【名校课堂】2016年八年级数学下册 小专题二 矩形的性质和判定测试题(新版)湘教版
矩形的性质与判定习题及答案

由题意得:AE=CF=t
AE=CF=t
∵点G、H分别是矩形ABCD的边AB、 EF=5﹣2(5﹣t)=2t-5
DC的中点,
∴ BG 1 AB,CH 1 CD
2
2
∴2t-5=4 ∴t=4.5
又∵AB=CD,AB∥CD
综上,当t为0.5秒或4.5秒时,
∴BG∥CH,BG=CH
四边形EGFH为矩形
∴四边形BCHG为平行四边形
2
2
4
∴ 13 PE PF 15
4
∴ PE PF 60 13
(1)矩形的面积公式是S=长×宽(两邻边的乘积)
(2)过矩形对角线交点O的任一直线平分矩形ABCD的面积
(3)矩形ABCD对角线AC、BD相交于点O,则
①△ABO≌△CDO,△AOD≌△COB
△ABO,△CDO,△AOD,△COB都是等腰三角形
1
2
证明:(1)∵四边形ABCD是矩形, 在△AEG与△CFH中
∴AB=CD,AB∥CD,AD∥BC, ∠B=90°
∴∠1=∠2 ∵G、H分别是AB、DC的中点 ∴AG=BG,CH=DH ∴AG=CH
AG CH
1
2
AE CF
∴△AEG≌△CFH(SAS)
∴EG=FH
∵AE=CF
又∵GF=HE
②△ABD≌△CDB≌△BAC≌△DCA
△ABD,△CDB,△BAC,△DCA都是直角三角形
③S△ABO
=S△BCO
=S△CDO
=S△AOD
=
1 4
S矩形ABCD
例4.如图,O是矩形ABCD的对角线的交点,E、F、G、 H分别是OA、OB、OC、OD上的点,且AE=BF=CG =DH. (1)求证:四边形EFGH是矩形; (2)若E、F、G、H分别是OA、OB、OC、OD的中点 ,且DG⊥AC,OF=2cm,求矩形ABCD的面积.
人教版八年级数学下册--18_2_1 矩形(第2课时 矩形的判定)练习】

第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:,使四边形DF AE是矩形.12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是(写出一种情况即可).13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=°时,四边形AEDF是矩形.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习答案一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD【解答】解:需要添加的条件是AC=BD,理由如下:∵四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故选:B.3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【解答】解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴▱ABCD为矩形,故选项A不符合题意;B、∠A=∠C不能判定▱ABCD为矩形,故选项B符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴∠B=90°,∴▱ABCD为矩形,故选项D不符合题意;故选:B.4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.根据邻边相等的平行四边形是菱形能判定平行四边形ABCD为菱形,不能判定平行四边形ABCD 为矩形,故此选项符合题意;D.∵平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵∠1+∠3=90°,∴∠ABC=90°,∴▱ABCD是矩形,故①正确;②∵四边形ABCD是平行四边形,∴AB=CD,∵BC2+CD2=AC2,∴BC2+AB2=AC2,∴∠ABC=90°,∴▱ABCD是矩形,故②正确;③∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠1=∠2,∴OA=OB,∴AC=BD,∴▱ABCD是矩形,故③正确;④∵四边形ABCD是平行四边形,AC⊥BD,∴▱ABCD是菱形,故④错误;能判定四边形ABCD是矩形的个数有3个,故选:C.6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD【解答】解:A.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C.∵AD∥BC,∴∠A+∠B=∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,∴AB=CD,∴不能判定四边形ABCD为矩形,故选项C符合题意;D、∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故选项D不符合题意;故选:C.7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD【解答】解:A.∵四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形,故本题选项不符合题意;B.∵AB⊥BC,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本选项不符合题意;C.∵AO=OB=OC=OD,∵AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本题选项不符合题意;D.∵四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,不是矩形,故本题选项符合题意;故选:D.8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD【解答】解:A、∵平行四边形ABCD中,AD=AB,∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵AB⊥AD,∴∠BAD=90°,∴平行四边形ABCD是矩形,故选项B符合题意;C、平行四边形ABCD中,AB=AC,不能判定平行四边形ABCD是矩形,故选项C不符合题意;D、∵平行四边形ABCD中,CA⊥BD,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:B.9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°【解答】解:A、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AO=BO,∴AC=BD,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∠BAD=90°,∴平行四边形ABCD是矩形,故选项C不符合题意;D、∵∠AOB=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等【解答】解:A、对角线是否相互平分,能判定平行四边形,故选项A不符合题意;B、其中四边形中三个角都为直角,能判定矩形,故选项B符合题意;C、一组对角是否都为直角,不能判定形状,故选项C不符合题意;D、两组对边是否分别相等,能判定平行四边形,故选项D不符合题意;故选:B.二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:∠A=90°(答案不唯一),使四边形DF AE是矩形.【解答】解:添加条件:∠A=90°;理由如下:∵E、D、F分别是AB、BC、AC的中点,∴DE是△ABC的中位线,AE=AB,AF=AC,∴DE∥AC,DE=AC,∴DE=AF,∴四边形AEDF是平行四边形,∵∠A=90°,∴平行四边形AEDF是矩形,故答案为:∠A=90°(答案不唯一).12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是AC=BD或∠ABC=90°(写出一种情况即可).【解答】解:若使平行四边形ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°.(有一个角是直角的平行四边形是矩形)故答案为:AC=BD或∠ABC=90°.13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=45°时,【解答】解:当∠B=45°时,四边形AEDF是矩形.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∵AB=AC,∴∠B=∠C=45°,∴∠A=90°,∴四边形AEDF是矩形.故答案为45.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是有一个角是直角的平行四边形为矩形.【解答】解:∵E是AC的中点,∴AE=CE,∵ED=BE,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD为矩形,故答案为:有一个角是直角的平行四边形为矩形.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.【解答】(1)证明:在梯形ABCD中,AB=DC,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE=GF,∴四边形AEFG是平行四边形.(2)解:当∠FGC=2∠EFB时,四边形AEFG是矩形,理由:∵∠FGC+∠GFC+∠C=180o,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.【解答】解:(1)证明:∵E为AD的中点,D为BC中点,∴AE=DE,BD=CD,∵AF∥CD,∴∠AFE=∠DCE,∠F AE=∠CDE,在△AFE和△DCE中,∠AFE=∠DCE,∠F AE=∠CDE,AE=DE∴△AFE≌△DCE(AAS),∴AF=CD,∴AF=BD,∵AF∥BD,∴四边形AFBD为平行四边形;(2)当△ABC满足条件AB=AC时,四边形AFBD是矩形,证明:∵AB=AC,D为BC中点,即AD为BC边上的中线,∴AD⊥BC,即∠ADB=90°,∵四边形AFBD为平行四边形,∴四边形AFBD为矩形.。
新人教版初中数学八年级下册矩形的性质与判定例题+同步练习及答案-精品试卷

第02课矩形的性质与判定同步练习题【例1】如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.【例2】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.【例3】如图,已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连接EF,M为EF的中点.(1)请判断四边形PECF的形状,并说明理由;(2)随着P点在边AB上位置的改变,CM的长度是否也会改变?若不变,请你求CM的长度;若有变化,请你求CM的变化范围.【例4】如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC 上,且DE=CF,连接OE,OF.求证:OE=OF.【例5】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.课堂同步练习一、选择题:1、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BEB.DE⊥DCC.∠ADB=90° D.CE⊥DE第1题图第2题图第4题图2、如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA 上,点C的对应点为点F,若BE=6cm,则DC的长是()A.4cmB.6cmC.8cmD.10cm3、若顺次连接四边形ABCD各边的中点所得到的四边形是矩形,则该四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°5、如图.矩形ABCD中.E在AD上.且EF⊥EC.EF=EC.DE=2.矩形的周长为16.则AE的长是()第5题图第6题图第7题图6、如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A.40°B.35°C.20°D.15°7、如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为( )A.9:4B.3:2C.4:3D.16:98、如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为( )A.3B.4C.5D.6第8题图第9题图9、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )810、如图,矩形ABCD 中,AE 平分∠BAD 交BC 于E,∠CAE=15°,则下列结论: △ODC 是等边三角形;②BC=2AB;③∠AOE=135°;④S △AOE =S △COE .其中正确的结论的个数有( )A.1B.2C.3D.4第10题图 第11题图 第12题图11、在矩形ABCD 中,点A 关于∠B 的角平分线的对称点为E,点E 关于∠C 的角平分线的对称点为F,若AD=,AB=3,则S△ADF =( )A.2B.3C.3D.12、如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点,且EF ⊥AC 分别交DC 于F,交AB 于E,点G 是AE 中点,且∠AOG=30°.①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE =S矩形ABCD.则结论正确的个数为( )A.1B.2C.3D.4二、填空题:13、若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为cm.14、如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4 cm,则四边形CODE的周长为。
矩形的性质与判定练习(含答案)

交于点 G ,四边形 ABGD 的面积是
.
26.如图,在长方形 ABCD 中, AB 4cm ,BC 8cm .E 、F 分别是 AB 、BC 的中点.则
E 到 DF 的距离是
cm .
27.如图,在平面直角坐标系中,O 为坐标原点,矩形OABC 中, A(10, 0) ,C(0, 4) , D 为
(1) BCD 的形状为
;
(2)随着点 E 位置的变化, DBF 的度数是否变化?并结合图说明你的理由;
(3)当点 F 落在边 AC 上时,若 AC 6 ,请直接写出 DE 的长.
43.如图,在平行四边形 ABCD 中,AC AD ,延长 DA 于点 E ,使得 DA AE ,连接 BE . (1)求证:四边形 AEBC 是矩形; (2)过点 E 作 AB 的垂线分别交 AB ,AC 于点 F ,G ,连接 CE 交 AB 于点 O ,连接 OG , 若 AB 6 , CAB 30 ,求 OGC 的面积.
且 OE 2DE ,则 DE 的长为
.
19.如图, ABC 中, AC 的垂直平分线分别交 AC 、 AB 于点 D 、 F , BE DF 交 DF 延
长线于 E ,已知 A 30 , BC 2 , AF BF ,则四边形 BCDE 的面积是
.
20.如图,在 ABC 中, AD BC 于 D , BE AC 于 E , M 为 AB 边的中点,连结 ME 、
A. 3 1
B. 3 1
C. 6 1
D. 6 1
15.如图,在矩形 ABCD 中, AB 4 , BC 6 ,点 E 为 BC 的中点,将 ABE 沿 AE 折叠, 使点 B 落在矩形内点 F 处,连接 CF ,则 CF 的长为 ( )
(完整版)八年级下册长方形的性质专项练习(有答案)ok

矩形的性质专项练习30 题(有答案)1.已知:如图,在矩形ABCD 中, AF=DE ,求证: BE=CF .2.以下列图,已知矩形 ABCD 中,对角线AC 、BD 交于点 O,作 BE∥ AC 交 DC 的延伸于点E.(1)请判断△ DEB 的形状,并说明原因;(2)若 AD=8 , DC=6 ,试△ DEB 的周长.3.如图,在矩形 ABCD 中, AB=12 , AC=20 ,两条对角线订交于点O,以 OB 、OC 为邻边作平行四边形OBB 1C,求平行四边形 OBB 1C 的面积.4.如图,已知在矩形ABCD 中, AB=2 , BC=4 ,四边形 AFCE 为菱形,求菱形的面积.5.如图,矩形ABCD 中,对角线AC 、 BD 订交于点O,∠ AOB=60 °, AB=2cm(1)求证:△ AOB 是等边三角形;(2)求矩形 ABCD 的面积.6.如图,四边形ABCD 是矩形,△EAD 是等腰直角三角形,△ EBC是等边三角形.已知AE=DE=2 ,求 AB 的长.7.如图,已知在矩形ABCD 中,E 是 AD 上的一点, F 是 AB 上的一点, EF⊥EC ,且 EF=EC ,DE=3cm ,BC=7cm .(1)求证:△ AEF ≌ △ DCE ;(2)请你求出 EF 的长.8.如图,在矩形ABCD 中,点 E 在 AD 上, CE 均分∠BED .(1)△ BEC 能否为等腰三角形?为何?(2)若 AB=1 ,∠ DCE=22.5 °,求 BC 长.9.如图, ABCD 是矩形纸片,翻折∠ B、∠ D,使 BC、AD 恰巧落在 AC 上.设 F、H 分别是 B、D 落在 AC 上的点, E、G 分别是折痕 CE 与 AB 、 AG 与 CD 的交点.( 1)试说明四边形AECG 是平行四边形;( 2)若矩形的一边AB 的长为 3cm,当 BC 的长为多少时,四边形AECG 是菱形?10.已知:如图,矩形ABCD 的对角线AC 的垂直均分线EF 与 AD 、 AC 、BC 分别交于点E、O、 F.(1)求证:四边形 AFCE 是菱形;(2)若 AB=5 , BC=12 ,EF=6 ,求菱形 AFCE 的面积.11.以下图,矩形ABCD 的对角线AC 、 BD 订交于点O, AE ⊥ BD ,垂足为 E,∠ 1=∠ 2, OB=6(1)求∠ BOC 的度数;(2)求△ DOC 的周长.12.如图,矩形ABCD 的对角线交于点O, E 是边 AD 的中点.(1) OE 与 AD 垂直吗?说明原因;(2)若 AC=10 , OE=3 ,求 AD 的长度.13.如图,在矩形ABCD 中, BM ⊥ AC , DN ⊥AC , M 、 N 是垂足.(1)求证: AN=CM ;(2)假如 AN=MN=2 ,求矩形 ABCD 的面积.14.如图,矩形ABCD 中,角均分线AE 交 BC 于点 E,BE=5 , CE=3.(1)求∠ BAE 的度数;(2)求△ ADE 的面积.15.如图,已知在矩形 ABCD 中,对角线 AC、 BD 交于点 O,CE=AE , F 是 AE 的中点, AB=4 , BC=8 .求线段 OF 的长.16.如图,矩形纸片ABCD 中, AB=8 , AD=10 ,沿 AE 对折,点 D 恰巧落在 BC 边上的 F 点处.(1)求出线段 BF 、 CE 的长;(2)求四边形 AFCE 的面积.17.如图,在矩形 ABCD 中, E 是 BC 的中点,将△ ABE 沿 AE 折叠后获得△AFE ,点 F 在矩形 ABCD 内部,延伸 AF 交CD 于点 G.(1)猜想线段 GF 与 GC 有何数目关系?并证明你的结论;(2)若 AB=3 , AD=4 ,求线段 GC 的长.18.已知:如图,矩形ABCD 的对角线AC 和 BD 订交于点O, AC=2AB .求证:∠AOD=120 °.19.在矩形 ABCD 中,对角线AC ,BD 交于点 O,AB=6cm , AC=8cm .(1)求 BC 的长;(2)画出△ AOB 沿射线 AD 方向平移所得的△DEC ;(3)连结 OE,写出 OE 与 DC 的关系?说明原因.20.如图,矩形 ABCD 被两条对角线分红四个小三角形,假如四个小三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?21.如图,矩形 ABCD 纸片, E 是 AB 上的一点,且 BE :EA=5 : 3,CE=15 ,把△ BCE 沿折痕 EC 向上翻折,若点 B恰巧与 AD 边上的点 F 重合,求 AB 、 BC 的长.22.已知,如图,矩形 ABCD 中, AD=6 , DC=7 ,菱形 EFGH 的三个极点 E, G, H 分别在矩形 ABCD 的边 AB , CD 上,AH=2 ,连结 CF.(1)当四边形 EFGH 为正方形时,求 DG 的长;(2)当△ FCG 的面积为 1 时,求 DG 的长;( 3)当△ FCG 的面积最小时,求DG 的长.23.设 E, F 分别在矩形ABCD 边 BC 和 CD 上,△ ABE 、△ ECF、△ FDA 的面积分别是a, b, c.求△ AEF 的面积S.24.如图,过矩形 ABCD 对角线 AC 的中点 O 作 EF⊥AC ,分别交 AB 、DC 于 E、F,点 G 为 AE 的中点,若∠ AOG=30 °,求证: OG=DC .25.如图,在矩形ABCD 中, AB=6 , AD=4 , E 是 AD 边上一点(点 E 与 A、 D 不重合). BE 的垂直均分线交AB于M ,交 DC 于 N .(1)设 AE=x ,试把 AM 用含 x 的代数式表示出来;(2)设 AE=x ,四边形 ADNM 的面积为 S.写出 S 对于 x 的函数关系式.26.矩形 ABCD 中, AC 、BD 订交于点O,且∠ ADB=30 °,∠ADC 的均分线交BC 于 E,连结 OE.(1)求∠ COE 的度数.(2)若 AB=4 ,求 OE 的长.27.如图,在矩形 ABCD 中, AB=b , AD=a ,过 D 和 B 作 DE ⊥ AC , BF ⊥ AC ,且 AE=EF ,试求 a 与 b 之间的关系.28.如图,设在矩形 ABCD 中,点 O 为矩形对角线的交点,∠ BAD 的均分线 AE 交 BC 于点 E,交 OB 于点 F,已知 AD=3 ,AB= .(1)求证:△ AOB 为等边三角形;(2)求 BF 的长.29.如图,在等腰梯形 ABCD 中, AD ∥ BC, G 是边 AB 上的一点,过点 G 作 GE∥ DC 交 BC 边于点 E,F 是 EC 的中点,连结 GF 并延伸交 DC 的延伸线于点 H .求证: BG=CH .30.已知,矩形ABCD 中,延伸 BC 至 E,使 BE=BD , F 为 DE 的中点,连结AF、 CF.求证:( 1)∠ ADF= ∠ BCF ;( 2)AF ⊥ CF.矩形的性质专项练习30 题参照答案:1.连结 BF、 CE,已知矩形 ABCD ,∴ AB=CD ,∠ BAF= ∠ CDE=90 °,又AF=DE ,∴ △ AFB ≌ △ DEC ,∴ BF=CE ,∠ AFB= ∠DEC ,∵矩形 ABCD ,AD ∥ BC ,∴ ∠ CBF= ∠AFB ,∠ BCE= ∠ DEC,∴ ∠ CBF= ∠ BCE,BC=BC ,∴ △ BCF ≌ △CBE ,∴BE=CF2.( 1)△ DEB 的形状为等腰三角形.原因:∵矩形 ABCD ,∴DC∥ AB ,AC=BD .∵BE ∥AC ,∴四边形 ABEC 为平行四边形.∴AC=BE .∴BE=BD .∴△ DEB 的形状为等腰三角形.( 2)∵ AD=8 , DC=6 ,∴ AC==10 .∴BD=BE=10 .∵ BC⊥ DE ,∴CD=DE=6 .∴△ DEB 的周长 =2(CD+BD ) =2(6+10 )=323.在 Rt△ ABC 中,,∴,∴ x=,∴ S 菱形AFCE=EC ?AB=×2=5.∴菱形的面积为55. 1)证明:在矩形ABCD 中, AO=BO ,又∠ AOB=60 °,∴ △ AOB 是等边三角形.( 2)解:∵ △ AOB 是等边三角形∴OA=OB=AB=2 ( cm),∴BD=2OB=4cm ,在Rt△ABD ,( cm)∴ S 矩形ABCD =2×2=4(cm2),答:矩形ABCD 的面积是 4cm2.6.过点 E 作 EF⊥BC ,交 AD 于 G,垂足为 F.∵四边形 ABCD 是矩形,∴AD ∥BC ,∴EG⊥ AD .( 1 分)∵ △ EAC 是等腰直角三角形,EA=ED=2 ,∴ AG=GD , AD=.∴ EG==.(1分)∵ EB=EC=BC=AD=2,∴ BF=,(1分)∴ EF=.(1分)∴AB=GF=EF ﹣ EG=∵矩形 ABCD 对角线订交于点O,∴,∵四边形 OBB 1C 是平行四边形,∴.4.∵四边形 AFCE 为菱形,∴AF=CF=EC=AE ,∵四边形 ABCD 是矩形,∴ ∠ B=90 °,7.(1)证明:在矩形 ABCD 中,∠ A= ∠ D=90 °,∴ ∠ ECD+ ∠ CED=90 °,∵ EF⊥ EC,∴ ∠AEF+ ∠CED=90 °,∴ ∠ ECD= ∠ AEF ,在△ AEF 与△ DCE 中,,∴ AF=DE ,又∵ FE⊥ AC ,∵ DE=3cm , BC=7cm ,∴平行四边形 AFCE 为菱形;∴ AF=3cm , AE=AD ﹣ DE=BC ﹣DE=7 ﹣ 3=4cm ,( 2)在 Rt △ ABC 中,由 AB=5 , BC=12 ,在 Rt△ AEF 中, EF===5.依据勾股定理得: AC===13,故答案为: 5又 EF=6 ,8.( 1)△ BEC 是等腰三角形,∴菱形 AFCE 的面积 S= AC ?EF=×13×6=39原因是:∵矩形 ABCD ,∴ AD ∥ BC ,11.( 1)∵ 四边形 ABCD 为矩形, AE ⊥ BD ,∴ ∠ DEC= ∠ECB ,∴ ∠ 1+∠ ABD= ∠ ADB+ ∠ ABD= ∠ 2+ ∠ABD=90 °,∵ CE 均分∠ BED ,∴ ∠ ACB= ∠ ADB= ∠ 2=∠ 1=30 °,∴ ∠ DEC= ∠CEB ,又 AO=BO ,∴ ∠ CEB= ∠ECB ,∴ △ AOB 为等边三角形,∴ BE=BC ,∴ ∠ BOC=120 °;∴ △ BEC 是等腰三角形.( 2)由( 1)知,△ DOC ≌ △ AOB ,( 2)解:∵矩形 ABCD ,∴ △ DOC 为等边三角形,∴ ∠ A= ∠ D=90 °,∴ OD=OC=CD=OB=6 ,∵ ∠ DCE=22.5 °,∴ △ DOC 的周长 =3×6=18∴ ∠ DEB=2 ×( 90°﹣ 22.5°) =135°,12.( 1)解: OE⊥AD ,∴ ∠ AEB=180 °﹣∠ DEB=45 °,原因:∵四边形 ABCD 是矩形,∴ ∠ ABE= ∠AEB=45 °,∴ AC=BD , AO=OC ,DO=BO ,∴ AE=AB=1 ,由勾股定理得: BE=BC==,∴ AO=DO ,又∵点 E 是 AD 的中点,答: BC 的长是∴ OE⊥ AD .9.( 1)由题意,得∠ GAH=∠ DAC ,∠ ECF= ∠ BCA ,( 2)解:由( 1)知 OE⊥ AD , AO=5 ,在 Rt△AOE 中,由勾股定理得:∵四边形 ABCD 为矩形,∴AD ∥ BC ,∴∠ DAC= ∠ BCA ,∴∠ GAH= ∠ ECF,∴AG ∥ CE,又∵ AE ∥ CG∴四边形 AECG 是平行四边形;(2)∵四边形 AECG 是菱形,∴ F、 H 重合,∴ AC=2BC ,在 Rt △ ABC 中,设 BC=x ,则 AC=2x ,在Rt△ ABC 中 AC 2=AB2+BC2,222,即( 2x) =3 +x解得 x=,即线段 BC 的长为cm.10.( 1)∵四边形ABCD 是矩形,∴AE ∥ FC,∴∠ EAO= ∠ FCO,∵ EF 垂直均分 AC ,∴AO=CO ,FE⊥AC ,又∠ AOE= ∠ COF,AE===4,∵ E 是边 AD 的中点,∴AD=2AE=8 .答: AD 的长度是 813.( 1)证明:∵四边形 ABCD 是矩形,∴AD ∥BC , AD=BC ,∴∠ DAC= ∠BCA ,又∵ DN ⊥ AC , BM ⊥ AC ,∴ ∠ DNA= ∠BMC ,∴ △ DAN ≌ △BCM ,∴AN=CM .(2)连结 BD 交 AC 于点 O.∵ AN=NM=2 ,∴AC=BD=6 ,∴ DN=,∴ 矩形 ABCD 的面积 =,答:矩形 ABCD 的面积是 12.14.( 1) ∵四边形 ABCD 是矩形,∴ ∠ BAD=90 °, ∵ AE 均分 ∠ BAD ,∴ ∠ BAE= ∠ BAD=×90°=45°.( 2) ∵ 四边形 ABCD 是矩形, ∴ AD ∥ BC , ∠BAD=∠B=90 °, ∴ ∠ DAE= ∠ AEB∵ ∠ BAE= ∠DAE=45 °, ∴ ∠ AEB=45 °, ∴ ∠ BAE= ∠AEB ,∴ AB=BE=5 ,∴ BC=3+5=8=AD ,∴ S △ADE = AD ×AB= ×8×5=2015. ∵ 四边形 ABCD 是矩形,∴ ∠ ADC=90 °, AD=BC=8 , CD=AB=4 .( 1 分)设 DE=x ,那么 AE=CE=8 ﹣ x ,(1 分) 2 2 2,( 1 分)∵ 在 Rt △ DEC 中, CE =DE +CD 222∴ ( 8﹣ x ) =x +4 ,( 1 分)∴ CE=8﹣ x=5 .(1 分)∵ 四边形 ABCD 是矩形, ∴ O 为 AC 中点.( 1 分)又 ∵ F 是 AE 的中点, ∴.16.( 1)设 BF=x ,CE=y ,则 CF=10 ﹣ x ,EF=DE=8 ﹣y ,在 Rt △ ABF 中依据勾股定理可得 x 2+82=10 2,在 Rt △ CEF 中依据勾股定理可得 y 2+( 10﹣ x ) 2=( 8﹣y ) 2,解得 x=6 ,y=3 ,即 BF=6 , CE=3;( 2) △ ABF 的面积为 ×8×6=24,∵ E 是 BC 的中点,∴ BE=EC ,∵ △ ABE 沿 AE 折叠后获得 △ AFE ,∴ BE=EF ,∴ EF=EC ,∵ 在 △ GFE 和 △ GCE 中,,∴ △ GFE ≌ △ GCE ( HL ),∴ GF=GC ;( 2)设 GC=x ,则 AG=3+x ,DG=3 ﹣ x ,在Rt △ADG 中, 42+( 3﹣ x ) 2=(3+x ) 2,解得 x=18. ∵ 四边形 ABCD 是矩形,∴ ∠ ABC=90 °(矩形的四个角都是直角) ,∵ 在 Rt △ ABC 中, AC=2AB , ∴ ∠ ACB=30 °,∵ 四边形 ABCD 是矩形,∴ OB=OD= BD , OC=OA= AC , AC=BD ,∴ BO=CO ,∴ ∠ OBC= ∠ OCB=30 °,∵ ∠ OBC+ ∠ OCB+ ∠ BOC=180 °,∴ ∠ BOC=120 °,∴ ∠ AOD= ∠BOC=120 ° 19.( 1) ∵ 矩形 ABCD , ∴ ∠ CBA=90 °,AB=6cm , AC=8cm ,由勾股定理:BC===2( cm ),答: BC 的长是 2 cm .( 2)解:以下图△ ADE 的面积为 ×10×5=25,∴ 四边形 AFCE 的面积为 8×10﹣ 24﹣25=31 ,答: BF 的长为 6, CE 的长度为 3,四边形 AFCE 的面积( 3)答: OE 与 DC 的关系是相互垂直均分.原因是: ∵ 矩形 ABCD ,∴OD=OC=DE=CE ,∴四边形 ODEC 是菱形,∴OE⊥ CD , OG=EG , CG=DG ,即 OE 与 DC 的关系是相互垂直均分20.∵四边形 ABCD 是矩形,∴AC=BD=13cm ,∵ △ AOB 、△BOC 、△ COD 和△ AOD 四个三角形的周长和为 86cm,∴OA+OB+AB+OB+OC+BC+OC+OD+DC+OD+OA+A D=86cm ,∴AB+BC+CD+DA=86 ﹣ 2( AC+BD )=86﹣ 4×13=34( cm).答:矩形 ABCD 的周长等于34cm.21.∵四边形 ABCD 是矩形∴ ∠ A= ∠ B= ∠ D=90 °,BC=AD , AB=CD ,∴ ∠ AFE+ ∠AEF=90 °( 2 分)∵F 在 AD 上,∠ EFC=90 °,∴ ∠ AFE+ ∠DFC=90 °,∴ ∠ AEF= ∠DFC ,∴ △ AEF ∽ △DFC ,( 3 分)∴.( 4 分)∵BE :EA=5 : 3设BE=5k , AE=3k∴AB=DC=8k ,由勾股定理得: AF=4k ,∴∴DF=6k∴BC=AD=10k (5 分)在△ EBC 中,依据勾股定理得BE 2+BC2=EC2∵CE=15 , BE=5k , BC=10k∴∴k=3( 6 分)∴AB=8k=24 , BC=10k=3022.( 1)∵四边形 EFGH 为正方形,∴HG=HE ,∵ ∠ DHG+ ∠AHE=90 °,∠DHG+ ∠ DGH=90 °,∴ ∠ DGH= ∠AHE ,∴ △ AHE ≌ △DGH (AAS )∴DG=AH=2(2)作 FM ⊥ DC ,M 为垂足,连结 GE,∵ AB ∥CD ,∴ ∠ AEG= ∠MGE∵HE ∥ GF,∴ ∠ HEG= ∠ FGE,∴ ∠ AEH= ∠ MGF .在△ AHE 和△ MFG 中,∠ A= ∠ M=90 °,HE=FG ,∴ △ AHE ≌ △ MFG .∴FM=HA=2 ,即不论菱形 EFGH 怎样变化,点 F 到直线CD 的距离一直为定值 2.所以 S△FCG=GC=1 ,解得 GC=1, DG=6 .( 3)设 DG=x ,则由第( 2)小题得, S△FCG=7 ﹣ x,又在△ AHE 中, AE ≤AB=7 ,∴HE2≤53,∴ x2+16≤53, x≤,∴ S△FCG的最小值为,此时 DG=23.设 AB=x ,BE=x ,EC=x ,CF=x ,则 FD=x﹣ x ,123414 23AD=x +x ,由题意得x1?x2=2a, x3?x4=2b,(x1﹣ x4)×( x2+x 3)=2c,即 x2?x3﹣x2?x4=2( b+c﹣ a),又x1x2x3x4=4ab代入 x2 x4=x 1x3﹣ 2( b+c﹣ a)得对于 x1x3的一元二次方程,即(x1x3)2﹣ 2( b+c﹣a) x1x3﹣4ab=0解之得 x1x3=( b+c﹣ a) +又S 矩形=x 1( x2+x 3)=2a+ ( b+c﹣a)+=( a+b+c) +∴S△AEF=S 矩形﹣ S△ABE﹣ S△CEF﹣ S△ADF=( a+b+c)+﹣ a﹣ b﹣ c=24.连结 OB ,∵EF⊥ AC ,矩形的性质专项练习--第11页共13页∴ △ AOE 是直角三角形∴ OG=AG=GE ,∴ ∠ BAC= ∠ AOG=30 °, ∠ AEO=60 °, ∠ GOE= ∠ AOE﹣ ∠ AOG=60 °, ∴ △ OEG 是正三角形,∴ OG=OE=GE ,∴ ∠ ABO= ∠ BAC=30 °,∴ ∠ AOB=180 °﹣ 30°﹣ 30°=120°,∴ ∠ BOE= ∠AOB ﹣ 90°=30 °,∴ △ OEB 是等腰三角形,∴ OE=EB ,∴ OG=AG=GE=EB=OE ,∴ OG= AB= DC .25.( 1)连结 ME .∵ MN 是 BE 的垂直均分线,∴ BM=ME=6 ﹣ AM ,在 △ AME 中, ∠A=90 °,由勾股定理得: AM 2+AE 2=ME 2,AM 2+x 2=(6﹣ AM ) 2,AM=3 ﹣x .( 2)连结 ME ,NE ,NB ,设 AM=a ,DN=b ,NC=6 ﹣b ,因 MN 垂直均分 BE ,则 ME=MB=6 ﹣ a ,NE=NB ,所以由勾股定理得AM 2+AE 2=ME 2, DN 2+DE 2=NE 2=BN 2=BC 2+CN 2即 a 2+x 2=( 6﹣a ) 2, b 2+(4﹣ x ) 2=42+( 6﹣ b )2,解得 a=3﹣x 2, b=x 2+x+3 ,所以四边形 ADNM 的面积为 S= ×( a+b ) ×4=2x+12 ,即 S 对于 x 的函数关系为 S=2x+12 ( 0< x < 2),答: S 对于 x 的函数关系式是 S=2x+1226.( 1) ∵四边形 ABCD 是矩形, DE 均分 ∠ADC , ∴ ∠ CDE= ∠CED=45 °;∴ EC=DC , 又 ∵ ∠ ADB=30 °,∴ ∠ CDO=60 °;又 ∵ 由于矩形的对角线相互均分,∴ OD=OC ;∴ △ OCD 是等边三角形;∴ ∠ DCO=60 °, ∠OCB=90 °﹣∠DCO=30 °; ∵ DE 均分 ∠ ADC , ∠ ECD=90 °,∠ CDE= ∠ CED=45 °,∴ CD=CE=CO ,∴ ∠ COE= ∠ CEO ;∴ ∠ COE= ( 180°﹣ 30°)÷2=75°;( 2)过 O 作 OF ⊥ BC 于 F , ∵ AO=CO ,∴ BF=CF ,∴ OF= AB=2 ,∵ ∠ ADB=30 °, AB=4 ,∴ AC=8 , ∴ BC==4, ∴ BF=CF=2,∵ CD=CE=4 ,∴ EF=CE ﹣ CF=4 ﹣ 2 ,在 Rt △OFE 中,OE==4 .27.:a 与 b 的关系是 b= a ,原因是:∵ 矩形 ABCD ,∴ AD=BC , AD ∥ BC ,∴ ∠ DAC= ∠BCA , ∵ DE ⊥ AC ,BF ⊥ AC ,∴ ∠ AED= ∠ CFB=90 °,在 △ ADE 和 △CBF 中,∴ △ ADE ≌ △CBF ,∴ AE=CF ,∵ AE=EF ,∴ AE=EF=CF ,∵ 矩形 ABCD ,∴ ∠ ABC=90 °=∠ BFC ,∴ ∠ BCF+ ∠ CBF=90 °,∠ ABF+ ∠CBF=90 °,∴ ∠ ABF= ∠ BCF ,∵ ∠ AFB= ∠ CFB=90 °, ∴ △ ABF ∽ △ BCF ,∴= = ,矩形的性质专项练习 -- 第 12 页 共 13 页设 AE=EF=CF=c ,则 BF 2 =AF ?CF=2c 2, ∴ BF= c ,∵ AB=b , BC=a ,∴ = = , ∴ b=a ,即 a 与 b 之间的关系是 b= a28.( 1)证明:在 Rt △ ABD 中, BD===2 ,∵ 矩形 ABCD ,∴ OA=OB= BD=,∴ △ AOB 为等边三角形;( 2)解: ∵ AE 是 ∠ BAD 的均分线,∴ ∠ BAE=45 °,∴ △ ABE 是等腰直角三角形, △ BEO 是等腰三角形,又 ∠ EBO=90 °﹣60°=30 °,∴ ∠ BOE= (180°﹣ 30°) ÷2=75°,在 △ BOC 中 ∠ COE=180 °﹣ 30°×2﹣ 75°=45°,所以,在 △BEF 和 △ COE 中,∴ △ BEF ≌ △ COE ( ASA ),∴ BF=CE , 又 CE=BC ﹣ BE=3 ﹣ ,∴ BF=3 ﹣.29.在 △ GEF 和 △ HCF 中, ∵ GE ∥ DC , ∴ ∠ GEF= ∠HCF , ∵ F 是 EC 的中点, ∴ FE=FC ,而 ∠ GFE= ∠ CFH (对顶角相等) ,∴ △ GEF ≌ △HCF ,∴GE=HC , 四边形 ABCD 为等腰梯形,∴ ∠ B= ∠ DCB ,∵ GE ∥ DC ,∴ ∠ GEB= ∠ DCB ,( 2 分)∴ ∠ GEB= ∠ B ,∴ GB=GE=HC ,∴ BG=CH30.( 1)在矩形 ABCD 中,∵ AD=BC , ∠ ADC= ∠ BCD=90 °, ∴ ∠ DCE=90 °,在 Rt △DCE 中,∵ F 为 DE 中点,∴ DF=CF ,∴ ∠ FDC= ∠ DCF ,∴ ∠ ADC+ ∠CDF= ∠ BCD+ ∠ DCF ,即 ∠ ADF= ∠ BCF ;( 2)连结 BF ,∵ BE=BD , F 为 DE 的中点,∴ BF ⊥ DE ,∴ ∠ BFD=90 °,即 ∠ BFA+ ∠ AFD=90 °,在 △ AFD 和 △BFC 中,∴ △ ADF ≌ △ BCF ,∴ ∠ AFD= ∠ BFC ,∵ ∠ AFD+ ∠ BFA=90 °, ∴ ∠ BFC+ ∠ BFA=90 °, 即 ∠ AFC=90 °,∴ AF ⊥ FC .矩形的性质专项练习 -- 第 13 页 共 13 页。
初二数学矩形的判定作业练习题(含答案)

初二数学矩形的判定作业练习题一.选择题(共5小题)1.能判定一个平行四边形是矩形的条件是( )A .两条对角线互相平分B .一组邻边相等C .两条对角线相等D .两条对角线互相垂直2.四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,需要添加的条件是( )A .AB CD = B .AC BD = C .AB BC = D .AC BD ⊥3.平行四边形的四个内角平分线相交所构成的四边形一定是( )A .一般平行四边形B .一般四边形C .对角线垂直的四边形D .矩形4.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是( )A .测量其中三个角是否都为直角B .测量对角线是否相等C .测量两组对边是否分别相等D .测量对角线是否相互平分5.如图所示,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定平行四边形ABCD 为矩形的是( )A .90ABC ∠=︒B .AC BD = C .AD AB = D .BAD ADC ∠=∠二.填空题(共5小题)6.要使ABCD Y 为矩形,则可以添加一个条件为 7.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边是否分别相等,然后测量两条对角线是否相等,这样做的依据是 .8.如图,在四边形ABCD 中,对角线AC ,BD 交于点O 且AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是 (填写一个即可).9.如图,在ABC ∆,AB AC =,点D 为BC 的中点,AE 是BAC ∠外角的平分线,//DE AB 交AE 于E ,则四边形ADCE 的形状是 .10.对角线 的四边形是矩形.三.解答题(共3小题)11.在平行四边形ABCD中,6AD=.求证:平行四边形ABCD是矩形.AC=,8AB=,1012.如图,AC是ABCD=,连接DEY的对角线,延长BA至点E,使AE AB(1)求证:四边形ACDE是平行四边形;(2)连接EC交AD于点O,若2∠=∠,求证:四边形ACDE是矩形.EOD B13.如图,AD是ABC=.AE BC,BE交AD于点F,且AF DF∆的中线,//(1)求证:AFE DFB∆≅∆;(2)求证:四边形ADCE是平行四边形;(3)当AB、AC之间满足条件_______________时,四边形ADCE是矩形.答案与解析一.选择题(共5小题)1.能判定一个平行四边形是矩形的条件是()A.两条对角线互相平分B.一组邻边相等C.两条对角线相等D.两条对角线互相垂直【分析】根据平行四边形的判定(对角线互相平分),矩形的判定(对角线互相平分且相等),菱形的判定(对角线互相平分且垂直或一组邻边相等的平行四边形)判断即可.【解答】解:A、两条对角线互相平分的四边形是平行四边形,故本选项错误;B、一组邻边相等的平行四边形是菱形,菱形不一定是矩形,故本选项错误;C、根据矩形的判定定理:对角线相等的平行四边形是矩形,故本选项正确;D、两条对角线互相垂直的平行四边形是菱形,故本选项错误.故选:C.2.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,需要添加的条件是() A.AB CD⊥=D.AC BD=B.AC BD=C.AB BC【分析】由平行四边形的判定方法得出四边形ABCD是平行四边形,再由矩形的判定方法即可得出结论.【解答】解:需要添加的条件是AC BD=;理由如下:Q四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,AC BDQ,=∴四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.3.平行四边形的四个内角平分线相交所构成的四边形一定是()A.一般平行四边形B.一般四边形C.对角线垂直的四边形D.矩形【分析】由于平行四边形的邻角互补,那么每两条相邻的内角平分线都互相垂直,则围成四边形就有4个直角,因此这个四边形一定是矩形.【解答】解:如图;Q四边形ABCD是平行四边形,∴∠+∠=︒;DAB ADC180Q、DH平分DABAH∠、ADC∠,EHG∠=︒;∴∠+∠=︒,即90HAD HDA90同理可证得:90∠=∠=∠=︒;HEF EFG FGH故四边形EFGH是矩形.故选:D.4.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量其中三个角是否都为直角B.测量对角线是否相等C.测量两组对边是否分别相等D.测量对角线是否相互平分【分析】由矩形的判定定理和平行四边形的判定定理即可得出答案.【解答】解:A、测量其中三个角是否都为直角,能判定矩形;B 、测量对角线是否相等,不能判定平行四边形;C 、测量两组对边是否分别相等,能判定平行四边形;D 、对角线是否相互平分,能判定平行四边形;故选:A .5.如图所示,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定平行四边形ABCD 为矩形的是( )A .90ABC ∠=︒B .AC BD = C .AD AB = D .BAD ADC ∠=∠【分析】本题考查的是矩形的判定,平行四边形的性质有关知识,利用矩形的判定,平行四边形的性质对选项进行逐一判断即可解答.【解答】解:A .根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意;B .根据对角线相等的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意;C .不能判定平行四边形ABCD 为矩形,故此选项符合题意;D .平行四边形ABCD 中,//AB CD ,180BAD ADC ∴∠+∠=︒,又BAD ADC ∠=∠Q ,90BAD ADC ∴∠=∠=︒,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意. 故选:C .二.填空题(共5小题)6.要使ABCD Y 为矩形,则可以添加一个条件为 对角线相等或有一个直角;【分析】根据矩形的判断方法即可解决问题;【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故答案为对角线相等或有一个直角;7.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边是否分别相等,然后测量两条对角线是否相等,这样做的依据是 对角线相等的平行四边形是矩形 .【分析】根据矩形和平行四边形的判定方法填空即可.【解答】解:先测量两组对边是否分别相等,可判定是否是平行四边形,然后测量两条对角线是否相等可判定是否是矩形,所以这样做的依据是:对角线相等的平行四边形是矩形,故答案为:对角线相等的平行四边形是矩形.8.在四边形ABCD 中,对角线AC ,BD 交于点O 且AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是 AC BD =或有个内角等于90度 (填写一个即可).【分析】因为在四边形ABCD 中,对角线AC 与BD 互相平分,所以四边形ABCD 是平行四边形,根据矩形的判定条件,可得在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是一个角是直角或者对角线相等,从而得出答案.【解答】解:Q 对角线AC 与BD 互相平分,∴四边形ABCD 是平行四边形,要使四边形ABCD 成为矩形,需添加一个条件是:AC BD =或有个内角等于90度.故答案为:AC BD =或有个内角等于90度.9.如图,在ABC ∆,AB AC =,点D 为BC 的中点,AE 是BAC ∠外角的平分线,//DE AB 交AE 于E ,则四边形ADCE 的形状是 矩形 .【分析】首先利用外角性质得出B ACB FAE EAC ∠=∠=∠=∠,进而得到//AE CD ,即可求出四边形AEDB 是平行四边形,再利用平行四边形的性质求出四边形ADCE 是平行四边形,即可求出四边形ADCE 是矩形.【解答】证明:AB AC =Q ,B ACB ∴∠=∠,Q 点D 为BC 的中点,90ADC ∴∠=︒,AE Q 是BAC ∠的外角平分线,FAE EAC ∴∠=∠,B ACB FAE EAC ∠+∠=∠+∠Q ,B ACB FAE EAC ∴∠=∠=∠=∠,//AE CD ∴,又//DE AB Q ,∴四边形AEDB 是平行四边形,AE ∴平行且等于BD ,又BD DC =Q ,AE ∴平行且等于DC ,故四边形ADCE 是平行四边形,又90ADC ∠=︒Q ,∴平行四边形ADCE 是矩形.即四边形ADCE 是矩形.故答案为矩形.10.对角线 互相平分且相等 四边形是矩形.【分析】根据矩形的判定可得对角线互相平分且相等的四边形为矩形.【解答】解:由对角线互相平分且相等的四边形为矩形可知,故填:互相平分且相等.三.解答题(共3小题)11.在平行四边形ABCD 中,6AB =,10AC =,8AD =.求证:平行四边形ABCD 是矩形.【分析】根据勾股定理的逆定理得到90ABC ∠=︒,从而判定矩形.【解答】解:10AC =Q ,10BD AC ∴==,6AB =Q ,8AD =,222AC AB BC ∴=+,90ABD ∴∠=︒,∴平行四边形ABCD 是矩形.12.如图,AC 是ABCD Y 的对角线,延长BA 至点E ,使AE AB =,连接DE(1)求证:四边形ACDE 是平行四边形;(2)连接EC 交AD 于点O ,若2EOD B ∠=∠,求证:四边形ACDE 是矩形.【分析】(1)由平行四边形的性质可得AB CD =,//AB CD ,由一组对边平行且相等的四边形是平行四边形可证四边形ACDE 是平行四边形;(2)由三角形的外角可证ADC OCD ∠=∠,可得OC OD =,即可得AD EC =,可证四边形ACDE 是矩形.【解答】证明:(1)Q 四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,AE AB =Q ,AE CD ∴=,且//AB CD ,∴四边形ACDE 是平行四边形;(2)Q 四边形ABCD 是平行四边形,B ADC ∴∠=∠,2EOD B ∠=∠Q2EOD ADC ∴∠=∠,且EOD ADC OCD ∠=∠+∠, ADC OCD ∴∠=∠,OC OD ∴=,Q 四边形ACDE 是平行四边形;AO DO ∴=,EO CO =,且OC OD =, AD CE ∴=,∴四边形ACDE 是矩形.13.如图,AD 是ABC ∆的中线,//AE BC ,BE 交AD 于点F ,且AF DF =.(1)求证:AFE DFB ∆≅∆;(2)求证:四边形ADCE 是平行四边形;(3)当AB 、AC 之间满足什么条件时,四边形ADCE 是矩形.【分析】(1)由“AAS ”可证AFE DFB ∆≅∆;(2)由全等三角形的性质和中线性质可得AE CD =,且//AE BC ,可证四边形ADCE 是平行四边形;(3)由等腰三角形的性质可得AD BC ⊥,即可得四边形ADCE 是矩形.【解答】证明:(1)//AE BC Q ,AEF DBF ∴∠=∠,且AFE DFB ∠=∠,AF DF = ()AFE DFB AAS ∴∆≅∆(2)AFE DFB ∆≅∆Q ,AE BD ∴=,AD Q 是ABC ∆的中线,BD CD ∴=AE CD ∴=//AE BC Q∴四边形ADCE 是平行四边形;(3)当AB AC =时,四边形ADCE 是矩形; AB AC =Q ,AD 是ABC ∆的中线,AD BC ∴⊥,90ADC ∴∠=︒Q 四边形ADCE 是平行四边形∴四边形ADCE 是矩形∴当AB AC =时,四边形ADCE 是矩形.。
人教版八年级数学下册矩形的性质与判定习题
初中数学试卷矩形的性质与判定习题初二数学组 12.20例1、如图,矩形ABCD中,E为AD上一点,EF⊥CE交AB于F,若DE=2,矩形ABCD的周长为16,且CE=EF,求AE的长.例2、已知:如图,平行四边形ABCD的四个内角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形。
例3、已知:如图所示,矩形ABCD中,E是BC上的一点,且AE=BC,︒EDC.∠15=求证:AD=2AB.A DPHDCBA例4、已知:如图,四边形ABCD 是由两个全等的正三角形ABD 和BCD 组成的,M 、N•分别为BC 、AD 的中点.求证:四边形BMDN 是矩形.例5、如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点,求证:四边形EFGH 是矩形.例6、 如图, 在矩形ABCD 中, AP=DC, PH=PC, 求证: PB 平分∠CBH.BAC D N MHG OFEDCB A1.判断一个四边形是矩形,下列条件正确的是( )A .对角线相等B .对角线垂直C .对角线互相平分且相等D .对角线互相垂直且相等。
2.矩形的两边长分别为10cm 和15cm ,其中一个内角平分线分长边为两部分,这两部分分别为( )A .6cm 和9cmB .5cm 和10cmC .4cm 和11cmD .7cm 和8cm 3.在下列图形性质中,矩形不一定具有的是( )A .对角线互相平分且相等B .四个角相等C .是轴对称图形D .对角线互相垂直平分4在矩形ABCD 中, 对角线交于O 点,AB=0.6, BC=0.8, 那么△AOB 的面积为 ; 周长为 .5一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为 . 6.若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 . 7.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为 ,短边长为 .8.矩形的两邻边分别为4㎝和3㎝,则其对角线为 ㎝,矩形面积为 cm 2. 9.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是 .10.矩形的对角线相交所成的钝角为120°,矩形的短边5 cm ,则对角线之长为 cm 。
人教版八年级数学下册第02课 矩形的性质与判定 同步练习题
初中数学试卷第02课矩形的性质与判定同步练习题【例1】如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.【例2】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.【例3】如图,已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连接EF,M为EF的中点.(1)请判断四边形PECF的形状,并说明理由;(2)随着P点在边AB上位置的改变,CM的长度是否也会改变?若不变,请你求CM的长度;若有变化,请你求CM的变化范围.【例4】如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.【例5】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.课堂同步练习一、选择题:1、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE 成为矩形的是( )A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE第1题图第2题图第4题图2、如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则DC的长是()A.4cmB.6cmC.8cmD.10cm3、若顺次连接四边形ABCD各边的中点所得到的四边形是矩形,则该四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°5、如图.矩形ABCD中.E在AD上.且EF⊥EC.EF=EC.DE=2.矩形的周长为16.则AE的长是()A.3B.4C.5D.7第5题图第6题图第7题图6、如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G 点,若∠AEB=55°,则∠DAF=( )A.40°B.35°C.20°D.15°7、如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为( )A.9:4B.3:2C.4:3D.16:98、如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为( )A.3B.4C.5D.6第8题图第9题图9、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )A.3B.3.5C.2.5D.2.810、如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE.其中正确的结论的个数有( )A.1B.2C.3D.4第10题图第11题图第12题图11、在矩形ABCD中,点A关于∠B的角平分线的对称点为E,点E关于∠C的角平分线的对称点为F,若AD=,AB=3,则S △ADF=()A.2B.3C.3D.12、如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°.①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE=S矩形ABCD.则结论正确的个数为( )A.1B.2C.3D.4二、填空题:13、若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为cm.14、如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4 cm,则四边形CODE的周长为。
矩形的性质与判定练习(含答案)
.
17.在四边形 ABCD 中,对角线 AC , BD 交于点 O ,OA OC ,OB OD ,添加一个条件
使四边形 ABCD 是矩形,那么所添加的条件可以是
(写出一个即可).
18.如图,在矩形 ABCD 中,对角线 AC 与 BD 相交于点 O ,CE BD ,垂足为点 E ,CE 5 ,
A.5
B. 5 3
C.10
D.10 3
7.如图,延长矩形 ABCD 的边 BC 至点 E ,使 CE BD ,连接 AE ,如果 ADB 38 ,则 E 的值是 ( )
A. 19
B. 18
C. 20
D. 21
8.如图,在矩形 ABCD 中,对角线 AC 、 BD 交于 O , BC 2 , AE BD ,垂足为 E ,
.
24.如图,已知 BEFG 是长方形, A 为 EB 延长线上一点, AF 交 BG 于点 C , D 为 AC 上 一点,且 AD BD BF ,若 BFG 60 ,则 AFG 的度数为 .
B.②③
3.下列对矩形的判定中,正确的个数有 (
C.③④ )
D.②④
(1)对角线相等的四边形是矩形;
(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;
(4)有四个角是直角的四边形是矩形;
(5)四个角都相等的四边形是矩形;
(6)对角线相等,且有一个直角的四边形是矩形;
(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;
A. 12 5
B. 24 5
C. 18 5
D.5
11.如图所示,矩形 ABCD 中, AE 平分 BAD 交 BC 于 E ,CAE 15 ,则下面的结论中 正确的有 ( ) ① ODC 是等边三角形; ② BC 2 AB ; ③ AOE 135 ; ④ SAOE SCOE .
八年级数学下册19.1矩形2.矩形的判定练习(含答案)
2.矩形的判断1.如图 , 在平行四边形 ABCD中, 对角线 AC和 BD订交于点 O,则下边条件能判断平行四边形ABCD是矩形的是 ( A )(A)AC=BD(B)AC⊥ BD(C)AO=CO(D)AB=AD2.已知平行四边形 ABCD,AC,BD是它的两条对角线 , 那么以下条件中 , 能判断这个平行四边形为矩形的是 ( C )(A) ∠ BAC=∠ DCA(B) ∠ BAC=∠ DAC(C) ∠ BAC=∠ ABD(D) ∠ BAC=∠ ADB3.如图 , 四边形 ABCD是平行四边形 , 对角线 AC与 BD订交于点 O,∠ 1=∠ 2. 若 AC=13,BC=12, 则四边形ABCD的面积是 ( D )(A)20 (B)30 (C)50 (D)604.在四边形 ABCD中 ,AC 和 BD的交点为 O,不可以判断四边形 ABCD为矩形的是 ( C )(A)AB=CD,AD=BC,AC=BD(B)AO=CO,BO=DO,∠ A=90°(C) ∠ A=∠ C,∠ B+∠ C=180°(D)AB∥ CD,AB=CD,∠A=90°5.如图 , 四边形 ABCD是平行四边形 , 增添一个条件 : ∠ ABC=90° ( 或 AC=BD等) , 可使它成为矩形 .6.如图 , 在△ ABC中 ,AB=AC,将△ ABC绕点 C 旋转 180°获得△ FEC,连接 AE,BF. 当∠ ACB为60°时 , 四边形 ABFE为矩形 .7. 如图 , 在两条平行直线 a 和 b 上用直角曲尺画两条直线, 则组成的四边形ABCD为矩形 .8.学完矩形的判断后 , 小明和小丽想实质应用一下 ( 查验教室的门能否为矩形 ). 依据小明和小丽的对话 , 你以为小明和小丽谁正确 :小明 : “我用直尺量这个门的两条对角线, 发现它们的长度相等, 因此这个四边形门就是矩形. ”小丽 : “我用角尺量这个门的随意三个角, 发现它们都是直角. 因此这个四边形门就是矩形. ”解: 小明的不必定是矩形, 只依据对角线相等不可以判断四边形为矩形;由于对角线相等的平行四边形是矩形, 因此小明的说法错误;小丽的必定是矩形, 由于有三个角是直角的四边形是矩形.因此小丽的说法正确.9.(2018北京门头沟期末) 已知 , 如图 , 在?ABCD中, 过点 D作 DE⊥ AB于点 E, 点 F 在边 CD上,DF=BE, 连接 AF 和 BF.(1)求证 : 四边形 BFDE是矩形 ;(2)假如 CF=3,BF=4,DF=5, 求证 :AF 均分∠ DAB.证明 :(1)由于四边形ABCD是平行四边形 ,因此 DF∥ BE.由于 DF=BE,因此四边形BFDE是平行四边形 .由于 DE⊥ AB,因此∠ DEB=90°.因此四边形BFDE是矩形 .(2)由于四边形 BFDE是矩形 ,因此∠ BFD=∠ BFC=90° .因此 BC==5, 因此 AD=BC=5.由于 DF=5,因此 AD=DF.因此∠ DAF=∠ DFA.由于 AB∥ CD,因此∠ DFA=∠ FAB.因此∠ DAF=∠ FAB.因此 AF 均分∠ DAB.10.如图 , 在△ ABC中 , 点 O是边 AC上一个动点 , 过点 O作直线 EF∥ BC分别交∠ ACB,外角∠ ACD 的均分线于点E,F.(1)若 CE=8,CF=6, 求 OC的长 ;(2)连接 AE,AF. 问 : 当点 O在边 AC上运动到什么地点时 , 四边形 AECF是矩形 ?并说明原因 . 解:(1) 由于 EF 交∠ ACB的均分线于点 E, 交∠ ACB的外角均分线于点 F,所以∠ OCE=∠BCE,∠ OCF=∠ DCF,由于 EF∥ BC,因此∠ OEC=∠ BCE,∠OFC=∠ DCF,因此∠ OEC=∠ OCE,∠OFC=∠ OCF,因此 OE=OC,OF=OC,因此 OE=OF.由于∠ OCE+∠ BCE+∠OCF+∠ DCF=180° ,因此∠ ECF=90° ,在 Rt △ CEF中 ,由勾股定理得EF===10,因此 OC=OE=EF=5.(2)当点 O在边 AC上运动到 AC中点时 , 四边形 AECF是矩形 . 原因 :连接 AE,AF, 以下图 ,当 O为 AC的中点时 ,AO=CO,由于 EO=FO,因此四边形AECF是平行四边形 ,由于∠ ECF=90° ,因此平行四边形AECF是矩形 .11.( 拓展研究 )(2018 青岛 ) 已知 , 如图 , 平行四边形 ABCD的对角线 AC与 BD订交于点 E, 点 G 为AD的中点 , 连接 CG,CG的延伸线交 BA的延伸线于点 F, 连接 FD.(1)求证 :AB=AF;(2)若 AG=AB,∠ BCD=120° , 判断四边形 ACDF的形状 , 并证明你的结论 .(1)证明 : 由于四边形 ABCD是平行四边形 ,因此 BF∥ CD,AB=CD,因此∠ AFG=∠ DCG.由于 GA=GD,∠ AGF=∠ CGD,因此△ AGF≌△ DGC.因此 AF=CD.因此 AB=AF.(2)解 : 四边形 ACDF是矩形 .证明以下 :由于 AF=CD,AF∥ CD,因此四边形ACDF是平行四边形 .因此 AG=DG,FG=CG.由于四边形ABCD是平行四边形 ,因此∠ BAD=∠BCD=120° .因此∠ FAG=60° . 由于 AB=AF,AG=AB,因此 AG=AF.因此△ AFG是等边三角形.因此 AG=GF.因此 AG=DG=FG=CG所.以 AD=CF.因此四边形ACDF是矩形 .12.(方程思想)如图, 在直角梯形ABCD 中,∠B=90°, AD∥BC,AB=14 cm,AD=18 cm,BC=21 cm, 点 E 由点 A 出发沿 AD方向向点 D 匀速运动 , 速度为 1 cm/s, 点 F 由点 C 出发沿 CB方向向点 B 匀速运动 , 速度为 2 cm/s, 假如动点 E,F 同时从 A,C 两点出发 , 连接EF, 若设运动的时间为 t s, 解答以下问题 :(1)当 t 何值时 , 梯形 AEFB的面积是 91 cm2?(2)当 t 何值时 , 四边形 AEFB是矩形 ?解:(1) 依据题意 , 得 AE=t cm,CF=2t cm,则 BF=(21-2t)cm. 由于 S 梯形AEFB=91,因此×(t+21-2t)× 14=91.因此t=8.因此当 t=8 时 , 梯形 AEFB的面积是91 cm2.(2) 依据题意 , 得 AE=t cm,CF=2t cm,则 BF=(21-2t)cm.由于 AE∥ BF, ∠ B=90° ,因此当 AE=BF时 , 四边形 AEFB是矩形 .因此 t=21-2t.因此t=7.因此当 t=7 时 , 四边形 AEFB是矩形 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形的性质和判定
类型1 矩形与折叠
1.(台州中考)如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是()
A.8 cm B.5 2 cm
C.5.5 cm D.1 cm
2.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为()
A.12 B.10
C.8 D.6
3.(南平中考)将矩形ABCD沿AE折叠,得到如图所示的图形.已知∠CEB′=50°,则∠AEB′=________.
4.如图,将矩形ABCD沿AE向上折叠,使点B落在DC边上的F处,若△AFD的周长为9,△ECF的周长为3,则矩形ABCD的周长为________.
5.(通辽中考)如图,在矩形ABCD中,AB=3 cm,BC=4 cm,点E是BC边上的一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE长为________.
6.如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,AC与EF交于点H.
(1)求证:△ABE≌△AGF;
(2)若AB=6,BC=8,求△ABE的面积.
7.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10 cm,
AD=8 cm,DE=6 cm.
(1)求证:□ABCD是矩形;
(2)求BF的长;
(3)求折痕AF的长.
类型2 矩形与运动
8.(南昌中考)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()
A.四边形ABCD由矩形变为平行四边形
B.BD的长度增大
C.四边形ABCD的面积不变
D.四边形ABCD的周长不变
9.已知,G是矩形ABCD的边AB上的一点,P是BC边上的一个动点,连接DG、GP,E、F分别是GD、GP的中点,当点P从B向C运动时,EF的长度()
A.保持不变B.逐渐增大
C.逐渐减小D.不能确定
10.如图,P为矩形ABCD的边BC上的一个动点,对角线AC,BD相交于O点,且PE⊥BD于E,PF⊥AC于F,若AB =6,BC=8,则PE+PF的值为()
A.2.4 B.4.8 C.5 D.10
11.如图,点P 是矩形ABCD 对角线BD 上的一个动点,AB =6,AD =8,则PA +PC 的最小值为________.
12.(葫芦岛中考)如图,矩形ABCD 中,点M 是CD 的中点,点P 是AB 上的一动点,若AD =1,AB =2,则PA +PB +PM 的最小值是________.
13.如图,A ,B ,C ,D 为矩形ABCD 的四个顶点,AB =25 cm ,AD =8 cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm/s 的速度向点B 移动,运动到点B 为止,点Q 以2 cm/s 的速度向点D 移动.
(1)P ,Q 两点从出发开始到第几秒时,PQ ∥AD?
(2)试问:P ,Q 两点从出发开始到第几秒时,四边形PBCQ 的面积为84平方厘米.
14.如图,已知在△ABC 中,AC =3,BC =4,AB =5,点P 是AB 上(不与A 、B 重合)的一动点,过P 作PE⊥AC,PF ⊥BC ,垂足分别是E 、F ,连接EF ,M 为EF 的中点.
(1)请判断四边形PECF 的形状,并说明理由;
(2)随着P 点在边AB 上位置的改变,CM 的长度是否也会改变?若不变,请你求CM 的长度;若有变化,请你求CM 的变化范围.
参考答案
1.A 2.B 3.65° 4.12 5.3或32
6.(1)证明:
∵四边形ABCD 是矩形,
∴AB =CD ,∠BAD =∠BCD.由折叠的性质得:AG =CD ,∠EAG =∠BCD,∠G =∠D=∠B.
∴AB =AG ,∠BAD =∠EAG.
∴∠BAE=∠GAF.在△ABE 和△AGF 中,⎩⎪⎨⎪⎧∠BAE=∠GAF,AB =AG ,∠B =∠G,
∴△ABE ≌△AGF(ASA).
(2)根据折叠的性质可得AE =EC ,设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得62+x 2=(8-x)2.
解得x =74.则S △ABE =12AB·BE=12×6×74=214
. 7.(1)证明:∵把纸片ABCD 折叠,使点B 恰好落在CD 边上,
∴AE =AB =10,AE 2=102=100.
又∵AD 2+DE 2=82+62=100,
∴AD 2+DE 2=AE 2.
∴△ADE 是直角三角形,且∠D=90°.
又∵四边形ABCD 为平行四边形,
∴□ABCD 是矩形.
(2)设BF =x ,则EF =BF =x ,EC =CD -DE =10-6=4(cm),FC =BC -BF =8-x ,在Rt △EFC 中,EC 2+FC 2=EF 2,即
42+(8-x)2=x 2.解得x =5.故BF =5 cm.
(3)在Rt △ABF 中,由勾股定理得,AB 2+BF 2=AF 2.
∵AB =10 cm ,BF =5 cm ,
∴AF =102+52
=55(cm).
8.C 9.C 10.B 11.10 12.3
13.(1)设P ,Q 两点从出发开始到第x 秒时,PQ ∥AD ,
∵四边形ABCD 是平行四边形,
∴AB ∥CD ,即AP∥DQ.
∵PQ∥AD,
∴四边形APQD 是平行四边形.
∴AP =DQ.
∴3x =25-2x.解得x =5.
答:P ,Q 两点从出发开始到第5秒时,PQ ∥AD.
(2)设P ,Q 两点从出发开始到第a 秒时,四边形PBCQ 的面积为84平方厘米,
∵BP =25-3a ,CQ =2a ,
∴根据梯形面积公式得:12
(25-3a +2a)·8=84.解得a =4. 答:P ,Q 两点从出发开始到第4秒时,四边形PBCQ 的面积为84平方厘米.
14.(1)四边形PECF 是矩形.理由:
∵AC 2+BC 2=32+42=52=AB 2,
∴∠ACB =90°,
∵PE ⊥AC ,PF ⊥BC ,
∴∠PEC =∠ACB=∠CFP=90°.
∴四边形PECF 是矩形.
(2)CM 的长度会改变,理由:连接PC.由(1)证得四边形PECF 是矩形,
∴EF =PC.过点C 作CD⊥AB,此时CD =PC 且PC 最小.
∴PC =AC·BC AB =125
=2.4. ∵点P 在斜边AB 上(不与A 、B 重合),
∴PC <BC =4.
∴PC 的范围是2.4≤PC<4.即EF 的范围是2.4≤EF<4. ∵M 为EF 的中点,
∴CM =12
EF. ∴CM 的范围是1.2≤CM<2.。