八年级数学矩形的性质

合集下载

八年级数学《矩形》重点知识总结及经典例题

八年级数学《矩形》重点知识总结及经典例题

八年级数学《矩形》重点知识总结及经典例题学习目标1.了解矩形的概念及与平行四边形的关系.2.掌握矩形的性质及识别方法.3.能灵活地运用矩形的有关知识的计算和证明.学法指导矩形是特殊的平行四边形,平行四边形具有的性质矩形也具有,并且它还具有自己的特殊性.基础知识讲解1.矩形的概念有一个角为直角的平行四边形叫矩形.由概念可知,矩形首先是平行四边形,只是增加一个角是直角这个特殊条件.2.矩形的性质(1)具有平行四边形的一切性质.(2)矩形的四个内角是直角.(3)矩形的对角线相等且互相平分.(4)矩形即是中心对称图形又是轴对称图形.3.矩形的识别方法(1)有一个内角是直角的平行四边形是矩形.(2)对角线相等且互相平分的平行四边形为矩形.4.矩形的识别方法运用时应注意以下几点(1)用有一个内角是直角的平行四边形来判定一个四边形是否是矩形时须同时满足两个条件;一是有一个角是直角,二是平行四边形,也就是说有一个角是直角的四边形不一定是矩形,必须加上平行四边形这个条件才是矩形.(2)用“对角线相等的平行四边形是矩形”来判定一个四边形是否是矩形时也必须满足两个条件:一是对角线相等,二是平行四边形.重点难点重点:矩形的定义,性质及识别方法.难点:矩形的性质及识别方法的灵活运用.易错误区分析运用矩形的识别方法来判断四边形是否是矩形时易忽略满足的条件例1.对角线相等的四边形是矩形,这个结论正确吗?错解:这个结论正确正解:这个结论不正确分析:对角线相等的平行四边形才是矩形.典型例题例1.如图12-2-1所示:已知矩形ABCD的两条对角线AC,BD相交于O,∠AOD=120°,AB=4cm,求矩形对角线长.分析:注意到矩形的对角线相等且平分这个特性,不难求解.解∵ABCD 为矩形∴AC =BD ,且OA=21AC ,OB=21BD ,∴OA=OB , ∵∠AOD=120°,∴∠AOB=60° ∴△AOB 为等边三角形∴OB =OA =AB =4,∴BD =2OB =2×4=8cm .例2.如图12-2-2所示:□ABCD 中AC ,BD 直交于O ,EF ⊥BD 垂足为O ,EF 分别交AD ,BC 于点E ,F ,且AE=EO=21DE.求证:□ABCD 为矩形分析:观察给出的已知图象的特征,要证□ABCD 为矩形,显然只要证AC =BD 即可,若Rt △DOE 的斜边上的中线OM ,易证△AOE ≌△DOM ,∴OA =OD 问题得证.证明:取DE 的中点M ,连结OM ,∴在Rt △DOE 中,OM=21DE=DM , ∴OE=AE=21DE ,∠OME=∠OEA ∴OM =OE ,DM =AE ,∠OMD =∠OEM ,∴△OMD ≌△OEA ,∴OA=OD ,在□ABCD 中,∵OA=21AC ,OD=21BD , ∴AC =BC ∴□ABCD 为矩形.例3.已知:如图所示,E 是已知矩形ABCD 的边CB 延长线上的一点,CE =CA ,F 是AE 的中点.求证:BF ⊥FD分析:由于CE =CA ,F 是AE 的中点,若连结CF ,则CF ⊥AE .所示∠AFC =90°.所以要证BF ⊥FD ,只须再证∠CFB =∠AFD .易知,只要证△AFD ≌△BCF .证法一:连结CF .因为CE =CA ,F 是AE 中点,所以CF ⊥AE .所以∠AFD+∠DFC =90°,因为四边形ABCD 为矩形,所以AD =BC ,∠ABC =∠BAD =90°. 又∵F 是Rt △ABE 斜边BE 的中点,所以BF =AF ,所以∠FAB =∠FBA ,所以∠FAD=∠FBC .所以△FAD ≌△FBC .所以∠CFB=∠AFD ,所以∠CFB+∠DFC =90°,即BF ⊥FD .证法二:如图所示:延长BF交DA延长线于点G,连结BD.因为四边形ABCD是矩形,所以AD BC,AC=BD,所以∠AGF=∠EBF,∠GAF=∠BEF.因为F是AE的中点,所以AF=FE.所以△AGF≌△EBF所以GF=BF,AG=BE.所以GD=EC.因为CA=CE,CA=BD,所以BF⊥DF.例4.已知如图:矩形ABCD中,E为CD的中点.求证:∠EAB=∠EBA.分析:证角相等.若两角在同一个三角形中,可证三角形为等腰三角形.证明:∵四边形ABCD为矩形∴∠D=∠C=90°,AD=BC∵E为DC的中点,∴△ADE≌△BCE ∴AE=BE ∴∠EAB=∠EBA.例5.如图:已知矩形ABCD中,CF⊥BD于F,∠DAB的平分线AE与FC的延长线相交于点E,判断CA与CE的大小关系,并说明理由.分析:要判断CA与CE的大小关系,如果能证到∠EAO=∠E即可得CA=CE解:OA=CO过点A作AM⊥DB,可得AM∥EF,∠MAE=∠E∴∠DAM=∠DBA=∠OAB,∴∠MAE=∠EAO∴∠EAO=∠E ∴CE=CA创新思维例1.如图所示△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在这一边的对边上,那么符合要求的矩形可以画两个:矩形ACBD和矩形AEFB.解答问题(1)设图(2)中矩形ACBD和矩形AEFB的面积分别为S1,S2,则S1 S2.(填“>”“<”“=”)(2)如图(3)中△ABC为钝角三角形,按短文中的要求把它补成矩形,则符合要求的矩形可以画个,利用图(3)把它画出来.(3)过图(4)△ABC 是锐角三角形且三边满足BC >AC >AB ,按短文中的要求把它补成矩形,那么符合要求的矩形可以画 个,利用图(4)把它画出来. (4)在(3)中所画的矩形中,哪一个的周长最小?为什么?分析:本题主要考查矩形的性质和计算.解:(1)如图甲过点C 作CG ⊥AB 于G ,则CG=AE .∵S 1=2S △ABC =2×21×AB ·CG=AB ·CG ,S 2=AE ·AB=CG ·AB ∴S 1=S 2 (2)有2个如图乙(3)有3个如图丙(4)设矩形BCED ,ACHQ ,ABGF 的周长分别为L 1,L 2,L 3,BC =a ,AC =b ,AB =c .易知,这些矩形的面积相等,令其面积为S ,则有L 1=a a s 22+,L 2=b s 2+2b ,L 3cs 2+2c , ∵L 1-L 2=s a 2+2a-(b b s 22+)=2(a-b )ab s ab -,而ab ﹥s ,a ﹥b ∴L 1-L 2﹥0,即L 1﹥L 2.同理L 2>L 3.∴以AB 为边的矩形周长最小.例2.如图△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角线于点F.(1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?证明你的结论.分析:先证∠OCE =∠OEC 就有EO =CO ,同理有FO =CO ,即有EO =FO .当0运动到AC 的中点时,四边形AECF 对角钱互相平分.∠EcF =90°.则四边形AECF 为矩形.证明:(l )∵MN ∥BC ,∴∠1=∠3 又∵CE 为∠ACB 的角平分线,∴∠1=∠2,∴∠2=∠3,∴OE =OC ,同理可证OF =OC ,∴OE=OF(2)当O 运动到AC 的中点时,四边形AECF 为矩形,因为AO =OC ,OE =OF.解:由矩形的特征,AC =EF ,由AE ∥CF ,CE ∥AF 知BECD 是平行四边形,故AE =CF ,从而AC =FE .中考练兵1.如图所示,在矩形ABCD 中,点E ,F 分别在AB ,CD 上BF ∥DF ,若AD =12cm ,AB =7cm ,且AE :EB=5:2,则阴影部分的面积为 .分析:由已知可判断四边形EBFD 是平行四边形.由平行线之间的距离处处相等,可知BE 边上的高与AD 的长相等.因此求BE 的长是关键.本题还可运用平移的方法,将△AED沿AB方向平移,使DE与BF重合,得空白部分所组成的图形是长12cm,宽5cm的矩形,可求其面积,然后将矩形ABCD的面积,减去空白部分的面积,即可得阴影部分的面积.也可通过矩形的面积减去二个全等三角形的面积,而得出阴影部分面积。

小学数学易考知识点矩形的性质

小学数学易考知识点矩形的性质

小学数学易考知识点矩形的性质矩形是小学数学中一个比较简单且重要的概念,它在解题过程中经常被使用。

了解矩形的性质对于解题有很大的帮助。

本文将介绍小学数学中与矩形相关的易考知识点,包括矩形的定义、性质和应用。

希望通过本文的学习,能够使读者对矩形有更深入的了解。

1. 矩形的定义矩形是由四条边组成的四边形,且具有如下特点:- 所有内角都是直角;- 对角线相等且互相平分;- 任意一条边的垂直平分线也是另一条边的垂直平分线。

矩形的定义是矩形的基础,掌握好这些定义对于后续的学习至关重要。

2. 矩形的性质2.1 边长性质矩形的边长性质是矩形的基本性质之一。

具体包括:- 矩形的对边相等,即长边和短边的长度相等;- 矩形的相邻边相等,即相邻两条边的长度相等。

了解矩形的边长性质对于计算矩形的周长和面积有很大的帮助。

2.2 对角线性质矩形的对角线性质是矩形的另一个重要性质。

具体包括:- 矩形的对角线相等,即两条对角线的长度相等;- 矩形的对角线互相垂直,即两条对角线的交点是直角。

了解矩形的对角线性质对于解题时判断矩形是否为正方形、计算对角线长度等问题具有指导作用。

2.3 周长和面积性质矩形的周长和面积是矩形的重要指标。

具体包括:- 矩形的周长等于两条长边和两条短边的和,即周长=2 × (长边 + 短边);- 矩形的面积等于长边和短边的乘积,即面积=长边 ×短边。

了解矩形的周长和面积性质对于计算矩形的周长和面积有很大的帮助。

3. 矩形的应用矩形在现实生活中有着广泛的应用,下面介绍几个常见的矩形应用场景:3.1 矩形的建筑应用在建筑设计中,经常会使用到矩形的性质。

例如,建筑的平面图通常采用矩形的形状,这样方便测量和规划建筑面积。

又如,在建筑中,常常会使用到矩形的支撑结构,因为矩形的结构稳定性较高。

3.2 矩形的日常应用在日常生活中,我们也能够发现矩形的应用。

例如,课桌、书架、电视机等物品,它们的形状往往是矩形的。

人教版八年级数学下册18.2 特殊的 平行四边形第二课时 矩形的性质课件

人教版八年级数学下册18.2  特殊的   平行四边形第二课时  矩形的性质课件

(1)证明:∵AO=OC, BO=OD, ∴四边形ABCD是平行四边形. 又∵∠AOB=2∠OAD,∠AOB=∠OAD+∠ADO, ∴∠OAD=∠ADO,∴AO=OD. ∵AC=AO+OC=2AO,BD=BO+OD=2OD, ∴AC=BD,∴四边形ABCD是矩形.
(2)解:设∠AOB=4x,∠ODC=3x, 则∠OCD=∠ODC=3x. ∵∠DOC+∠OCD+∠CDO=180°, ∴4x+3x+3x=180°,解得x=18°, ∴∠ODC=3×18°=54°, ∴∠ADO=90°-∠ODC=90°-54°=36°.
(1)证明:方法一 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE,∴四边形ACED是平 行四边形. ∵AB=AE,∴DC=AE, ∴四边形ACED是矩形.
证明:方法二 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE, ∴四边形ACED是平行四边形. ∵AB=AE,BC=CE, ∴AC⊥BE,∴∠ACE=90°, ∴四边形ACED是矩形.
几何语言
∵四边形ABCD是平行四边形 且AC=BD ∴四边形ABCD是矩形
A
D
O
B
C
小试牛刀
1.如图,下列条件不能判定四边形ABCD是矩形的是( C )
A.∠DAB=∠ABC=∠BCD=90° B.AB∥CD,AB=CD,AB⊥AD C.AO=BO,CO=DO D.AO=BO=CO=DO
2.如图 ABCD 中, ∠1= ∠2中.此时四边形ABCD是矩
解:∵四边形ABCD是平行四边形,
∴OA=OC=
1 2
AC,OB=OD= 1

人教版初中八年级下册数学课件 《矩形》平行四边形(第1课时矩形的性质)

人教版初中八年级下册数学课件 《矩形》平行四边形(第1课时矩形的性质)

A
D
O
B
C
基础训练 1. 下面性质中,矩形不一定具有的是( D)
A.对角线相等
B.四个角都相等
C.是轴对称图形 D.对角线垂直
2. 过四边形的各个顶点分别作对角线的平行线,若这四条平行 线围成一个矩形,则原四边形一定是( D )
A.对角线相等的四边形 B.对角线互相平分且相等的四边形 C.对角线互垂直平分的四边形 D.对角线垂直的四边形
3.如图,在Rt△ABC中,∠ACB=90°,∠A=30°.点D是 AB的中点,点E为边AC上一点,连接CD,DE,以DE为边在 DE的左侧作等边△DEF,连接BF. 判断△BCD的形状;
温馨提示:矩形的定义有两个要素:
A
D
①四边形是平行四边形
②有一个角是直角,二者缺一不可。
B
C
矩形是特殊的平行四边形,因此它具有平行四边形的所有性质, 但它也有自己独特的性质。
2.矩形的性质(从边、角、对角线三个方面总结)
(1).边:①两组对边分别平行 ② 两组对边分别相等
A
D
几何语言:∵四边形ABCD是矩形
3. 已知矩形的一条对角线与一边的夹角是40°,则两条对 角线所夹锐角的度数为( )D
A.50° B.60° C.70° D.80°
4. 矩形ABCD中,AB=2BC,E在CD上,AE=AB,则∠BAE等于
()
A
A.30° B.45° C.60° D.120°
例2. 如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小 三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?
B
C
∴AB//CD,AD//BC
AB=CD,AD=BC

矩形的性质课程设计

矩形的性质课程设计

矩形的性质课程设计一、教学目标矩形的性质课程设计的教学目标分为知识目标、技能目标和情感态度价值观目标。

知识目标:学生能够理解矩形的定义、性质和判定方法,掌握矩形的对角线性质、对边平行等特征。

技能目标:学生能够运用矩形的性质解决几何问题,提高空间想象能力和逻辑思维能力。

情感态度价值观目标:学生能够培养对数学学科的兴趣,增强自信心,培养合作探究的精神。

二、教学内容矩形的性质课程设计以人教版初中数学八年级上册第五章《平行四边形》为基础,重点讲解矩形的性质。

1.矩形的定义和性质2.矩形的判定方法3.矩形的对角线性质4.矩形对边平行的证明5.矩形在实际应用中的举例三、教学方法为了激发学生的学习兴趣和主动性,本课程采用多种教学方法:1.讲授法:教师通过讲解矩形的性质和判定方法,引导学生理解知识点。

2.讨论法:学生分组讨论矩形的性质,培养合作精神和表达能力。

3.案例分析法:教师通过举例分析矩形在实际应用中的作用,提高学生的应用能力。

4.实验法:学生在实验室进行矩形性质的实验,增强实践操作能力。

四、教学资源1.教材:人教版初中数学八年级上册《平行四边形》2.参考书:初中数学教学指导书、矩形性质的相关论文和书籍3.多媒体资料:矩形性质的PPT、动画演示、实况视频等4.实验设备:直尺、三角板、剪刀、透明胶带等五、教学评估本课程的教学评估分为平时表现、作业和考试三个部分,以全面客观地评估学生的学习成果。

1.平时表现:通过观察学生在课堂上的参与度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。

2.作业:布置与课程内容相关的练习题,要求学生在规定时间内完成,评估学生的掌握情况。

3.考试:定期进行课程考试,测试学生对矩形性质的掌握程度,包括选择题、填空题、解答题等题型。

六、教学安排本课程的教学安排如下:1.教学进度:按照教材和大纲的要求,合理安排每个知识点的教学顺序和深度。

2.教学时间:每节课安排45分钟,确保在有限的时间内完成教学任务。

八年级数学矩形的性质

八年级数学矩形的性质

A
D
O
P
B
C
4.已知:如图,在矩形ABCD中, 对角线相交 于点O,∠AOB=60°,AE平分∠BAD,AE 交BC于E,求∠BOE的度数. 75°
A
D
O
B
E
C
根据矩形性质2:
A
D
矩形的对角线相等. O
∵四边形ABCD是矩形. B
C
∴AC=BD 又∵0A=0C=
1
AC,OB=OD=
1
BD.
2
A2
┏C
性质2:
矩形的对角线相等.
符号语言:
∵四边形ABCD是矩形. ∴AC=BD
根据矩形性质2:
A
D
矩形的对角线相等.
O
∵四边形ABCD是矩形. B
C
∴AC=BD
又∵0A=0C= 1 AC,OB=OD= 1 BD.
2
2
∴OA=OB=OC=OD.
注: 矩形被两条对角线分成的四个小三角形
都是等腰三角形,并且面积相等.
∴OA=OB=OC=OD.
O
结论:
B
C
直角三角形斜边上的中线等于斜边的一半.
归纳: 直角三角形的性质: (1)直角三角形的两个锐角互余. (2)直角三角形两条直角边的平方和等于斜边的 平方. (3)直角三角形斜边上的中线等于斜边的一半.
例3 如图矩形ABCD的对角线AC、BD相交
于点O,E为矩形ABCD外一点,AE⊥CE,
那么BE⊥DE吗?
为什么?
解题思路:
E
由OE=OA=OC
A
D
得到OE=OB=OD 再得到∠BED=90°
O
B
C

人教版八年级数学讲义矩形的判定和性质(含解析)(2020年最新)

人教版八年级数学讲义矩形的判定和性质(含解析)(2020年最新)

第17讲矩形的判定和性质知识定位讲解用时:3分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习矩形的判定和性质。

矩形是初中四边形中的一节重要内容,是中考几何证明题考查的重点,涉及到后面菱形与正方形的学习,关系密切,因此本节课要重点掌握。

知识梳理讲解用时:20分钟矩形的性质和判定1.矩形的定义:有一个角是直角的平行四边形是矩形.2.矩形的性质:(1)矩形具有平行四边形的一切性质;(2)矩形的对角线相等且互相平分;(3)矩形的四个角都是90°;(4)矩形是轴对称图形.性质边角对角线对称性矩形对边平行且相等四个角都是直角互相平分且相等轴对称,中心对称1.矩形的判定:(1)有一个角是直角的平行四边形叫做矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形;(4)对角线相等且互相平分的四边形是矩形.课堂精讲精练【例题1】如图,在矩形ABCD 中,点O 为对角线AC 、BD 的交点,点E 为BC 上一点,连接EO ,并延长交AD 于点F ,则图中全等三角形共有()A .5对B .6对C .8对D .10对【答案】D【解析】根据已知及全等三角形的判定方法进行分析,从而得到答案.解:∵四边形ABCD 为矩形,其矩形的对角线相等且相互平分,∴AB=CD ,AD=BC ,AO=CO ,BO=DO ,EO=FO ,∠DAO=∠BCO ,又∠AOB=∠COD ,∠AOD=∠COB ,∠AOE=∠COF ,易证△ABC ≌△DCB ,△ABC ≌△CDA ,△ABC ≌△BAD ,△BCD ≌△ADC ,△BCD ≌△DAB ,△ADC ≌△DAB ,△AOF ≌△COE ,△DOF ≌△BOE ,△DOC ≌△AOB ,△AOD ≌△BOC 故图中的全等三角形共有10对.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.如图:OA=OB=OC=12AC你知道怎么证明吗?讲解用时:3分钟解题思路:本题考查矩形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.教学建议:熟练掌握矩形的性质以及全等三角形的判定和性质.难度: 3 适应场景:当堂例题例题来源:杭州模拟年份:2017【练习1.1】如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.【答案】(1)BD=BE;(2)24【解析】(1)根据矩形的对角线相等可得AC=BD,然后证明四边形ABEC是平行四边形,再根据平行四边形的对边相等可得AC=BE,从而得证;(2)根据矩形的对角线互相平分求出BD的长度,再根据30°角所对的直角边等于斜边的一半求出CD的长度,然后利用勾股定理求出BC的长度,再利用梯形的面积公式列式计算即可得解.(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,(2)解:∵在矩形ABCD中,BO=4,∴BD=2BO=2×4=8,∵∠DBC=30°,∴CD=BD=×8=4,,∴AB=CD=4,DE=CD+CE=CD+AB=4+4=8在Rt△BCD中,BC===4,∴四边形ABED的面积=(4+8)×4=24.讲解用时:4分钟解题思路:本题考查了矩形的对角线互相平分且相等的性质,平行四边形的判定与性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.教学建议:熟练掌握矩形的性质以及平行四边形的性质和判定.难度: 3 适应场景:当堂练习例题来源:肇庆年份:2012【例题2】如图,若要使?ABCD成为矩形,需添加的条件是()A.AB=BC B.∠ABD=∠DBC C.AO=BO D.AC⊥BD【答案】C【解析】根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.解:A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;B、∵四边形ABCD是平行四边形,∠ABD=∠DBC,得出四边形ABCD是菱形,不是矩形;故本选项错误;C、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AO=BO,,∴OA=OC=OB=OD即AC=BD,∴平行四边形ABCD是矩形,故本选项正确;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;故选:C.讲解用时:3分钟解题思路:本题考查了对矩形的判定定理的应用,注意:矩形的判定定理有:①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形.教学建议:熟记矩形的判定定理并灵活应用.难度: 3 适应场景:当堂例题例题来源:上城区期末年份:2017【练习2.1】如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AC=BD D.AB=BC【答案】C【解析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:C.讲解用时:3分钟解题思路:此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.教学建议:熟记矩形的判定定理并灵活应用.难度: 3 适应场景:当堂练习例题来源:黔南州年份:2012【例题3】如图,△ABC中,∠ACB=90°,AD=BD,且CD=4,求AB的长.【答案】8【解析】根据直角三角形斜边上中线性质求出AB=2CD,代入求出即可.解:∵△ABC中,∠ACB=90°,AD=BD,CD=4,∴AB=2CD=8.讲解用时:2分钟解题思路:本题考查了直角三角形斜边上中线性质的应用,解此题的关键是能根据直角三角形的性质得出AB=2CD,是一道简单的题目.教学建议:熟练运用直角三角形斜边上的中线是斜边的一半.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,△ABC中,∠C=90°,D在CB上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,求∠DFE的度数.【答案】60°【解析】在直角△ABC中,由AE=BE=EC,AD=DB可以推出∠BAD=20°,∠ADC=40°然后利用三角形的外角和内角的关系即可求出∠DFE=60°.解:∵∠C=90°,AE=BE=EC,AD=DB,∴∠BAD=20°,∠ADC=40°,∠DAC=∠ECA=50°.∴∠ECD=20°,∠FDC=40°.∴∠DFE=60°.讲解用时:3分钟解题思路:此题主要考查了直角三角形的中线等于斜边的一半和三角形的内角和与外角和的运用.教学建议:熟练运用直角三角形斜边上的中线是斜边的一半.难度:4 适应场景:当堂练习例题来源:台湾年份:2007【例题4】在△ABC中,∠A、∠B、∠C的度数的比是1:5:6,AB边上的中线长是2,求△ABC的面积.【答案】2【解析】根据度数比可求出此三角形为直角三角形,然后根据斜边中线的长可得出三角形的面积.解:设∠A=x°,则x+5x+6x=180,x=15.∴∠A=15°,∠B=75°,∠C=90°.如图:CD是Rt△ABC斜边AB上的中线,则DA=DC,作斜边上的高CE,在Rt△CED中,∠CDE=2∠A=30°,CD=2,易求得CE=1,又AB=2DC=4.故所求△ABC的面积是2.讲解用时:3分钟解题思路:本题考查直角三角形的斜边中线等于斜边一半这个知识点,解答此题的关键是很据题意确定△ABC是直角三角形.教学建议:熟练运用直角三角形斜边上的中线是斜边的一半.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】如图,在△ABC中,∠A=90°,AC=8,AB=6,点D是BC边上的动点(不与B,C 重合)过点D作DE⊥AB于点E,作DF⊥AC于点F,求EF的最小值.【答案】【解析】连接AD,根据矩形的性质可知:EF=AD,当AD最小时,则EF最小,根据垂线段最短可知当EF⊥AD时,则EF最小,再根据三角形的面积为定值即可求出EF的长.解:∵Rt△ABC中,∠A=90°,AC=8,BA=6,∴BC=10,连接AD,∵DE⊥AB,DF⊥AC,∴四边形EAFD是矩形,∴EF=AD,当AD最小时,则EF最小,根据垂线段最短可知当AD⊥BC时,则AD最小,∴EF=AD==.讲解用时:4分钟解题思路:本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求FE的最小值转化为其相等线段AD的最小值.教学建议:熟练掌握矩形的性质和判定并灵活应用.难度:3 适应场景:当堂练习例题来源:萧山区月考年份:2016【例题5】如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于°.【答案】60【解析】由直角三角形的性质知,中线CE=AE=BE,所以∠EAC=∠ECA,∠B=∠BCE,由三角形内角和即可求得.解:由直角三角形性质知,∵E为AB之中点,∴CE=AE=BE,(直角三角形斜边上的中线等于斜边的一半)∴∠B=∠BCE=20°,∠EAC=∠ECA=70°,∴∠ACF=70°,又∵AD=DB,∴∠B=∠BAD=20°,∴∠FAC=50°,∴在△ACF中,∠AFC=180°﹣70°﹣50°=60°,∴∠DFE=∠AFC=60°.故答案为60讲解用时:3分钟解题思路:本题考查了直角三角形的性质,是基础题.教学建议:熟练掌握直角三角形的性质并灵活应用.难度:3 适应场景:当堂例题例题来源:鼓楼区一模年份:2013【练习5.1】如图,在△ABC中,AB=AC=8,AD是底边上的高,E为AC中点,则DE= .【答案】4【解析】由题意知,△ABC是等腰三角形,所以,D是BC边上的高和中线,即D是边BC的中点;由于△ADC是直角三角形,E为AC中点,所以DE=.解:在△ABC中,AB=AC=8,∴△ABC中是等腰三角形,又∵AD是底边上的高,∴AD⊥BC,∴在△ADC中,∠ADC=90°,∵E为AC中点,∴DE===4,∴DE=4.讲解用时:3分钟解题思路:本题综合考查了直角三角形的性质与判定,以及等腰三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半;在一个三角形中,只要有两个边相等,那么这个三角形就是等腰三角形.教学建议:熟练掌握直角三角形的性质以及等腰三角形的性质.难度: 3 适应场景:当堂练习例题来源:益阳年份:2012【例题6】如图,△ABC中,BC=18,若BD⊥AC于D,CE⊥AB于E,F、G分别为BC、DE的中点,若ED=10,则FG的长为.【答案】2【解析】先利用直角三角形中,斜边上的中线等于斜边的一半,求得△EFD为等腰三角形,再利用等腰三角形边上的三线合一,即可求证FG⊥DE,再利用勾股定理可求出FG的长度.解:连接EF,DF,∵BD、CE是△ABC的高,F是BC的中点,∴在Rt△CEB中,EF=,在Rt△BDC中,FD=,∴FE=FD=9,即△EFD为等腰三角形,又∵G是ED的中点,∴FG是等腰三角形EFD的中线,EG=DG=5,∴FG⊥DE(等腰三角形边上的三线合一),在Rt△GDF中,FG===2.故答案为:2.讲解用时:3分钟解题思路:此题主要考查了直角三角形的性质:斜边上的中线等于斜边的一半,求得△EFD为等腰三角形,再根据等腰三角形边上的三线合一的性质来证明此题的△EFD为等腰三角形,这是证明此题的关键.教学建议:熟练掌握直角三角形的性质以及等腰三角形三线合一的性质.难度: 4 适应场景:当堂例题例题来源:海淀区校级期中年份:2010【练习6.1】已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.【答案】(1)四边形ADCF是平行四边形;(2)AB=AC【解析】(1)根据平行四边形的判定定理得出即可;(2)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.(1)证明:∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形;(2)解:当AB=AC时,四边形ADCF为矩形,理由是:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.∵AB=AC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形,即当AB=AC时,四边形ADCF为矩形.讲解用时:3分钟解题思路:此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用,熟记特殊平行四边形的判定方法是解题的关键.教学建议:全面掌握矩形的判定、等腰三角形的性质以及全等三角形的判定和性质.难度: 4 适应场景:当堂练习例题来源:杭州期末年份:2015【例题7】如图甲,李叔叔想要检测雕塑底座正面四边形ABCD是否为矩形,但他随身只带了有刻度的卷尺,请你设计一种方案,帮助李叔叔检测四边形ABCD是否为矩形(图乙供设计备用).【答案】(1)当AB=CD,且AD=BC时,四边形ABCD为平行四边形;否则四边形ABCD不是平行四边形,从而不是矩形;(2)当AC=BD时,四边形ABCD是矩形;否则四边形ABCD不是矩形.【解析】由矩形的判定定理:先测量四边形ABCD是否为平行四边形即两组对边是否分别相等,再测量对角线是否相等.解:方案如下:(1)用卷尺分别比较AB与CD,AD与BC的长度,当AB=CD,且AD=BC时,四边形ABCD为平行四边形;否则四边形ABCD不是平行四边形,从而不是矩形.(2)当四边形ABCD是平行四边形时,用卷尺比较对角线AC与BD的长度.当AC=BD时,四边形ABCD是矩形;否则四边形ABCD不是矩形.讲解用时:3分钟解题思路:本题涉及矩形的判定定理,且涉及实际问题,难度适中.教学建议:掌握矩形的判定并灵活运用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习7.1】已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A 作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.【答案】(1)AF=CE;(2)矩形【解析】(1)可通过全等三角形来证明简单的线段相等.△ADF和△CDE中,已知了AD=CD,∠ADF=∠CDE,AF∥BE,因此不难得出两三角形全等,进而可得出AF=CE.(2)需先证明四边形AFCE是平行四边形,那么对角线相等的平行四边形是矩形.(1)证明:在△ADF和△CDE中,∵AF∥BE,∴∠FAD=∠ECD.又∵D是AC的中点,∴AD=CD.∵∠ADF=∠CDE,∴△ADF≌△CDE.∴AF=CE.(2)解:若AC=EF,则四边形AFCE是矩形.证明:由(1)知:AF=CE,AF∥CE,∴四边形AFCE是平行四边形.又∵AC=EF,∴平行四边形AFCE是矩形.讲解用时:3分钟解题思路:两条线段在不同的三角形中要证明相等时,通常是利用全等来进行证明.教学建议:掌握矩形的判定并灵活运用.难度: 4 适应场景:当堂练习例题来源:成都年份:2006【练习7.2】如图,四边形ABCD是由一个锐角为30°的直角△ABC与一个等腰直角△ACD拼成,E为斜边AC的中点.(1)判断线段BE、DE的大小,并说明理由(2)求∠BDE的大小.【答案】(1)BE=DE;(2)15°【解析】(1)根据直角三角形斜边上的中线等于斜边的一半可得BE=DE=AC;(2)求出∠BED的度数,再根据等腰三角形两底角相等列式计算即可得解.解:(1)∵E为斜边AC的中点,∴BE=DE=AC,∴BE=DE;(2)由题意得,∠BAC=90°﹣30°=60°,所以,∠AEB=∠BAC=60°,∠AED=90°,所以,∠BED=60°+90°=150°,所以,∠BDE=×(180°﹣150°)=15°.讲解用时:3分钟解题思路:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰直角三角形的性质,等腰三角形的性质,熟记各性质是解题的关键.教学建议:熟练掌握直角三角形斜边上的中线等于斜边的一半.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD【答案】D【解析】由四边形ABCD的对角线互相平分,可得四边形ABCD是平行四边形,再添加AC=BD,可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形.解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:D.难度: 3 适应场景:练习题例题来源:昆山市二模年份:2016【作业2】直角三角形斜边上的中线长为5cm,则斜边长为cm.【答案】10【解析】根据直角三角形的性质直接求解.解:∵直角三角形中斜边上的中线等于斜边的一半,∴斜边长=2×5=10cm.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB于点D,交AC 于点E.(1)若BC=3,AC=4,求CD的长;(2)求证:∠1=∠2.【答案】(1)2.5;(2)∠1=∠2【解析】(1)由勾股定理求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答即可;(2)由直角三角形的锐角关系和等腰三角形的性质即可得出结论.(1)解:∵∠ACB=90°,BC=3,AC=4,∴AB==5,∵CD是AB边上的中线,∴CD=AB=2.5;(2)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵DE⊥AB,∴∠A+∠1=90°,∴∠B=∠1,∵CD是AB边上的中线,∴BD=CD,∴∠B=∠2,∴∠1=∠2.讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018【作业4】如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1cm的速度沿射线AC移动,点Q从点C出发以每秒1cm的速度沿射线CA移动.(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.【答案】(1)7;(2)2√14【解析】(1)由四边形ABCD是平行四边形,AC=6,得到CP=AQ=1,PQ=BD=8,由OB=DO,OQ=OP,证得四边形BPDQ为平形四边形,根据对角线相等,证得四边形BPDQ为矩形;(2)根据直角三角形的性质、勾股定理求得结论.解:(1)当时间t=7秒时,四边形BPDQ为矩形.理由如下:当t=7秒时,PA=QC=7,∵AC=6,∴CP=AQ=1∴PQ=BD=8∵四边形ABCD为平行四边形,BD=8∴AO=CO=3∴BO=DO=4∴OQ=OP=4∴四边形BPDQ为平形四边形,∵PQ=BD=8∴四边形BPDQ为矩形,(2)由(1)得BO=4,CQ=7,∵BC⊥AC∴∠BCA=90°BC2+CQ2=BQ2∴BQ=.讲解用时:4分钟难度: 4 适应场景:练习题例题来源:无年份:2018。

京版八年级数学下册15.4矩形的性质优秀教学案例

京版八年级数学下册15.4矩形的性质优秀教学案例
2.引导学生运用逻辑推理和几何画板等工具,探究矩形的性质,培养学生的探究能力。
3.设计具有挑战性的练习题,让学生在解答过程中运用矩形的性质,提高学生的应用能力。
4.组织学生进行小组讨论和合作学习,培养学生的团队合作能力和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,使他们能够积极主动地参与数学学习。
(四)总结归纳
1.教师引导学生总结矩形的性质,让学生明确矩形的重要性和应用范围。
2.学生通过总结归纳,加深对矩形性质的理解,提高自己的思维能力。
3.教师对学生的总结进行点评和指导,帮助他们克服困难,得出正确的结论。
(五)作业小结
1.教师布置具有挑战性的作业题,让学生运用矩形的性质解决实际问题,巩固所学知识。
京版八年级数学下册15.4矩形的性质优秀教学案例
一、案例背景
矩形的性质是京版八年级数学下册15.4章节的重要内容。矩形作为基本的几何图形之一,在实际生活和工作中有着广泛的应用。本节课的主要内容包括矩形的定义、矩形的性质以及矩形在几何图形中的应用。
在教学过程中,我以提高学生的空间想象力、逻辑思维能力和实际应用能力为目标,通过设计丰富的教学活动,引导学生探究矩形的性质。在教学方法上,我采用问题驱动法、合作学习法和实例分析法,激发学生的学习兴趣,培养学生解决问题的能力。
2.问题导向的学习过程:通过设计具有挑战性的问题,如“如何判断一个四边形是矩形?”等,引导学生进行思考和探究,激发了学生的好奇心和求知欲,培养了学生的解决问题能力。
3.小组合作的学习方式:通过组织学生进行小组讨论和合作学习,培养了学生的团队合作能力和沟通能力,同时也提高了学生解决问题的效率和质量。
4.反思与评价的环节:通过引导学生进行自我反思和互评,让学生能够从不同角度了解自己的优点和需要改进的地方,同时也让教师能够及时了解学生的学习情况,调整教学策略。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
饮水机 /
主要开发IS(InterimStandards,暂定标准)系列标准,包括CDMA系列标准IS95、IS634、IS41等ANSIB.TIAC.IEEED.3GPP2 异物时入呼吸道内,立即发生_________,顿时面红耳赤,并有_________,呼吸不畅等症状。 办理仓单质押授信业务时,借款人须开立账户有。A、仓单质押授信业务保证金账户B、货物销售资金专用账户C、跌价补偿专用账户D、仓单处置所得收入专用账户 因钠过量而引起的火灾,能使用干粉灭火剂扑救.A.正确B.错误 以下关于前列腺电切(TURP)综合征的说法中,不恰当的是A.发生高血容量B.低压冲洗可减少发生C.多发生于手术时间较长时D.高钠血症E.造成水中毒 哪些部门参与组织制定了《医疗机构从业人员行为规范》?A.卫生部医政司、国家食品药品监督管理局B.国家中医药管理局、卫生部主管部门C.卫生部、国家食品药品监督管理局、国家中医药管理局D.卫生部医政司、国家食品药品监督管理局、国家中医药管理局 男性,68岁。反复咳嗽、咳痰20余年,痰液粘稠,咳痰不爽。近2~3年气急渐进性加重。昨起感气急、胸闷,咳嗽亦有加重,前来门诊,下列处方中哪项是不妥当的A.庆大霉素80000U,肌肉注射,每日2次B.溴己新.(必嗽平)16mg,口服,每日3次C.异丙托品气雾剂吸入D.复方甘草合剂10ml,口 记忆力障碍在脑器质性精神障碍的初期表现为A.顺行性遗忘B.错构C.瞬间记忆障碍D.近事遗忘E.远事遗忘 调查某桥钢筋焊接点100个,其中不合格的有14个,不合格率为14%,为查清甲、乙、丙三个焊工操作哪个存在主要问题,宜采用的质量分析方法是()。A.分层法B.调查表法C.排列图法D.因果分析图法 当传染病暴发流行时,可以采取停工、停业、停课等措施的是A.医疗机构B.疾病预防控制机构C.各级人民政府卫生行政部门D.卫生监督机构E.各级人民政府 [多选,案例分析题]患者男,75岁。因“肺部感染”来诊。住院治疗6天仍无明显好转,夜间突发氧饱和度快速下降,进而出现呼吸、心搏骤停,行心肺复苏抢救约10分钟后恢复自主心律,持续球囊面罩通气,送入重症监护室继续治疗。患者既往有高血压、糖尿病病史。查体:体温35.6℃,脉搏7 信息是构成的根本要素。 宫颈癌的普查时间为。A.每2年1次B.每1年1次C.每半年1次D.每1~2年1次E.有问题随时检查 是连接上下塔,使二者进行热量交换的设备,对下塔是,对上塔是。 平肋缘水平属下列哪个脊髓节段支配:A.C8脊髓节段B.T2脊髓节段C.T4脊髓节段D.T6脊髓节段E.T8脊髓节段 有机磷酸酯类引起的急性中毒表现为A.腺体分泌减少、胃肠平滑肌兴奋B.膀胱逼尿肌松弛、呼吸肌麻痹C.支气管平滑肌松弛、唾液腺分泌增加D.胆碱能神经兴奋、心血管作用复杂E.脑内乙酰胆碱水平下降、瞳孔扩大 牙挺的工作原理包括、和。 以下不是普通感冒主要特点的是A.起病较急,病程短B.常有高热,全身症状明显C.常见病原体为鼻病毒、冠状病毒D.可出现流泪,呼吸不畅,声嘶E.血白细胞正常或偏低 我国地方性碘缺乏病的流行特征是A.城市少于乡村,内陆少于沿海,山区少于平原B.成年男性高于女性C.生育期妇女和青少年为高发人群D.愈是病情严重的地区,甲状腺肿发病的年龄愈晚E.重病区患病率性别差异较大 不正确的病案书写是()A.记录要及时、准确、真实、完善B.内容简明扼要C.字迹清楚端正,不得涂改D.用红蓝钢笔书写,记录要有签名E.可用中英文参插叙述 对于专利侵权而言,侵权行为人承担的主要责任是A.行政责任B.民事责任C.刑事责任D.民事责任和刑事责任 [单选,共用题干题]女,33岁,3年前普查时发现子宫肌瘤,无月经症状,定期检查肌瘤无明显增大,未避孕。今因停经45天就诊首选的辅助检查方法是。A.盆腔B超B.血HCG测定C.诊刮术D.黄体酮试验E.宫腔镜检查 属于神经反射的是A.面部表情、有无异常行为等B.握持C.颈抵抗D.克氏征、四肢肌张力E.精神状态、拥抱反射 穿透力极强,可用于密封和整箱已包装的物品灭菌的是A.热压灭菌法B.干热空气灭菌法C.紫外灭菌法D.辐射灭菌法E.环氧乙烷灭菌法 在我国古建筑中,逐渐失去唐代豪劲、朴实的典型风格而趋于秀丽,以秀取胜出现在阶段。A.夏商到秦汉时期(公元前2000年至公元200年,约2200年)B.从三国两晋南北朝到隋唐五代(公元200年至公元1000年,约800年)C.丛宋辽到金元时期(公元960年至1400年,约400年)D.明清时期(公元 关于急性化脓性腹膜炎手术指征的叙述中错误的是A.无论原发性腹膜炎或继发性腹膜炎,一经确诊均应行手术治疗B.经非手术治疗12小时症状、体征加重C.中毒症状明显,伴有休克表现D.继发于急性出血坏死性胰腺炎的弥漫性腹膜炎E.弥漫性腹膜炎无局限趋势 关于臀位剖宫产术,何项正确A.宫口开全,脐带脱出B.中骨盆轻度狭窄C.估计胎儿体重为3000gD.宫口未开全,胎足脱出E.第一产程宫缩乏力 一名儿童患低热、阵发性痉挛性咳嗽,偶有特殊的“鸡鸣”样吼声。患者鼻咽分泌物涂片镜检可见革兰阴性短小杆菌,咳痰涂片荧光抗体染色镜检亦可见病原菌。此病原菌可初步判断为A.百日咳杆菌感染B.普通感冒C.肺炎链球菌感染D.葡萄球菌感染E.肺门淋巴结结核 人体内具分化能力的最早的造血细胞是A.T淋巴系祖细胞B.红系祖细胞C.粒系祖细胞D.造血干细胞E.巨核系祖细胞 假定KM不变,则少量装卸货物后船舶的GM将。A.增加B.减小C.不变D.变化趋势不定 便秘概述。 什么叫燃烧、自燃和自燃点? 在纵隔九分区法中,作为中后纵隔分界的是A.气管后壁B.心后壁C.食管前壁D.食管后壁E.降主动脉前壁 颈椎病可出现肌肉性疼痛,主要是由于A.运动神经根受压引起B.感觉神经根受压引起C.腋神经受压引起D.肌肉炎性损伤所致E.是一种自发性疼痛 路政管理
相关文档
最新文档