:∵点A在一次函数图象上∴当y=0时,x=2∴A(2,0)∴⊥MON的面积=⊥AOM的面积+⊥AOM的面积= 12×2×8+12×2×4=12(3)解:由图象可知,当x<﹣2或0<x<4时,反比例函数的值大于一次函数的值23.【答案】(1)由题意,得k=-k+4∴k=2∴A(1,2),2=b+1∴b=1∴反比例函数表达式为:y=2x一次函数表达式为:y=x+1.(2)又由题意,得2x=x+1x2+x-2=0解得x1=1,x2=-2∴B(-2,-1)∴当x<-2,或0<x<1时,反比例函数大于一次函数的值. 24.【答案】(1)解:∵xy=1200∴y= 1200 x(2)解:x=12×5=60,代入函数解析式得;y= 120060=20(天)答:20天运完(3)解:运了8天后剩余的垃圾是1200-8×60=720m3.剩下的任务要在不超过6天的时间完成则每天至少运720÷6=120m3则需要的拖拉机数是:120÷12=10(辆)则至少需要增加10-5=5辆这样的拖拉机才能按时完成任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数检测题
一、反比例函数的概念
1.(2010台州)函数的自变量的取值范围是 .
2.(2010丹东) 函数中,自变量的取值范围是 .
3.(2010咸宁)函数的自变量的取值范围是 .
4.(2010桂林)函数
的取值范围是 二、根据已知条件确定反比例函数表达式 1.(2010日照)已知反比例函数y =
,则下列点中在这个反比例函数图象的上的是( ) A.(-2,1) B.(1,-2) C.(-2,-2) D.(1,2) 2.(2010红河)不在函数图像上的点是 ( ) A .(2,6)
B.(-2,-6)
C.(3,4)
D.(-3,4) 3.(2010桂林)若反比例函数的图象经过点(-3,2),则的值为 ( ). A. -6 B .6 C .-5 D .5 4.(2010丽水)若点(4,m )在反比例函数(x ≠0)的图象上,则m 的值是 . 5.(2010凉山州)已知函数是反比例函数,且图像在第二、四象限内,则
的值是( )
A .2
B .
C .
D . 6.(2010益阳)如图,反比例函数的图象位于第一、三象限,其中第一象限内的图 象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标 为 .(答案不唯一,
、满足且即可)
7.(2010镇江)反比例函数的图象在第二、四象限,则n 的取值范围为 ,
为图象上两点,则y 1 y 2(用“<”或“>”填空)
8.(2010丹东)写出具有“图象的两个分支分别位于第二、四象限内”的反比例函数__(写出一个即可). 9. (2010泰安)函数与函数的图象相交于点(2, m),则下列各点不在函数的图象上的是( ) x y 1
-
=x 1
24
y x =-x y x y =
x x
2
x
y 12
=
k
y x
=
k 8
y x
=2
5
(1)m
y m x -=+m 2-2±1
2
-x
k
y =
x y 2=xy 0,0<<y x x
n y 1-=),3(),,2(21y B y A <<,1n 12+=x y x
k
y =x
k
y =
y
o x
2
A
A .(-2,-5)
B .(
,4) C .(-1,10) D .(5,2)
三、反比例函数k 的几何意义:过双曲线)0(≠=k x
k y 上任意一点引x
轴和y 轴的垂线,所得矩形的面积为k
1.如图,P 为反比例函数x
k
y =
的图象上一点,PA ⊥x 轴于点A ,△PAO 的面积为6,下面各点中也在这个反比例函数图象上的点是
A .(2,3)
B .(-2,6)
C .(2,6)
D .(一2,3)
2.(2010甘肃)如图,矩形的面积为3,反比例函数的图象过点,则=( ) A .
B .
C .
D .
3.(2010山西)如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴 上,△ABP 的面积为2,则这个反比例函数的解析式为______________ 四、能画出反比例函数的图像,根据图像和解析表达式)0(≠=k x
k
y 探索并理解其性质(0>k 或0<k 时,图像的变化) (一)、反比例函数图像的对称性(中心对称和轴对称) 例.(2010南昌)如图,反比例函数图象的对称轴的条数是( ) A.0 B. 1 C. 2 D.3 (二)、反比例函数图像的分布与变化 ⑴反比例函数图像性质
1.(2010宁波)已知反比例函数,下列结论不正确的是( ) A.图象经过点(1,1) B.图象在第一、三象限 C.当时, D.当时,随着
的增大而增大
2
5
ABOC k
y x
=
A k 35.1-3-6-x
y 4
=
x
y 1
=
1>x 10<<y 0<x y x 第2题
2.(2010莱芜)已知反比例函数,下列结论不正确...的是( ) A .图象必经过点(-1,2) B .y 随x 的增大而增大
C .图象在第二、四象限内
D .若x >1,则y >-2
3.(2010绥化) 已知函数y =1
x
的图象如图所示,当x ≥-1时,y 的取值范围是( )A .y <-1 B .y ≤-1 C .y ≤-1或y >0 D .y <-1或y ≥0
4.(2010上海)在平面直角坐标系中,反比例函数 y = k
x ( k <0 ) 图像的两支分别在( )
A .第一、三象限
B .第二、四象限
C .第一、二象限
D .第三、四象限
5.(2010长沙)已知反比例函数的图象如图,则m 的取值范围是
6.(2010镇江)反比例函数的图象在第二、四象限,则n 的取值范围为 , ⑵利用反比例函数图像性质比较大小
1. (2010新疆生产建设兵团)若点在反比例函数的图象上,且,则和的大小关系是( )
A. B. C. D. 2.(2010台州)反比例函数图象上有三个点,,,其中 ,则,,的大小关系是( )
A .
B .
C .
D .
3.(2010绍兴)已知,,,是反比例函数的图象上的三个点,且021<<x x ,03>x ,则321,,y y y 的大小关系是( )
A . 213y y y <<
B . 312y y y <<
C . 321y y y <<
D . 123y y y << ⑶反比例函数图像与一次函数图象
1.(2010湘潭)在同一坐标系中,正比例函数与反比例函数的图象大致是( )
x
y 2
-=1m
y x -=x
n y 1
-=
1122()()A x y B x y ,、,3
y x
=-120x x <<12y y 、0120y y >>120y y <<120y y >>120y y <<x
y 6
=
)(11y x ,)(22y x ,)(33y x ,3210x x x <<<1y 2y 3y 321y y y <<312y y y <<213y y y <<123y y y <<)(11y x ,)(22y x ,)(33y x ,x
y 4
-=x y =x
y 2
=
2.(2010青岛)函数与(a ≠0)在同一直角坐标系中的图象可能是( D )
3.(2010东营)如图所示,反比例函数与正比例函数的图象的一个交点是,若
,则的取值范围在数轴上表示为( )
五、能用反比例函数解决某些实际问题
1.(2010兰州)已知:y =y 1+y 2,y 1与x 2
成正比例,y 2与x 成反比例,且x =1时,y =3;x
=-1时,y =1. 求时,y 的值.
2.(2010常德)已知图中的曲线函数(m 为常数)图象的一支. (1)求常数m 的取值范围; (2)若该函数的图象与正比例函数图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.
3.(2010郴州)已知:如图,双曲线y=的图象经过A
(1)求双曲线的解析式;
(2)试比较b 与2的大小.
y ax a =-a
y x
=1y 2y (21)A ,210y y >>x 1
2
x =-5
m y x
-=
2y x
=
2y x =k
x
(A x。

相关文档
最新文档