七年级数学(人教版)下课时同步检测卷:解二元一次方程组(无答案)
2022年人教版七年级下册数学同步培优第八章二元一次方程组第2节 第2课时用加减法解二元一次方程组

基础巩固
能力提升
拓展突破
-13-
第2课时
x-1
(2)
6
-
2-y
3
用加减法解二元一次方程组
=1,
2x+y=13.
解:原方程组可化为
x+2y=11, ①
2x+y=13, ②
由①×2-②,得 3y=9,解得 y=3.
把 y=3 代入①,得 x=5.
所以方程组的解为
x=5,
y=3.
基础巩固
能力提升
度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.
测量的数据如图,则桌子的高度是( D )
A.73 cm B.74 cm
C.75 cm D.76 cm
-11-
第2课时
用加减法解二元一次方程组
基础巩固
能力提升
拓展突破
10.若3x2m+5n+9+4y4m-2n-7=2是二元一次方程,则(n+1)m+2022的
-9-
第2课时
用加减法解二元一次方程组
基础巩固
能力提升
拓展突破
-10-
x-3y=2,
8.[合肥长丰期末]已知二元一次方程组
则 xy 的值为
3x-y=6,
( D )
A.-2
B.-1
C.0
D.1
第2课时
用加减法解二元一次方程组
基础巩固
能力提升
拓展突破
9.[拓展视野]利用两块相同的长方体木块测量一张桌子的高
解方程组
19x+18y=17, ①
17x+16y=15. ②
解:由①-②,得 2x+2y=2,即 x+y=1, ③
2018-2019学年人教版七年级下册数学课时同步练习卷:8.2二元一次方程组的解法

8.2二元一次方程组的解法一、填空题1.已知方程2x+3y-8=0,用含x 的式子表示y 为 y=-23x+83 ,用含y 的式子表示x 为 x=-32y+4 .2.方程组{x +y =10,2x +y =16的解是 {x =6y =4 3.若方程组{x +4=y,2x -y =2a中的x 是y 的2倍,则a= -6 . 4.二元一次方程x+3y=4有一组解互为相反数,则此时y 的值是 25. 已知{x =2,y =1是关于x ,y 的二元一次方程组{ax +by =7,ax -by =1的一组解,则a+b= 5 . 6. 若a-3b=2,3a-b=6,则b-a 的值为 -2 .7. 已知x ,y 满足方程组{x -2y =5,x +2y =−3,则x 2-4y 2的值为 -15 . 8.以关于x ,y 的方程2x+5y=-9和5x-6y=33的解为坐标的点P (x ,y )在第 四 象限.9.如果方程组{x +y =1,ax +by =c有唯一的一组解,那么a ,b ,c 的值应当满足a ≠b 10.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,则该组男生有 18 人,女生有 12 人.二、选择题11.二元一次方程组的解是( B )A. B. C. D.12.已知2x+3y=6,用含有y 的式子表示x ,得(A)A .x=3-32yB .y=2-23xC .x=3-3yD .y=2-2x 13.用加减消元法解二元一次方程组时,下列步骤可以消去未知数x 的是(D )A.①×4+②×3B.①×2+②×5C.①×5+②×2D.①×5-②×214.用代入法解二元一次方程组{4x +5y =3,3x -y =7时,比较简便的变形是(D) A .x=3−5y 4B .y=3−4x 5C .x=y+73D .y=3x-715.方程组消去y 后所得的方程是( A )A.3x -4x +10=8B.3x -4x +5=8C.3x -4x -5=8D.3x -4x -10=816.在解方程组{3x +2y =2 ①,2x +2y =−1 ②中,①-②所得的方程是(C) A .x=1B .5x=-1C .x=3D .5x=3 17.由方程组可得出x 与y 的关系是( A )A. B. C. D.18.二元一次方程x+3y=4有一组解互为相反数,则此时y 的值是(D)A.1B.-1C.0D.219. 如果方程组{x +y =1,ax +by =c有唯一的一组解,那么a ,b ,c 的值应当满足(B) A.a=1,c=1 B.a ≠bC.a=b=1,c ≠1D.a=1,c ≠120.若方程组{3x +y =1+3a,x +3y =1−a的解满足x-y=-2,则a 的值为(A) A .-1B .1C .-2D .不能确定 三、解答题21.用代入法解方程组:(1){x -3y =2,y =x.解:方程组的解为{x =−1,y =−1.(2){4x +3y =5,x -2y =4.解:方程组的解为{x =2,y =−1.22.如果{x =3,y =−2是方程组{ax +by =1,ax -by =5的解,求a 2019-2b 2018的值. 解:方程组ax+by=1, ①ax-by=5,② ①+②,得2ax=6,①-②,得2by=-4,把x=3,y=-2分别代入,得a=1,b=1.当a=1,b=1时,a 2019-2b 2018=12019-2×12018=-1.23.利用加减消元法解方程组{3x +4y =16 ①,5x -6y =14 ②,答案略24.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.解:设甲种车每辆一次运土x 立方米,乙种车每辆一次运土y 立方米.由题意得{5x +2y =64,3x +y =36,解得{x =8,y =12. 答:甲种车每辆一次运土8立方米,乙种车每辆一次运土12立方米.25.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,问中、小型汽车各有多少辆?解:设中型汽车有x 辆,小型汽车有y 辆.根据题意,得{x +y =50,12x +8y =480,解得{x =20,y =30. 答:中型汽车有20辆,小型汽车有30辆.26.先阅读材料,然后解方程组.材料:解方程组{x -y =1,①4(x -y)-y =5,②把①代入②,得4×1-y=5,解得y=-1.把y=-1代入①,得x=0.所以方程组的解为{x =0,y =−1.这种方法被称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组{x -3y -8=0,2x -6y+57+2y =9. 解:方程组的解为{x =17,y =3.27.对于任意的有理数a ,b ,c ,d ,我们规定:|a b c d|=ad-bc ,根据这一规定,解答下列问题:若x ,y 同时满足|x (-y)(-6)5|=13,|34(-y)x |=4,求|x (-y)3-2|的值. 解:根据题意,得{5x -6y =13,3x +4y =4,解得x=2,y=-12.∴|x (-y)3-2|=|2123-2|=-2×2-3×12=-112. 28.已知方程组{x -y =5,ax +3y =b -1.分别求:(1)有无数多个解时a ,b 的值;(2)有唯一解时a ,b 的值;(3)无解时a ,b 的值.解:x-y=5, ①ax+3y=b-1, ②由①得x=y+5.③ 将③代入②,得a (y+5)+3y=b-1,即(a+3)y=-5a+b-1.(1)当{a +3=0,-5a +b -1=0,即{a =−3,b =−14时,原方程组转化为{x -y =5,x -y =5,那么满足x-y=5的x ,y 的值有无数对,即当a=-3,b=-14时,原方程组有无数多个解.(2)当a ≠-3时,y 有唯一解y=-5a+b -1a+3,即当a ≠-3,b 为任意实数时,原方程组有唯一解.(3)当{a +3=0,-5a +b -1≠0即{a =−3,b ≠−14时,原方程组转化为{x -y =5,x -y ≠5,因为这两个方程互相矛盾,所以方程组无解,即当a=-3,b ≠-14时,原方程组无解.。
人教版七年级数学下册《10.3 实际问题与二元一次方程组》同步测试题及答案

人教版七年级数学下册《10.3 实际问题与二元一次方程组》同步测试题及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数⨯表格,每一行的三个数,学史上经常研究这一神话.数学上的“九宫图”所体现的是一个33每列的三个数,斜对角的三个数之和都相等,也称为三阶幻方,如图是一个满足条件的三阶幻方的一部分,则x y的值为()03x1-5-yA.4B.4-C.9D.9-⨯的方格中做填字游戏,要求每行、每列及对角线上三个方格中的数字和都2.如图,在33相等,则表格中x,y的值分别为()4x-y-3232yA.1,1-B.1-,1C.2,1-D.2-,1⨯方格填入了一些表示数的代数式,若图中3.在“幻方拓展课程”探索中,小明在如图的33-=()各行、各列及对角线上的三个数之和都相等,则y xx2y2-y6A.2B.4C.6-D.64.《乌鸦喝水》的故事我们都听过,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,喝到了水.根据如图信息,若放入一个钢珠可以使液面上升k 厘米,当在玻璃桶内同时放入相同数量的小球和钢珠时,水面上升到38厘米,则k 的整数值有( )个.A .2B .3C .4D .55.为筑牢拒毒防线,提升青少年识毒能力,2022年秋季学期花溪区某校举行“珍爱生命,远离毒品”知识竞赛活动,评分标准是:答对一题加10分,答错一题扣5分,不回答扣2分;一共10个题,每个队的基本分均为0分,A 、B 两个参赛队前8题的答题情况如下表,则a 与b 的值分别为( )参赛队 题目数量(题) 答对(题) 答错(题) 不回答(题) 得分(分) A 8 6 0 2 56 B8 a b35 A .2a = 6b =B .5a = 3b =C .6a = 2b =D .3a = 5b =6.综合实践课上,同学们在如图所示的三阶幻方中,填写了一些数、式子和图案(其中每个式子或图案都表示一个数),若处于每一横行、每一竖列、两条斜对角线上的3个数之和都相等,则x +y 的值为( )A.6B.10C.12D.−67.某同学去蛋糕店买面包,面包有A,B两种包装,每个面包品质相同,且只能整盒购买,商品信息如下表:包装方式A B每盒面包个数38每盒价格/元511若某同学正好买了50个面包,则他最少需要花()A.71元B.74元C.75元D.81元8.某同学去蛋糕店买面包,面包有A,B两种包装,每个面包品质相同,且只能整盒购买,商品信息如下:A包装盒B包装盒每盒面包个数(个)38每盒价格(元)511若某同学正好买了50个面包,则他最少需要花()元;A.71B.74C.75D.81二、填空题9.小方、小红和小军三人玩飞镖游戏,各投四支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小红的得分是.⨯的方格内,填写了一些含x,y的式子和数,其中各行各列和对角线上的10.如图,在33-=.三个数之和都相等,则x y53x-47x-3y11.幻方最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各对角线上的三个数字之和均相等,则图中a的值是.12.每年5月的第二个星期日为母亲节.母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知一束鲜花的价格是元;13.八达岭长城是北京市著名的旅游景点,史称天下九塞之一,是万里长城的精华.五一假期期间,某校七年级历史兴趣小组游览八达岭长城,乘坐缆车的费用如下表所示:乘坐缆车方式乘坐缆车费用(单位:元/人)往返140单程100已知小组成员每个人都至少乘坐一次缆车,去程时有18人乘坐缆车,返程时有20人乘坐缆车,他们乘坐缆车的总费用是3320元,则该小组共有人.14.如图是九宫格,在每个格子中填上一个数(图中没有全部标出)使得每行、每列及对角线上三个数的和都相等,则x=,y=.三、解答题15.太原五中计划购置篮球、钢笔、笔记本作为期末奖品,采购员小琪在某文体用品店购买完毕回到学校后发现发票被弄花了,有几个数据变得不清楚,如图所示.货物或应税劳务、服务名称篮球钢笔笔记本合计规格型号单位个支本数量646单价100.0015.005.00金额600.00900.0税率税额价税合计(大写) 玖佰元整(小写)900.00请根据发票中现有的信息,帮助小琪复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.16.某山区有23名中小学生因贫困失学需要捐助,资助一名中学生需要学习费用a元,资助一名小学生需要学习费用b元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好能帮助的贫困中学生和小学生人数的部分情况如下表:七年级八年级九年级捐款数额(元)400042007400捐助贫困中学生(名)23捐助贫困小学生(名)43(1)求a、b的值;(2)九年级学生的捐款解决了其余贫困中小学生的学习费用,请将九年级学生可捐助的贫困中、小学生人数直接填入上表中(不需要写出计算过程).17.如图(甲)中,各行、各列及对角线上的三个数之和都相等.2x32y3-4y甲32-3乙(1)通过计算求x与y的值;(2)把满足(甲)的其他6个数填入图(乙)中的方格内.18.某校计划购置篮球、钢笔、笔记本作为期末奖品,采购员小慧在某文体用品店购买完毕,回到学校后发现发票被弄花了,有几个数据变得不消楚,如图所示:请根据发票中现有的信息,帮助小慧复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.19.根据以下素材,探索完成任务. “同城跑腿急送”,让你的生活更便利素材1“同城跑腿急送”送件费用为起送费用、里程费用与重量费用的和,具体计费方式如右.起送费用 若送件重量不超过5千克,送件里程不超过5千米时,按单收费,每单10元.里若送件的里程大于5千米,超出5千米且不超过10千程费用米部分的里程费用为每千米a元,超出10千米部分的里程费用为每千米3元.(实际里程不足1千米,按1千米计算.例如送件实际里程为7.3千米,按8千米算,即计价里程为8千米)重量费用若送件的重量大于5千克,超出5千克且不超过10千克部分的重量费用为每千克b元,超出10千克部分的重量费用为每千克5元.(实际重量不足1千克,按1千克计算.例如送件实际重量为6.4千克,按7千克算,即计价重量为7千克)素材2甲、乙、丙三人都使用素材1中的“同城跑腿急送”服务:甲:送件里程6千米,送件重量8千克,费用21元;送件里程10千米,送件重量7千克,费用26元.乙:送件里程12.5千米,送件重量14.3千克.丙:送件里程与送件重量都已经记不清了,只记得送件里程超过了5千米,送件重量超过了5千克,总费用是25元.解决问题任务1请你确定a,b的值.任务2帮助乙计算这单跑腿需要的费用.任务3确定丙这单跑腿的计价里程以及计价重量.20.如图,从左向右依次摆放序号分别为1,2,3,...n 的小正方形卡片,每个小正方形卡片上均画有若干个小圆点.其中任意相邻的4个小正方形卡片上的小圆点数量之和相等.(1)分别求出a ,b 的值;(2)当26n =时,所有这些小正方形纸片上的小圆点数量之和是多少?(3)小明说,第99个小正方形卡片上的小圆点的个数是3个,请直接判断他的说法是否正确.参考答案题号 1 2 3 4 5 6 7 8 答案 AACCB BBAB1.A 【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【分析】本题主要考查了二元一次方程组的应用.根据九宫图的填法,每一行的三个数、每列的三个数、斜对角的三个数之和都相等,列出方程组,即可得到答案. 【详解】解:根据题意得:050105315x yx +-=-+⎧⎨+-=--⎩解得:22x y =⎧⎨=-⎩∴()224x y =-=. 故选:A 2.A 【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【分析】本题考查了二元一次方程组的应用,根据题意等量关系,列出二元一次方程组求解即可.【详解】解:依题意,得:43223242432x yx y y x -+=++⎧⎨-+=-+⎩ 解得:11x y =⎧⎨=-⎩故选:A . 3.C 【难度】0.85【知识点】已知字母的值 ,求代数式的值、图表信息题(二元一次方程组的应用)【分析】本题考查了二元一次方程组的应用及求代数式的值,能根据题意列出方程组是解此题的关键.根据题意得出方程组,求出方程组的解,代入y x -计算即可.【详解】解:由题意得:26022002y y yx y y -++=++⎧⎨-+=++⎩ 解得:82x y =⎧⎨=⎩ ∴286y x -=-=-. 故选:C . 4.C 【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【分析】本题考查二元一次方程的知识,解题的关键是根据题意,得一个小球上升2cm ,设同时放入n 个小球和钢珠,水位上升到38厘米,则23826nk n +=-,即可. 【详解】由题意得,一个小球上升2cm∴设同时放入n 个小球和钢珠,水位上升到38厘米∴23826nk n +=- 整理得:122n k n-= 当1n =时10k =;当2n =时4k =;当3n =时2k =;当4n =时1k =;∴k 整数值可以取:10,4,2,1.故选:C .5.B【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【分析】根据题意可得105358a b a b -=⎧⎨+=⎩,然后根据二元一次方程的组解可进行求解. 【详解】解:由题意得:105358a b a b -=⎧⎨+=⎩解得:53a b =⎧⎨=⎩; 故选B .【点睛】本题主要考查二元一次方程组的应用,解题的关键是理解题中的等量关系. 6.B【难度】0.85【知识点】图表信息题(二元一次方程组的应用)、有理数加法运算【分析】根据题意列出方程求出x ,y 的值,代入代数式求值即可.【详解】解:根据题意得:202602x y y y -+=-++=++解得:8x = 2y =8210x y ∴+=+=.故选:B .【点睛】本题考查了有理数的加法,体现了方程思想,根据题意列出方程是解题的关键.7.BA【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【解析】略8.B【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【分析】设购买A包装面包x盒,B包装面包y盒,由题意:某同学正好买了50个面包,结合表中信息列出二元一次方程,求出非负整数解,即可解决问题.【详解】解:设购买A包装面包x盒,B包装面包y盒由题意得:3x + 8y= 50∴x、y为非负整数∴64xy=⎧⎨=⎩或141xy=⎧⎨=⎩∴当x=6,y= 8时费用为:5×6+11×4= 74(元);当x= 14,y= 1时,费用为:5×14+11×1= 81(元);∴74<81∴某同学正好买了50个面包,则他最少需要花74元故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.32分【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【分析】此题主要考查了二元一次方程组的应用.设大圈内,小圈内得分分别为x,y分,根据等量关系列出方程组,再解方程组即可,根据小方、小军一次各得分数乘以各自的次数,计算出总分即可.【详解】解:设大圈内,小圈内得分分别为x,y分依题意得:3242228x y x y +=⎧⎨+=⎩ 解这个方程组得:59x y =⎧⎨=⎩答:小方、小军一次各得5分、9分则小红的得分是53932(分).故答案为:32分.10.5-【难度】0.65【知识点】图表信息题(二元一次方程组的应用)【分析】本题考查二元一次方程组的应用,关键在于理解题意找出等量关系.通过题意列出二元一次方程组,解方程组即可.【详解】由题意,得7357354373x x y y x y -+=-+⎧⎨++=-+⎩.解得23x y =-⎧⎨=⎩. 则5x y -=-故答案为:5-11.5-【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【分析】本题考查了解二元一次方程组的应用;根据题意列出关于a 与b 的二元一次方程组,解方程组即可求得a 的值.【详解】解:由题意得:2462a b a b +=-⎧⎨+=-+⎩整理得:64a b a b -=-⎧⎨+=-⎩解得:51a b =-⎧⎨=⎩故5a =-;故答案为:5-.12.15【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【分析】本题主要考查了二元一次方程组的应用.设一束鲜花的价格为x 元,一个礼盒的价格为y 元,根据题意,列出方程组,即可求解.【详解】解:设一束鲜花的价格为x 元,一个礼盒的价格为y 元,根据题意得: 2552390x y x y +=⎧⎨+=⎩解得:1520x y =⎧⎨=⎩答:一束鲜花的价格为15元.故答案为:1513.30【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【分析】此题主要考查了二元一次方程组的应用.可设该小组共有x 人,往返的有y 人,根据等量关系:∴去程时的人数+返程时的人数﹣往返的人数=该小组一共的人数;∴乘坐缆车的总费用是3320元;列出方程组求解即可.【详解】解:设该小组共有x 人,往返的有y 人,依题意有()1820140100182023320y x y y +-=⎧⎨++-=⎩解得308x y =⎧⎨=⎩故该小组共有30人.故答案为:30.14. 9- 7【难度】0.85【知识点】图表信息题(二元一次方程组的应用)【分析】本题考查的是二元一次方程的应用,解题的关键是读懂题意,找到等量关系,正确列出方程组,根据每行、每列及对角线上三数之和相等,即可列出方程组解答.【详解】解:由题意可得:223622216x y x y x y +++=+⎧⎨++=+⎩ 整理得:3583615x y x y +=⎧⎨+=⎩解得:97x y =-⎧⎨=⎩ 故答案为:-9;715.钢笔的数量为10支,金额为150元,笔记本的数量为30本,金额为150元【难度】0.65【知识点】图表信息题(二元一次方程组的应用)【分析】本题考查二元一次方程组的应用,设钢笔购买了x 支,笔记本购买了y 本,根据数量总和为46,金额综合为900元,列出方程组进行求解即可.【详解】解:设钢笔购买了x 支,笔记本购买了y 本由题意得646155600900x y x y ++=⎧⎨++=⎩ 解得1030x y =⎧⎨=⎩则1015150⨯=(元),305150⨯=(元)答:钢笔的数量为10支,金额为150元,笔记本的数量为30本,金额为150元. 16.(1)a 的值是800,b 的值是600.(2)九年级学生可捐助的贫困中、小学生人数分别是4,7.【难度】0.65【知识点】图表信息题(二元一次方程组的应用)【分析】本题考查二元一次方程组的应用,关键是以捐款钱数作为等量关系列方程组求解.(1)资助一名中学生需要学习费用a 元,资助一名小学生需要学习费用b 元,根据表格中提供的七年级和八年级捐款数,和人数可求出a 和b 的值.(2)设九年级学生可捐助贫困中学生x 人,小学生y 人,根据该山区贫困生的总人数及九年级捐款数额,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】(1)资助一名中学生需要学习费用a 元,资助一名小学生需要学习费用b 元244000334200a b a b +=⎧⎨+=⎩ 解得:800600a b =⎧⎨=⎩. 所以a 的值是800,b 的值是600.(2)设初三年级学生可捐助贫困中学生x 人,小学生y 人依题意得:2324338006007400x y x y +=----⎧⎨+=⎩解得:47x y =⎧⎨=⎩. ∴九年级学生捐助贫困中学生人数为4名,捐助贫困小学生人数为7名.17.(1)x 与y 的值分别为1-与1(2)见解析【难度】0.65【知识点】图表信息题(二元一次方程组的应用)【分析】解答本题的关键是找出等量关系,列方程组求出x 、y 的值,再根据各行、各列及对角线上的三个数之和都相等这个已知条件求解即可.(1)由题意可以知道等量关系:即各行、各列及对角线上的三个数之和都相等.据此列方程组分别求得x 、y 的值;(2)根据题意,分别求得方格内的数即可.【详解】(1)由题意可列方程组2322(3)423224x y x x y y ++=+-+⎧⎨++=++⎩解得11x y =-⎧⎨=⎩. ∴x 与y 的值分别为1-与1;(2)由题意可知:图中对角线从上到下的数依次为22x =- 1y = 44y =;设第二行最前面的数位z ,第三行第一个和第二个数分别为n 、m .由第一行数的和=第二行数的和得:2321(3)z -++=++-,解得5z =;由第二列数的和=第三列数的和得:312(3)4m ++=+-+,解得1m =-;由第一列数的和=第二列数的和得:2531(1)n -++=+=-,解得0n =.故第一行应填:-2;第二行依次应填:5,1;第三行依次应填:0,-1,4.如图18.钢笔的数量为10支,金额为150元,笔记本的数量为30本,金额为150元【难度】0.65【知识点】图表信息题(二元一次方程组的应用)【分析】本题考查二元一次方程组的应用,设钢笔购买了x 支,笔记本购买了y 本,根据数量总和为46,金额综合为900元,列出方程组进行求解即可.【详解】解:设钢笔购买了x 支,笔记本购买了y 本由题意得646155600900x y x y ++=⎧⎨++=⎩解得1030x y =⎧⎨=⎩ 则1015150⨯=(元),305150⨯=(元)答:钢笔的数量为10支,金额为150元,笔记本的数量为30本,金额为150元.19.【任务1】23a b =⎧⎨=⎩; 【任务2】69元;【任务3】丙这单跑腿的计价里程为8千米,计价重量为8千克.【难度】0.4【知识点】图表信息题(二元一次方程组的应用)【分析】本题考查了的二元一次方程的实际应用,处理表格所给的信息列出方程是解题的关键.(1)根据甲的配送信息列出二元一次方程组运算求解即可;(2)根据乙的计价里程和计价重量列式运算即可;(3)设丙这单跑腿的计价里程和计价重量分别为x 千米,y 千克,分类讨论列式运算即可.【详解】【任务1】解:由题意可以列出方程组10321105226a b a b ++=⎧⎨++=⎩ 解得:23a b =⎧⎨=⎩; 【任务2】由题意可知乙的计价里程和计价重量分别为13千米,15千克∴乙的这单跑腿费用为102533355569+⨯+⨯+⨯+⨯=(元);【任务3】设丙这单跑腿的计价里程和计价重量分别为x 千米,y 千克(6x ≥,6y ≥)∴若10x >,610y ≤≤可知跑腿费用最少时11x =,6y =此时费用为10253326+⨯++=(元),不合题意;∴若10y >,610x ≤≤可知跑腿费用最少时6x =,11y =此时费用为10235532++⨯+=(元),不合题意;∴若610x ≤≤,610y ≤≤时,跑腿费用为()()10253525x y +-+⨯-=整理得2340x y +=,即3202x y =-∴y 为偶数 ∴代入验证可得88x y =⎧⎨=⎩即丙这单跑腿的计价里程为8千米,计价重量为8千克.20.(1)5a = 2b =(2)91(3)正确,理由见解析【难度】0.65【知识点】有理数四则混合运算的实际应用、图表信息题(二元一次方程组的应用)、图形类规律探索【分析】本题考查图形变化的规律(1)根据任意相邻的4个小正方形卡片上的小圆点数量之和相等,建立关于a ,b 的方程组即可解决问题;(2)根据卡片上小圆点个数变化的规律即可解决问题;(3)根据卡片上小圆点个数变化的规律即可解决问题;能根据所给图形发现卡片上小圆点的个数按5,2,3,4循环出现是解题的关键.【详解】(1)解:∴任意相邻的4个小正方形卡片上的小圆点数量之和相等∴5234234 23434aa a b+++=+++⎧⎨+++=+++⎩解得:52ab=⎧⎨=⎩;(2)由题知,连续4个相邻卡片上小圆点的个数之和为:523414+++=又∴26462÷=∴6145291⨯++=故这些小正方形纸片上的小圆点数量之和是91;(3)正确.理由:∴卡片上小圆点的个数按5,2,3,4循环出现∴994243÷=∴第99个小正方形卡片上的小圆点的个数是3个∴小明的说法正确.。
2021-2022学年人教版初中数学七年级下册第八章二元一次方程组同步训练试卷(含答案详细解析)

初中数学七年级下册第八章二元一次方程组同步训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形ABCD ,若设小长方形的长为x ,宽为y ,则可列方程为( )A .()27,2746x y y x y =⎧⎨++=⎩B .27,746x y y x y =⎧⎨++=⎩C .()27,2746x y x x y =⎧⎨++=⎩D .72,746x y x x y =⎧⎨++=⎩2、二元一次方程324x y -=的解可以是( )A .2,1x y =⎧⎨=⎩B .3,2x y =⎧⎨=⎩C .1,1x y =-⎧⎨=⎩D .3,4x y =-⎧⎨=-⎩3、若关于x ,y 的二元一次方程组32129x y k x y +=+⎧⎨-=⎩的解互为相反数,则k 的值是( )A .4B .3C .2D .14、下列各式中是二元一次方程的是( )A .2327x y -=B .25x y +=C .123y x += D .234x y -=5、用加减法解方程组336x y x y +=-⎧⎨+=⎩①②由②-①消去未知数y ,所得到的一元一次方程是( ) A .29x = B .23x = C .49=x D .43x =6、已知23x y =-⎧⎨=⎩是方程22kx y +=-的解,则k 的值为( ) A .﹣2 B .2 C .4 D .﹣47、下列各组数值是二元一次方程2x ﹣y =5的解是( )A .21x y =-⎧⎨=⎩B .05x y =⎧⎨=⎩C .15x y =⎧⎨=⎩D .31x y =⎧⎨=⎩8、已知方程组242x y x y k +=⎧⎨+=⎩的解满足1x y +=,则k 的值为( ) A .7 B .7- C .1 D .1-9、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )A .1.2元B .1.05元C .0.95元D .0.9元10、下列方程组中是三元一次方程组的是( ).A .2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B .2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C .1141171110x y y zz x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D .::3:4:524x y z x y z =⎧⎨++=⎩ 二、填空题(5小题,每小题4分,共计20分)1、若关于x 、y 的方程()12m m x y ++=是二元一次方程,则m =_______.2、方程(1)(1)0a x a y ++-=,当a ≠___时,它是二元一次方程,当a =____时,它是一元一次方程.3、《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式.其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八.问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲,乙二人原来各有多少钱?”设甲原有x 文钱,乙原有y 文钱,可列方程组为____________.4、已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程组()2715ax y x b y +=⎧⎨--=-⎩的解,则1123a b -的值为____________.5、若522325m n x y ++与632134m n x y ---的和是单项式,则m =_______,n =_______. 三、解答题(5小题,每小题10分,共计50分)1、 “文明其精神,野蛮其体魄”,为进一步提升学生的健康水平,我市某校计划用760元购买14个体育用品,备选体育用品及单价如表:(1)若760元全部用来购买足球和排球,求足球和排球各购买的数量.(2)若该校先用一部分资金购买了a 个排球,再用剩下的资金购买了足球和篮球,且篮球和足球的个数相同,此时正好剩余80元,求a的值.(3)由于篮球和排球都不够分配,该校再补充采购这两种球共花费了480元,其中这两种球都至少购进2个,则有几种补购方案?2、《算法统宗》中记载了一个问题,大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头.问大、小和尚各有多少人?3、下面4组数值中,哪一组是二元一次方程组73228x yx y-=⎧⎨+=⎩的解?(1)13xy=-⎧⎨=-⎩(2)24xy=⎧⎨=⎩(3)42xy=⎧⎨=⎩(4)16xy=⎧⎨=⎩4、用代入消元法解下列方程组:(1)32x yy x-=⎧⎨=⎩(2)528x yx y+=⎧⎨+=⎩(3)43524x yx y+=⎧⎨-=⎩(4)222312nmm n⎧-=⎪⎨⎪+=⎩5、在解方程组4635ax yx by+⎧⎨+-⎩=①=②时,由于小明看错了方程①中的a,得到方程组的解为12xy⎧⎨⎩==,小华看错了方程②中的b,得到方程组的解为x=2,y=1.(1)求a、b的值;(2)求方程组的正确解.---------参考答案-----------一、单选题1、A【解析】【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x ,宽为y ,由题意得:()272746x y y x y =⎧⎨++=⎩ 或()272246x y x x y =⎧⎨++=⎩, 故选A .【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.2、A【解析】【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A 、21x y =⎧⎨=⎩代入324x y -=中,方程左边=3221=4⨯-⨯ ,边等于右边,故此选项符合题意; B 、32x y =⎧⎨=⎩代入324x y -=中,方程左边=3322=5⨯-⨯ ,左边不等于右边,故此选项不符合题意; C 、11x y =-⎧⎨=⎩代入324x y -=中,方程左边()=3121=5⨯--⨯- ,左边不等于右边,故此选项不符合题意; D 、34x y =-⎧⎨=-⎩代入324x y -=中,方程左边()()=3324=1⨯--⨯-- ,左边不等于右边,故此选项不符合题意;故选A .本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.3、C【解析】【分析】先根据“方程组的解互为相反数”可得0x y +=,再与方程29x y -=联立,利用消元法求出,x y 的值,然后代入方程321x y k +=+即可得.【详解】解:由题意得:0x y +=,联立029x y x y +=⎧⎨-=⎩①②, 由①-②得:39y =-,解得3y =-,将3y =-代入①得:30x -=,解得3x =,将3,3x y ==-代入方程321x y k +=+得:196k +=-,解得2k =,故选:C .【点睛】本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.4、B【解析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】2327x y -=中x 的次数为2,故A 不符合题意;25x y +=是二元一次方程,故B 符合题意;123y x +=中1x不是整式,故C 不符合题意; 234x y -=中y 的次数为2,故D 不符合题意;故选B .【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.5、A【解析】【分析】观察两方程发现y 的系数相等,故将两方程相减消去y 即可得到关于x 的一元一次方程.【详解】解:解方程组336x y x y +=-⎧⎨+=⎩①②,由②-①消去未知数y ,所得到的一元一次方程是2x =9, 故选:A .【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.6、C【分析】把23xy=-⎧⎨=⎩代入是方程kx+2y=﹣2得到关于k的方程求解即可.【详解】解:把23xy=-⎧⎨=⎩代入方程得:﹣2k+6=﹣2,解得:k=4,故选C.【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.7、D【解析】【分析】将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.【详解】解:A. 把21xy=-⎧⎨=⎩代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;B. 把5xy=⎧⎨=⎩代入方程2x﹣y=5,0-5=-5≠5,不满足题意;C. 把15xy=⎧⎨=⎩代入方程2x﹣y=5,2-5=-3≠5,不满足题意;D. 把31x y =⎧⎨=⎩代入方程2x ﹣y =5,6-1=5,满足题意; 故选:D .【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.8、D【解析】【分析】①+②得出x +y 的值,代入x +y =1中即可求出k 的值.【详解】解:242x y x y k +=⎧⎨+=⎩①②①+②得:3x +3y =4+k , ∴43k x y ++=, ∵1x y +=, ∴413k +=, ∴43k +=,解得:1k =-,故选:D【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9、B【解析】【分析】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得x y z ++的值.【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据题意得:37 3.15482 4.2x y z x y z ++=⎧⎨++=⎩①②, ②–①可得: 1.05x y z ++=.故选:B .【点睛】本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含x y z ++的等式.10、D【解析】【分析】三元一次方程组中共含有三个未知数,并且含未知数的项的次数都是1,每个方程都是整式方程,由此进行判断即可.【详解】解:A 、a 的最高次数是2,选项错误;B 、x 、y 、z 的最高次数都是2,选项错误;C 、每个方程都是分式方程,选项错误;D 、符合题意,选项正确.故选:D【点睛】本题考查三元一次方程组的识别,牢记定义是解题的切入点.二、填空题1、1【分析】根据二元一次方程定义可得:|m |=1,且m-1≠0,进而可得答案.【详解】∵关于x 、y 的方程()12m m x y ++=是二元一次方程,∴|m |=1,且m -1≠0,解得:m =1,故答案为:1【点睛】本题考查了二元一次方程,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.2、±1 1-或1【分析】根据一元一次方程的定义可得分两种情况讨论,当10a +=,即1a =-时;当10a -=,即1a =时,方程为一元一次方程,即可得a 的值;根据二元一次方程的定义可得10a +≠且10a -≠,解可得a 的值.【详解】 解:关于x 的方程(1)(1)0a x a y ++-=,是二元一次方程,10a ∴+≠且10a -≠,解得:1a ≠±;方程(1)(1)0a x a y ++-=,是一元一次方程,分类讨论如下:当10a +=,即1a =-时,方程为20y -=为一元一次方程;当10a -=,即1a =时,方程为20x =为一元一次方程;故答案是:±1;1-或1.【点睛】本题主要考查了二元一次方程和一元一次方程的定义,解题的关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.3、4822483y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩【分析】设甲原有x 文钱,乙原有y 文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的2348=文钱,据此列方程组可得. 【详解】解:设甲原有x 文钱,乙原有y 文钱, 根据题意,得:4822483y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.4、0【分析】结合题意,根据二元一次方程组的性质,将13x y =⎧⎨=⎩代入到原方程组,得到关于a 和b 的二元一次方程组,通过求解即可得到a 和b ,结合代数式的性质计算,即可得到答案.【详解】∵13x y =⎧⎨=⎩是关于x ,y 的二元一次方程组()2715ax y x b y +=⎧⎨--=-⎩的解 ∴将13x y =⎧⎨=⎩代入到()2715ax y x b y +=⎧⎨--=-⎩,得()2371315a b +=⎧⎨--=-⎩∴23a b =⎧⎨=⎩ ∴1111023a b -=-=故答案为:0.【点睛】本题考查了二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.5、1 12-【分析】 单项式522325m n x y ++与632134m n x y ---的和仍是一个单项式,就是说它们是同类项.由同类项的定义(所含字母相同,相同字母的指数相同)可得52263321m n m n ++=⎧⎨=--⎩,解方程即可求得m 和n 的值. 【详解】解:由题意知单项式522325m n x y ++与632134m n x y ---是同类项, 所以有52263321m n m n ++=⎧⎨=--⎩, 解得112m n =⎧⎪⎨=-⎪⎩. 故答案为:1;12-.【点睛】此题考查了合并同类项,以及单项式,熟练掌握合并同类项法则是解本题的关键.三、解答题1、(1)足球购买5个、排球购买9个;(2)a 的值为10;(3)则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【分析】(1)设购买足球x 个和排球y 个,根据两种球共14个,足球支出总钱数+排球支出总钱数=760元,列方程组804076014x y x y +=⎧⎨+=⎩,解方程组即可; (2)设篮球购买b 个,篮球和足球的个数相同,足球购买b 个,根据三种球共14个,排球支付的总钱数+足球支出总钱数+篮球球支出总钱数=760-80元,列方程组40806076080214a b b a b ++=-⎧⎨+=⎩,解方程组即可;(3)设篮球购买m 个和排球n 个,根据篮球支出总钱数+排球支出总钱数=480元,列二元一次方程60m +40n =480求方程的整数解即可.【详解】解:(1)设购买足球x 个和排球y 个,根据题意得:804076014x yx y+=⎧⎨+=⎩,解得59xy=⎧⎨=⎩,答足球购买5个、排球购买9个;(2)设篮球购买b个,篮球和足球的个数相同,足球购买b个,根据题意得40806076080214a b ba b++=-⎧⎨+=⎩,解得102ab=⎧⎨=⎩,答a的值为10;(3)设篮球购买m个和排球n个,根据题意得60m+40n=480,整理得3m+2n=24,∵m≥2,n≥2,∴3122mn=-,当29m n==,;46m n==,,63m n==,,则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【点睛】本题考查列二元一次方程组解应用题,掌握列方程组解应用题的步骤与方法,列二元一次方程,求整数解确定方案是解题关键.2、大和尚有25人,小和尚有75人.【分析】设大和尚有x人,小和尚有y人,根据“100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头”建立方程组,解方程组即可得.【详解】解:设大和尚有x人,小和尚有y人,由题意得:100 31003x yyx+=⎧⎪⎨+=⎪⎩,解得2575xy=⎧⎨=⎩,答:大和尚有25人,小和尚有75人.【点睛】本题考查了二元一次方程组的应用,正确建立方程组是解题关键.3、(2)【分析】根据二元一次方程组解定义:使二元一次方程组的两个二元一次方程左右两边都相等的一对未知数的解,把四组解分别代入到方程组中看使得方程组中的两个二元一次方程左右两边是否相等即可.【详解】解:732 28x yx y-=⎧⎨+=⎩①②把13xy=-⎧⎨=-⎩代入①中,得到()()7133792⨯--⨯-=-+=,方程左右两边相等,把13xy=-⎧⎨=-⎩代入②中,方程左边()()2132358⨯-+-=--=-≠,方程左右两边不相等,故13xy=-⎧⎨=-⎩不是原方程的解,故(1)不符合题意;把24xy=⎧⎨=⎩代入①中,得到723414122⨯-⨯=-=,方程左右两边相等,把24xy=⎧⎨=⎩代入②中,方程左边224448⨯+=+=,方程左右两边相等,故24xy=⎧⎨=⎩是原方程的解,故(2)不符合题意;把42xy=⎧⎨=⎩代入①中,得到7432286222⨯-⨯=-=≠,方程左右两边不相等,把42xy=⎧⎨=⎩代入②中,方程左边242108⨯+=≠,方程左右两边不相等,故42xy=⎧⎨=⎩不是原方程的解,故(3)不符合题意;把16xy=⎧⎨=⎩代入①中,得到7136718112⨯-⨯=-=-≠,方程左右两边不相等,把16xy=⎧⎨=⎩代入②中,方程左边2168⨯+=,方程左右两边相等,故16xy=⎧⎨=⎩不是原方程的解,故(4)不符合题意;∴第(2)组是原方程组的解.【点睛】本题主要考查了二元一次方程组的解,解题的关键在于能够熟知二元一次方程组的解得定义.4、(1)11xy=-⎧⎨=-⎩(2)32xy=⎧⎨=⎩(3)21xy=⎧⎨=-⎩(4)32mn=⎧⎨=⎩【分析】方程组利用代入消元法求出解即可.【详解】解:(1)32x yy x-=⎧⎨=⎩①②,把②代入①得:-3=2x x,解得:x=-1,把x=-1代入②得:y=-1,则原方程组的解为:11xy=-⎧⎨=-⎩;(2)528x yx y+=⎧⎨+=⎩①②,由①得:y=5-x③把③代入②中得:2x+5-x=8,解得:x=3,把x=3代入③中得:y=5-3=2,则原方程组的解为:32x y =⎧⎨=⎩; (3)43524x y x y +=⎧⎨-=⎩①②, 由②得:x =4+2y ③,将③代入①得:4×(4+2y )+3y =5,解得:y =-1,将y =-1代入③中得:x =4+2×(-1)=2,则原方程组的解为:21x y =⎧⎨=-⎩; (4)222312n m m n ⎧-=⎪⎨⎪+=⎩①②, 由①得:m =2n +2③,将③代入②得: 2×(2n +2)+3n =12,解得:n =2,将n =2代入③中得: m =22+2=3, 则原方程组的解为:32m n =⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、(1)1a =,4b =-;(2)14x = ,2316y =【分析】(1)根据方程组的解的定义,12x y ⎧⎨⎩==应满足方程②,x =2,y =1应满足方程①,将它们分别代入方程②①,就可得到关于a ,b 的二元一次方程组,解得a ,b 的值;(2)将a ,b 代入原方程组,求解即可.【详解】解:(1)将12x y =,=代入②得325b +=-,解得:4b =- 将x =2,y =1代入①得246a +=,解得:1a = ,∴1a =,4b =-;(2)方程组为:46345x y x y +⎧⎨-⎩=①=﹣②, ①+②得:365x x +=- ,41x = , 解得:14x = , 将14x =代入①得:1464y += ,2344y = , 解得:2316y = ,∴方程组的解为142316xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a、b的值是解(2)的关键.。
七年级数学下册《二元一次方程组》专项测试卷及答案-人教版

七年级数学下册《二元一次方程组》专项测试卷及答案-人教版(考试时间:60分钟 总分:100分)一、选择题(共8题,共40分)1.已知 {x =3,y =−2 是方程组 {ax +by =2,bx +ay =−3 的解,则 a −b 的值是 ( )A . −1B . −5C . 1D . 52.用代入法解方程组 {3x +4y =2, ⋯⋯①2x −y =5, ⋯⋯② 使得代入后化简比较容易的变形是 ( )A .由 ① 得 x =2−4y 3B .由 ① 得 y =2−3x 4C .由 ② 得 x =y+52D .由 ② 得 y =2x −53.已知方程组 {2x +3y =k,3x −4y =k +11 中的 x ,y 满足 5x −y =3,则 k = ( )A . −5B . −3C . −6D . −44.下列方程组中属于二元一次方程组的有 ( )① {2x −y =1,y =z +1;② {x =0,y =3;③ {x −y =0,2x +3y =5;④ {x +y =1,x +2y =−1.A . 1 个B . 2 个C . 3 个D . 4 个5.若(2x -4)2+(x +y )2+|4z -y|=0,则x +y +z 等于( )A .−12B .12C .2D .-26.已知a ,b 为不同的两个实数,且满足ab >0,a 2+b 2=9−2ab ,当a −b 为整数时,ab 的值为() A .54或2 B .94或54 C .14或2 D .94或27.用代入法解方程组{3x +4y =2(1)2x −y =5(2)使得代入后化简比较容易的变形是( ) A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣58.为安置100名中考女生入住,需要同时租用6人间和4人间两种客房,若每个房间都住满,则租房方案共有( )A .8种B .9种C .16种D .17种二、填空题(共5题,共15分)9.二元一次方程 2x +y =7 的正整数解有 个.10.已知二元一次方程 2x −3y −5=0 的一组解为 {x =a,y =b, 则 4a −6b +3= .11.某书店销售某种中考复习资料,每本的售价是 20 元.若每本打九折,全部卖完可获利 1000 元;若每本打八折,全部卖完可获利 800 元,则这批书共购进了 本.12.某学校要购买电脑,A 型电脑每台 5000 元,B 型电脑每台 3000 元.购买 10 台这两种型号的电脑共花费 34000 元.设购买A 型电脑 x 台,购买B 型电脑 y 台.则根据题意可列方程组为 .13.以方程组 {y =−x,4x +y =−3 的解为坐标的点 (x,y ) 在平面直角坐标系中的位置第 象限.三、解答题(共3题,共45分)14.如图,在长为 10 m ,宽为 8 m 的长方形空地上,沿平行于长方形边的方向分割出三个形状、大小完全一样的小长方形花圃(阴影部分).求其中一个小长方形的长和宽.15.若 m ,n 都是实数,且满足 2m −n =6,则称点 P (m −1,n 2+1) 为“奇异点”. (1) 判断点 A (2,3) 是否为“奇异点”,并说明理由.(2) 已知关于 x ,y 的方程组 {x +3y =4−t,x −y =3t,当 t 为何值时,以方程组的解为坐标的点 B (x,y ) 是“奇异点”?请说明理由.16.已知关于 x ,y 的方程组 {2x +y =5m,x −2y =5.(1) 若原方程组的解也是二元一次方程 3x −y =8 的一个解,求 m 的值.(2) 当 a ,b 都是实数,且满足 2a +b =4,就称点 P (a +1,b 2−1) 为完美点,当 m 为何值时,以方程组的解为坐标的点 B (x,y ) 是完美点,请说明理由.参考答案1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】B5.【答案】A6.【答案】A7.【答案】D8.【答案】A9. 【答案】 310. 【答案】 1311. 【答案】10012. 【答案】{x +y =10,5000x +3000y =3400013. 【答案】二14. 【答案】设小长方形的长为 x m ,宽为 y m .依题意有:{2x +y =10,x +2y =8,解此方程组得:{x =4,y =2.故,小长方形的长为 4 m ,宽为 2 m .15. 【答案】(1) {m −1=2,n 2+1=3⇒{m =3,n =4, ∴2m −n =6−4=2≠6.故 A (2,3) 不是“奇异点”.(2) {x +3y =4−t,x −y =3t⇒{x =2t +1,y =1−t, 若 B (x,y ) 是奇异点,需满足下式:2(2t +1+1)−2(1−t −1)=6,t =13故当 t =13 时,B (x,y ) 是奇异点.16. 【答案】(1) {x −2y =5,3x −y =8, 解得 {x =45,y =−75, 把 {x =45,y =−75代入 2x +y =5m 得 m =35 ∴m =35.(2) {2x +y =5m,x −2y =5,解得 {x =2m +1,y =m −2, 若 B (x,y ) 是完美点令 {x =a +1,y =b 2−1⇒{a =x +1,b =2y +2, 需满足 2a +b =4 即 x +y =2把 {x =2m +1,y =m −2代入上式:2m +1+m −2=2 ∴m =1∴ 当 m =1 时,B (x,y ) 是完美点.。
新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)

人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A. 60%x+80%y=x+72%y B. 60%x+80%y=60%x+yC. 60%x+80%y=72%(x+y) D. 60%x+80%y=x+y9.下列各组数中,不是方程2x+y=10的解是( )A .B .C .D .10.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm2C .600 cm 2D .4 000 cm 211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( ) A . 25.5 B . 24.5 C . 26.5 D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D . 二、填空题 13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________.14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________. 15.已知方程组则x -y =______,x +y =______.16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______. 17.已知方程2x 2n -1-3y 3m -n +1=0是二元一次方程,则m =______,n =______. 三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x yx y -⎧=⎪⎪⎨+⎪=⎪⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组(1) 一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上 1.下列各数中,既是分数又是负数的是( ) A .1B .﹣3C .0D .2.252.﹣2019的相反数是( ) A .﹣2019B .2019C .﹣D .3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为( ) A .1.701×1011B .1.701×1010C .17.01×1010D .170.1×1094.下列各组数中,互为倒数的是( ) A .2与﹣2B .﹣与C .﹣1与(﹣1)2016D .﹣与﹣5.计算﹣100÷10×,结果正确的是( ) A .﹣100B .100C .1D .﹣16.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx28.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=69.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.611.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣412.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=;第5个正方形的边长=;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=.(用含x、y的代数式表示)26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.2018-2019学年山东省临沂市临沭县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上1.下列各数中,既是分数又是负数的是()A.1B.﹣3C.0D.2.25【分析】根据有理数的分类即可求出答案.【解答】解:既是分数又是负数的是故选:B.【点评】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.2.﹣2019的相反数是()A.﹣2019B.2019C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为()A.1.701×1011B.1.701×1010C.17.01×1010D.170.1×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170100000000=1.701×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中,互为倒数的是()A.2与﹣2B.﹣与C.﹣1与(﹣1)2016D.﹣与﹣【分析】根据倒数的定义,可得答案.【解答】解:﹣与﹣互为倒数,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.计算﹣100÷10×,结果正确的是()A.﹣100B.100C.1D.﹣1【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:﹣100÷10×=﹣10×=﹣1.故选:D.【点评】此题主要考查了有理数的乘除运算,正确掌握运算法则是解题关键.6.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式【分析】根据整式的定义,单项式的系数,单项式的定义以及多项式概念对各选项分析判断即可得解.【解答】解:A、整式就是多项式,错误,因为单项式和多项式统称为整式,故本选项错误;B、﹣的系数是﹣,故本选项错误;C、π是单项式,故本选项正确;D、x4+2x3是四次二项式,故本选项错误.故选:C.【点评】本题考查了多项式,单项式,熟练掌握相关概念是解题的关键.7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx2【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、所含字母相同且相同字母的指数也相同,故B正确;C、所含字母相同且相同字母的指数也相同,故C正确;D、所含字母相同且相同字母的指数也相同,故D正确;故选:A.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=6【分析】根据合并同类项的法则解答即可.【解答】解:A、3a与2b不是同类项,错误;B、3x2y﹣yx2=2x2y,正确;C、5x+x=6x,错误;D、6x﹣x=5x,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.9.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c【分析】根据等式的性质解答.【解答】解:A、当x=0时,该等式的变形不成立,故本选项错误;B、若2x=2a﹣b,则x=a﹣b,故本选项错误;C、在等式3x=2的两边同时除以2,等式仍成立,即x=,故本选项错误;D、在等式a=b的两边同时减去c,等式仍成立,即a﹣c=b﹣c,故本选项正确.故选:D.【点评】考查的是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.6【分析】根据非负数的性质列式求出ab的值,然后再代入代数式进行计算.【解答】解:根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a b=(﹣3)2=9.故选:C.【点评】本题主要考查了非负数的性质,几个非负数相加等于0,则每一个算式都等于0.11.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣4【分析】先把两多项式的二次项相加,令x的二次项为0即可求出m的值.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含x的二次项,∴﹣8x2+2mx2=(2m﹣8)x2,∴2m﹣8=0,解得m=4.故选:C.【点评】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.12.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)【分析】先提价的价格是原价+20,再降价的价格是降价前的1﹣15%,得出此时价格即可.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.【点评】本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 【分析】表示出长,利用长方形的面积列出算式即可.【解答】解:园子的面积为t(l﹣2t).故选:A.【点评】此题考查列代数式,利用长方形的面积计算方法是解决问题的关键.14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4【分析】将x=2代入,然后依据程序进行计算,依据计算结果得到其中的规律,然后依据规律求解即可.【解答】解:当x=2时,第一次输出结果=×2=1;第二次输出结果=1+3=4;第三次输出结果=4×=2,;第四次输出结果=×2=1,…2018÷3=672…2.所以第2018次得到的结果为4.故选:D.【点评】本题主要考查的是求代数式的值,熟练掌握相关方法是解题的关键.二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是﹣3℃.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:∵临沂某天的最高温度为8℃,最大温差11℃,∴该天最低温度是:8﹣11=﹣3(℃).故答案为:﹣3℃【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是﹣3或13.【分析】分点B在点A的左边与右边两种情况讨论求解.【解答】解:①当点B在点A的左边时,5﹣8=﹣3,②当点B在点A的右边时,5+8=13,所以点B表示的数是﹣3或13.故答案为:﹣3或13.【点评】本题考查了数轴,注意分点B在点A的左右两边两种情况讨论.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是2008.【分析】首先把2018﹣4a+6b2化成2018﹣2(2a﹣3b2),然后把2a﹣3b2=5代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a﹣3b2=5,∴2018﹣4a+6b2=2018﹣2(2a﹣3b2)=2018﹣2×5=2018﹣10=2008故答案为:2008.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=﹣6.【分析】把x=1代入方程mx+4=3x﹣5,得到关于m的一元一次方程,解之即可.【解答】解:把x=1代入方程mx+4=3x﹣5得:m+4=3﹣5,解得:m=﹣6,故答案为:﹣6.【点评】本题考查了一元一次方程的解,正确掌握代入法是解题的关键.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.【分析】观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]【分析】(1)运用加减运算律和运算法则计算可得;(2)运用乘法分配律计算可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=(﹣5+1)+6=﹣4+6=2;(2)原式=(﹣12)×﹣(﹣12)×+(﹣12)×=﹣4+3﹣6=﹣7;(3)原式=﹣1﹣××(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.【分析】(1)根据新定义计算可得;(2)根据数轴得出a<0<b且|a|>|b|,从而得出a+b<0、a﹣b<0,再根据绝对值性质解答可得.【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则和运算顺序及绝对值的性质.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣【分析】(1)直接合并同类项,进而计算得出答案;(2)直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:(1)﹣x2+5x+4﹣7x﹣4+2x2=x2﹣2x,当x=﹣2,原式=8;(2)原式=﹣3m+n2,当m=﹣2,n=﹣,原式=6+=.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?【分析】(1)求出捐赠衣物最多的班额,捐赠衣物最少的班额,然后相减即可;(3)用标准捐赠衣物数加上记录的各班捐赠衣物数的和,计算即可得解.【解答】解:(1)19﹣(﹣7)=26,答:捐赠衣物最多的班比最少的班多26件;(2)18﹣3+19+14+9﹣7+6×100=50+600=650,答:该校七年级学生共捐赠650件衣物,平均每人捐赠2.6件衣物.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【分析】(1)把行驶记录求和,若结果为正,则B地在出发地的正东,若结果为负,再B地再出发点的正西;(2)计算各个记录的绝对值的和,计算出耗油量,根据邮箱里的油量判断是否需要加油,计算至少需要加多少升油.【解答】解:(1)18﹣19﹣13+15+10﹣14+19﹣20=(18+15+10)﹣(13+14+20)+(19﹣19)=43﹣47=﹣4即B地在A地的西方,距A地4千米.(2)因为(18+19+13+15+10+14+19+20)×0.2=128×0.2=25.6(L)因为25.6>20,所以途中至少加油5.6L答:途中警车需加油,至少需加油5.6L.【点评】本题考查了正负数的意义和有理数的混合运算,解决本题的关键是根据题意列出代数式,并能根据计算结果作答.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=3;第5个正方形的边长=7;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=3y﹣3x.(用含x、y的代数式表示)【分析】(1)根据正方形的性质即可解决问题;(2)根据各个正方形的边的和差关系分别表示出第(3)(4)(5)(6)(7),第10个正方形的边长=第7个正方形的边长﹣第一个正方形的边长﹣第3个正方形的边长;【解答】解:(1)观察图象可知第3个正方形的边长=3;第5个正方形的边长=7;故答案为3,7;(2):(1)第(3)个正方形的边长是:x+y,则第(4)个正方形的边长是:x+2y;第(5)个正方形的边长是:x+2y+y=x+3y;第(6)个正方形的边长是:(x+3y)+(y﹣x)=4y;第(7)个正方形的边长是:4y﹣x;第(10)个正方形的边长是:(4y﹣x)﹣x﹣(x+y)=3y﹣3x;故答案为3y﹣3x.【点评】本题考查了列代数式,正确理解各个正方形的边之间的和差关系是关键.26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x 的式子表示); (2)若小敏按方案二购买,需付款多少元(用含x 的式子表示); (3)当x =10时,通过计算说明此时按哪种方案购买较为合算;(4)当x =10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x =10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x +120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x +135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元, 故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.【点评】本题考查了求代数式的值,列代数式的应用的应用,能正确根据题意列出算式是解此题的关键.人教版七年级下册 第八章二元一次方程组单元试题一、选择题(共10小题,每小题3分,共30分)1.二元一次方程组⎩⎨⎧ x +y =7,3x -y =5的解是( ) A.⎩⎨⎧ x =4,y =3B .⎩⎨⎧ x =5,y =2 C .⎩⎨⎧ x =3,y =4 D .⎩⎨⎧ x =-2,y =92.已知方程组⎩⎨⎧ 2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .33.下列各方程中,是二元一次方程的是( )A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 D .x +y =14.已知x 2m -1+3y 4-2n =-7是关于x ,y 的二元一次方程,则m ,n 的值是( ) A.⎩⎨⎧ m =2,n =1B .⎩⎨⎧ m =1,n =-32 C .⎩⎨⎧ m =1,n =52D .⎩⎨⎧ m =1,n =325.方程kx +3y =5有一组解是⎩⎨⎧ x =2,y =1,则k 的值是( )A .1B .-1C .0D .2 6.二元一次方程x +2y =10的所有正整数解有( )A .1个B .2个C .3个D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是( )A.⎩⎨⎧ x +y =60,x -7y =4B .⎩⎨⎧ x +y =60,y -7x =4C .⎩⎨⎧ x =60-y ,x =7y -4D .⎩⎨⎧ y =60-x ,y =7x -48.关于x ,y 的方程组⎩⎨⎧ x +py =0,x +y =3的解是⎩⎨⎧ x =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A .-12B .12C .-14D .149.若|x +y -5|与(x -y -1)2互为相反数,则x 2-y 2的值为( )A .-5B .5C .13D .1510.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A.⎩⎨⎧ 8x -3=y ,7x +4=yB .⎩⎨⎧ 8x +3=y ,7x -4=yC .⎩⎨⎧ y -8x =3,y -7x =4D .⎩⎨⎧ 8x -y =3,7x -y =4二、填空题(共5小题,每小题4分,共20分)11.方程组⎩⎨⎧ x +y =1,3x -y =3的解是 .12.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 元.13.已知关于x ,y 的二元一次方程组⎩⎨⎧ 2x +y =k ,x +2y =-1的解互为相反。
人教版七年级数学下册 8-1 二元一次方程组(同步练习)
第8章二元一次方程组8.1二元一次方程组班级:姓名:知识点1二元一次方程的概念1.下列四个方程中,是二元一次方程的是()A.x-3=0B.2x-z=5C.3xy-5=8D.3x-2y=12.已知下列方程,其中是二元一次方程的是(填序号).①3x+2=2y;②2x+y=a;③x 2+y=2;④1x+3-2y;⑤x +2y3=1;⑥3x=1.3.若方程2x 2m+3+3y 5n-9=4是关于x,y 的二元一次方程,求m 2+n 2的值.4.判断下列各式是否是二元一次方程:(1)x+2y=2;(2)xy+y=2-x;(3)7-x+5y=0;(4)7x+2y=z;(5)8x-y;(6)5x+2y=7;(7)x+π=3;(8)x-2y 2=3.不是的请说明理由.知识点2二元一次方程组的概念5.下列方程组中是二元一次方程组的是()A.{xy =1,x +y =2B.{5x -2y =3,1x+y =3C.{2x +z =0,3x -y =15D.{x =5,x 2+y3=76.x,y 是未知数,下列方程组中,不是二元一次方程组的有()A.{x +1=0,y +4=0 B.{x -2y =3,y =-1C.{x +2y =-1,3x -2y =1D.{xy=1,x -y =37.下列方程组①{3x =2y +3,x +y =3x -7;②{x +y =-1,3x +z =5;③{x 2+y =1,4x -y =2;④{x +2=0,y -3=0中,是二元一次方程组的是(填序号).8.小明有1元和5角的硬币共9枚,小明能买到单价为1.5元的圆珠笔4支,若设一元的硬币有x 枚,5角的硬币有y 枚,根据题意可列出方程组,这是一个方程组.知识点3二元一次方程的解的概念9.二元一次方程x-2y=1有无数多组解,下列四组值中不是该方程的解的是()A.{x =0,y =-12B.{x =1,y =1C.{x =1,y =0D.{x =-1,y =-110.二元一次方程3x+2y=11()A.只有一个解B.只有两个解C.任何一对有理数都是它的解D.有无数个解11.若{x =1,y =2是关于x,y 的二元一次方程ax-3y=1的解,则a 的值为()A.-5B.-1C.2D.712.在方程2x+4y=7中,用含x 的代数式表示y,则y=.用含y 的代数式表示x,则x=.13.写出二元一次方程2x+3y=15的两组解:、.知识点4二元一次方程组的解的概念14.二元一次方程组{x -y =4,x +y =2的解是()A.{x =3,y =-7B.{x =1,y =1C.{x =7,y =3D.{x =3,y =-115.已知一个二元一次方程组的解是{x =-1,y =-2则这个方程组是()A.{x +y =-3x -y =-2 B.{x +y =-3x -2y =1C.{2x =y x +y =-3D.{x +y =03x -y =516.已知{x =12,y =-1是二元一次方程组{ax +y =1,2x -by =3的解,则a=,b=.17.下列各组数据中哪些是方程3x-2y=11的解?哪些是方程2x+3y=16的解?哪些是方程组{3x -2y =11,2x +3y =16的解?为什么?①{x =1,y =-4;②{x =5,y =2;③{x =7,y =23;④{x =15,y =6.综合点1二元一次方程组与求代数式的值的综合应用18.已知方程x 2m-1-2y 3n+4=100是二元一次方程,则(m+n)2013的值为.19.若{x =a ,y =b是方程3x-2y=2的一个解,求12a-8b+3的值.20.若{x =-1,y =2是方程2x+3y=m 和5x+2y=n 的解,求m 2-n 的值.21.甲、乙两同学共同解关于x,y 的方程组{ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a,得到方程组的解为{x =-3,y =-1,乙看错了方程②中的b,得到方程组的解为{x =5,y =4,求a 2009+()-110b2008的值.综合点2列二元一次方程(组)22.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是()A.{x +y =78,3x +2y =30B.{x +y =78,2x +3y =30C.{x +y =30,2x +3y =78D.{x +y =30,3x +2y =7823.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能用二元一次方程组表示题中的数量关系吗?24.根据下列条件,设适当的未知数列出二元一次方程或二元一次方程组.(1)甲数的8%与乙数的11%的和是甲、乙两数和的10%;(2)有父子两人,已知10年前父亲的年龄是儿子年龄的3倍,现在父亲的年龄是儿子年龄的2倍;(3)某同学到书店去买甲、乙两种书共用去39元,其中购甲种书的钱比购乙种书的钱多1元.拓展点1由解写方程或方程组25.请写出一个以x,y 为未知数的二元一次方程组,且同时满足下列条件:①由两个二元一次方程组成;②方程组的解为{x =2,y =3.这样的方程组可以是.26.请你用方程组{x +y =38,2x -y =1编写一道具有实际背景的题,使列出的方程组为上述方程组.拓展点2二元一次方程的整数解27.求方程3x+2y=10的正整数解.28.求方程3y=9-6x 的非负整数解.第8章二元一次方程组8.1二元一次方程组答案与点拨1.B(点拨:x-3=0是一元一次方程;2x-z=5是二元一次方程;3xy-5=8是二元二次方程;3x-2y=1不是整式方程.故选B.)2.①⑤(点拨:根据二元一次方程的定义判定.②含有三个未知数,不是二元一次方程;③中x 2的次数是2,不是二元一次方程;④中1x不是整式,所以不是二元一次方程;⑥中只有一个未知数,不是二元一次方程.只有①⑤符合二元一次方程的定义.)3.由题意可得:{2m +3=1,5n -9=1,解得{m =-1,n =2.由此可得m 2+n 2=(-1)2+22=5.4.二元一次方程有(1),(3);因为(2),(8)含未知数的项有2次,故它们不是二元一次方程;(4)含有3个未知数;(5)不是方程;(6)不是整式方程;(7)中的π不是未知数,它是一元一次方程,所以它们都不是二元一次方程.5.D(点拨:选项A 第一个方程中的xy 是二次的;选项B 的第二个方程有1x,不是整式方程;选项C 含有3个未知数;选项D 符合二元一次方程组的定义.故选D.)6.D(点拨:二元一次方程组的每一个方程都是二元一次方程(或一元一次方程).)7.①④(点拨:②是三元一次方程组,③是二元二次方程组.)8.{x +0.5y =6,x +y =9二元一次9.B(点拨:把四个选项逐一代入二元一次方程x-2y=1,选项B 不能使方程成立.)10.D(点拨:由二元一次方程的解的特性求解.)11.D(点拨:把{x =1,y =2代入方程ax-3y=1中即可求出a 的值,即a-3×2=1,解得a=7.)12.7-2x 4或()74-12x7-4y 2或()72-2y (点拨:表示y(x)则把x(y)看作常数,解方程即可.)13.{x =3,y =3{x =6,y =1(点拨:用一个未知数x(或y)表示出另一个未知数y(或x),然后给x(或y)一个值,求出y(或x)就可得到一组解.答案不唯一.)14.D(点拨:把{x =3,y =-1代入方程组{x -y =4,x +y =2,成立.)15.C(点拨:把{x =-1,y =-2分别代入方程组,使方程组成立即可.)16.42(点拨:把x,y 的值代入方程组得12a-1=1,1+b=3.)17.①②是方程3x-2y=11的解,②③是方程2x+3y=16的解.②是方程组{3x -2y =11,2x +3y =16的解.因为方程组的解必须是方程组中两个方程的公共解.18.0(点拨:由二元一次方程的定义可得2m-1=1,3n+4=1.解得m=1,n=-1.把m=1,n=-1的值代入(m+n)2013可得(m+n)2013=(1-1)2013=0.)19.把{x=a,y=b代入方程3x-2y=2得3a-2b=2,①又因为12a-8b+3=4(3a-2b)+3,②把①式代入②式可得12a-8b+3=4×2+3=11.20.把{x=-1,y=2代入方程可得{2×(-1)+3×2=m,5×(-1)+2×2=n,∴m=4,n=-1,则可得m2-n=42-(-1)=17.21.由于甲看错了①,则{x=-3,y=-1符合4x-by=-2,则可得4×(-3)-b×(-1)=-2,③由于乙看错了②,则{x=5,y=4符合ax+5y=15.则可得5a+20=15,④由③④可得b=10,a=-1.把a=-1,b=10代入a2009+()-110b2008=(-1)2009+(-1)2008=-1+1=0.22.D(点拨:根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵数+女生种树的总棵数=78棵,根据等量关系列出方程组即可.)23.本题的等量关系可表示为:钢笔的单价=笔记本的单价+2元,10支钢笔的价钱+15本笔记本的价钱= 100元-5元.设钢笔每支为x元,笔记本每本为y元,根据题意得{x=y+2,10x+15y=100-5.24.(1)设甲数为x,乙数为y,8%x+11%y=(x+y)10%.(2)设今年父亲x岁,儿子y岁,{x-10=3(y-10),x=2y.(3)设购甲种书用x元,购乙种书用y元,{x+y=39,x-y=1.25.答案不唯一,如{x+y=5,2x-2y=-226.小明昨天上街买了一支钢笔和一个书夹共花去38元钱,已知两个书夹比一支钢笔贵1元,问钢笔和书夹的单价各是多少?(答案不唯一)27.由3x+2y=10,得y=5-32x.设x=2k,则y=5-3k.故3x+2y=10的整数解为{x=2k,y=5-3k.(k为整数)又∵x>0,y>0,∴{2k>0,5-3k>0,则0<k<53.∴k=1,则{x=2,y=2.28.∵3y=3(3-2x),∴y=3-2x.又∵y≥0,x≥0,∴0≤x≤32,x为整数,∴x=0或1.则非负整数解为{x=0,y=3;{x=1,y=1.。
新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)
人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分)1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.2.方程mx -2y=x+5是二元一次方程时,则m________.3.若2x 2a-5b +y a -3b =0是二元一次方程,则a=______,b=______. 4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________.二、选择题(本大题共8小题,每小题4分,共32分。
)9.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-1 11.若关于x 、y 的方程组⎩⎨⎧=-=+k y x k y x 73的解满足方程2x +3y =6,那么k 的值为( ) A .-23 B .23 C .-32 D .-23 12.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 213.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、114.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m 的解为3x +2y =14的一个解,那么m 的值为( ). A .1 B .-1 C .2 D .-215.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁16.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .3D .4三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
解二元一次方程组(第二课时 加减消元法)(练习)七年级数学下册同步课堂(人教版)(解析版)
第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
人教版七年级数学下册同步教学第8章 第32课时 二元一次方程组的解法专题训练
与33xa+x-y=4b9y=18
有公共的
解,求a、b.
解:ab= =1-1
12.若|2x-y+1|+|x+2y-7|=0,则 x=___1__,y=__3___.
13.用代入法解下列各方程组:
(1)2y-x+23x=y=111;
(2)x2+x-3y3=y=63.
解:yx==31
解:yx==13
14.用加减法解下列各方程组:
(1)32xx+-yy==87;
解:yx==-3 1
解:yx==--11
7.方程2x+y=9在正整数范围内的解有(D.4组
8.方程组2y=x-x+y=111的解是( B )
A.xy= =00
B.xy==1123
C.xy= =1132
D.xy= =1-213
9.方程组2x+x+2yy= =7-7,则x,y的值分别是( A )
解:xy==3-.51
3.解方程组:2x-y+3 1=1. 3x+2y=4
解:xy==-2 1
4.用适当的方法解方程组:3x+x-y=3y=6 6.
解:xy==24
5.解方程组:00..62xx- -00..44yy= =12..13.
x=-3 解:y=-249
6.解方程组:y+4 1=x+3 1. 2x-3y=1
(2)33mm-+n2n==116.
解:nm==52
15.已知(3x+2y-5)2与|5x+3y-8|互为相反数,求x,y的值.
解:xy==11
16.若方程组23xx+ +35yy= =mm+2的解满足x+y=12,求m的值.
解:m=14
17.若关于x、y的方程组
4x-y=5 ax+by=-1
A.7,-7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组检测卷
一、填空题
1.以57
x y =⎧⎨=⎩为解的一个二元一次方程是_________ 2.已知方程6x -3y =5,用含x 的式子表示y ,则y =______.
3.以方程组221y x y x =+=-+⎧⎨⎩
的解为坐标的点(x ,y )在第 象限. 4、已知代数式12
x a -1y 3与-3x -b y 2a +b 是同类项,那么a ,b 的值分别是 . 5、现有足够的1元、2元的人民币,需要把面值为10元人民币换成零钱,共有_______种兑换方案.
6、为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文。
已知某种加密规则为:明文 a ,b 对应的密文为 b a b a +-,。
例如:明文1 ,2对应的密文是 -1 ,3。
当接收方收到密文是4 ,2时,解密得到的明文是____________.
二、选择题
7、在地震后的重建工作中,桂花村派男女村民共15人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包.请问这次采购派男女村民各多少人?( )
A.男村民3人,女村民12人
B.男村民5人,女村民10人
C.男村民6人,女村民9人
D.男村民7人,女村民8人
8. 某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:“(1)班与(5)班得分之比为6∶5.”乙同学说:“(1)班得分比(5)班得分的2倍少40分.”若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )
A. B. C. D. 6=5=240x y x y -⎧⎨⎩6=5=2+40
x y x y ⎧⎨⎩5=6=240x y x y ⎧⎨+⎩5=6=240x y x y ⎧⎨-⎩
9.已知21x y ==⎧⎨⎩,是二元一次方程组81mx ny nx my +=-=⎧⎨⎩
,的解,则m+3n 的算数平方根为( ) A.±3 B. 3 C.7 D.9
10、.在求代数式-x 2+ax +b 的值时,小红用x =2代入时,求得的值是1;小丽用x =-2代入时,求得的值是3.那么小英用x =4代入时,求得的值是( )
A.-12
B.10
C.12
D.20
11. 解方程组32133x y x y -=+=⎧⎨⎩
加减消元法消元后,正确的方程为( ) A.6x -y =4 B.3y =2 C.-3y =2 D.-y =2
12.下列方程组中,是二元一次方程组的是( ).
(A)⎩⎨⎧=-=+.31,
52x y x (B)⎩⎨⎧⋅
-==-y x y x 423,1)(2 (C) 20135x z x y ⎧+=-=⎪⎨⎪⎩
(D)⎪⎩⎪⎨⎧=-=.
2,1y x x y 三、解答题 13.计算下列各题(每题8分,共16分)
(1)已知二元一次方程:
①x +y =4; ②2x - y =2; ③x - 2y =1.
请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.
14. 用1块A 型钢板可制成2块C 型钢板、1块D 型钢板;用1块B 型钢板可制成1块C 型钢板、2块D 型钢板.某工厂现需15块C 型钢板、18块D 型钢板,可恰好用A 型钢板、B 型钢板各多少块?
15. A 市至B 市的航线长9750km ,一架飞机从A 市顺风飞往B 市需12.5h ,它逆风飞行同样的航线需13h ,求飞机的平均速度与风速?
16.(8分)小明和小亮解同一个方程组急性子的小明把方程中的a看错了,得到方程组
的解为爱马虎的小亮把方程中的b看错了,得到方程组的解为一旁的学习委员小丽说,她可以知道这个方程组的解,你能说说小丽是怎样求出这个方程组的解吗?方程组的解是多少? 17、(12分)蔬菜经营户老王,近两天经营的是青菜和西兰花.
(1)昨天的青菜和西兰花的进价和售价如表.老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?
青菜西兰花
进价(元/市斤) 2.8 3.2
售价(元/市斤) 4 4.5
(2
10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)。