九年级数学上册 2 矩形的性质与判定

合集下载

九年级数学上册教案矩形的性质与判定

九年级数学上册教案矩形的性质与判定

2. 矩形的性质与判定(二)一、学生知识状况分析学生在初二平行四边形一章中,已经认识了三种特殊平行四边形矩形、菱形和正方形,同时,通过平行四边形和菱形的学习,进行了对平行四边形和菱形性质和判定的证明,学生已经有了一定的推理论证能力,掌握了独立证明特殊平行四边形性质及判定定理的基本技能;在相关知识的学习中,学生已经经历了大量的证明活动,特别是平行四边形的相关证明推理,学生已经逐渐体会到了证明的必要性和证明在解决实际问题时的作用,从而初步具备了证明特殊平行四边形性质和判定定理的能力;同时,在前面的相关活动中,学生已经初步了解了归纳、概括及转化等数学思想方法,大量的活动经验丰富了学生的数学思想,锻炼了学生的能力,使学生具备了在解题中合理运用方法的能力。

二、教学任务分析课本基于目前学生的知识和能力水平,对本课内容提出了具体的学习任务:进一步发展推理论证能力,运用综合法证明矩形的性质和判定定理,进一步体会证明的必要性和作用,体会归纳等数学思想方法。

对于本节课的知识,教科书提出的学习任务,重点集中在了学生的能力培养上,在教学时,我们应该把目标上升一个层次,从关注学生是否能证明这些定理提高到关注学生如何找到解题思路,从关注学生是否能顺利证明提高到关注学生是否合理严密的使用数学语言严格证明,从关注学生合作解题提高到让每一个学生都能独立完成证明的过程。

能力培养不仅是本节课教学过程中的近期目标,更是为今后学生学习数学知识打下基础的远景目标,能力的培养也必然带动学生情感态度目标的达成。

同时,在教学中,还必须注意对不同层次的学生制定不同的教学任务,做到让每一个学生都能在课堂上有所收获。

为此,本节课我们要达到的具体教学目标为:1.能够运用综合法和严密的数学语言证明矩形的性质和判定定理以及其他相关结论;2.经历探索、猜测、证明的过程,发展学生的推理论证能力,培养学生找到解题思路的能力,使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用;3.学生通过对比前面所学知识,体会证明过程中所运用的归纳、概括以及转化等数学思想方法;4.通过学生独立完成证明的过程,让学生体会数学是严谨的科学,增强学生对待科学的严谨治学态度,从而养成良好的习惯。

九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版

九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版

九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版九年级数学上册1.2矩形的性质与判定(第1课时)教案(新版)北师大版矩形的性质及判定教学目标(1)掌握矩形的定义,理解矩形与平行四边形的关系。

(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)初步运用矩形的定义和性质解决相关问题,进一步培养学生的分析能力和教学重点矩形性质定理的证明及应用教学难点“直角三角形斜边的中线等于斜边的一半”的推导及性质定理应用的教学过程:一、创设情境,引入新课老师:展示教具(平行四边形)并演示将平行四边形转化为菱形的过程当我们给平行四边形其他特殊条件时,我们会得到其他形状吗?例如,如果平行四边形的内角变成90度,你会发现什么特殊形状?学生:长方形师:原来是大家非常熟悉的图形,他还有个高大上的名字――矩形.板书课题老师:根据前面学习的菱形和平行四边形的过程,你想了解矩形的哪些方面?学生:矩形的定义:矩形的本质生:矩形边、角、对角线的特征.生:矩形的判定.生:……二、目标展示师:出示学习目标.生:默读学习目标.三、自主学习1.自主探究老师:根据以下自学指导,自学课本第11至12页讨论前的内容。

1.定义:有些被称为矩形12.矩形是平行四边形吗?3、如图,四边形abcd是矩形,试从它的边,角,对角线,对称性上写出性质.(小组讨论)侧面:角度:对角线:对称性:4、先写出特有的性质,然后独立思考证明过程,再与课本上的证明相比较.矩形特有的性质是:..处理方法:学生将自学与小组合作相结合,通过自学、猜想和推理三个步骤掌握矩形的性质,在小组学习过程中提问,其他学生讨论并回答【设计意图】本环节知识较为简单,有前面菱形性质的研究经验,又有比较坚实的三角形全等的知识基础,此处自学应该没有障碍,因此,为培养学生的自主学习能力及增大课堂容量,将此处设计为自主学习.定义:直角平行四边形是一个矩形。

矩形的四个角是直角。

1.2矩形的性质与判定+课件+2023-2024学年北师大版数学九年级上册

1.2矩形的性质与判定+课件+2023-2024学年北师大版数学九年级上册
B.AC=BD
C.AD=AB
D.∠BAD=∠ADC
2.如图,BO是Rt△ABC斜边上的中线,延长BO到点D,使DO=BO,
连接AD,CD.四边形ABCD是矩形吗?请说明理由.
解:四边形ABCD是矩形.理由如下:
∵BO是Rt△ABC斜边上的中线,
∴OA=OC=OB=OD.
∴四边形ABCD是平行四边形,且AC=BD.
∴DE∥AC,DF∥AB.
∴四边形AEDF是平行四边形.
又∠A=90°,
∴四边形AEDF是矩形.
典例3
如图,在□ ABCD是矩形ABCD中,∠ACB=90°,过点D作
DE⊥BC交BC的延长线于点E.求证:四边形ACED是矩形.
证明:∵四边形ABCD为平行四边形,
∴AD∥BC.
∴∠DAC=∠ACB=90°.
不一定成立的是( C )
A.AB∥CD
B.AC=BD
C.AC⊥BD
D.OA=OC
变式1
矩形具有而平行四边形不一定具有的性质是( C )
A.对角相等
B.对边相等
C.对角线相等
D.对角线互相平分
典例2
如图,在矩形ABCD中,E是CD边的中点.求证:AE=BE.
证明:∵四边形ABCD是矩形,
∴AD=BC,∠D=∠C=90°.




∴∠ABD= ∠ABC,∠ABE= ∠ABP.
∵∠ABC+∠ABP=180°,

∴∠ABD+∠ABE= ×180°=90°,

即∠DBE=90°.
∵AE⊥BE,AD⊥BD,
∴∠E=∠D=90°.
∴四边形AEBD是矩形.
1.如图,四边形ABCD的对角线AC与BD相交于点O,下列条件中,能

北师版九年级数学上册第1章2矩形的性质与判定

北师版九年级数学上册第1章2矩形的性质与判定


性 是中心对称图形,对称中心是对角线
的交点
矩形的任意一条对角线都把矩形分成两个全等的直角三角形,
如Rt △ ADB ≌Rt△CBD,Rt△ ABC ≌Rt △ CDA.
2.矩形的两条对角线把矩形分成四个面积相等的等腰三角形,
并且相对的两个等腰三角形全等,如S△ AOB=S △ AOD=
解题秘方:紧扣矩形定义的“两个条件”进行证明.
解题通法:根据矩形的定义判定矩形的方法
知1-练
知1-练
证明:∵ O 为AB 的中点,∴ OB=OA. 又∵ OE=OD,∴四边形AEBD 是平行四边形. ∵ AB=AC,AD 是△ABC 的角平分线,∴ AD⊥ BC. ∴∠ ADB=90°. ∴四边形AEBD 是矩形.
AB∥CD,AD∥BC AB=CD,AD=BC

矩形的四个 角都是直角
∵四边形ABCD 是矩形, ∴∠ DAB= ∠ DCB= ∠ ADC=∠ ABC =90°
知2-讲
图形
性质
数学表达式
对 角 线
矩形的对角 ∵四边形ABCD 是矩形,
线相等
∴ AC=BD

是轴对称图形,它有两条对称轴,过 每组对边中点的直线是其对称轴
第一章 特殊平行四边形
2 矩形的性质与判定
1 课时讲解 矩形的定义
矩形的性质 直角三角形斜边上中线的性质
2 课时流程 矩形的判定
逐点 导讲练
课堂 小结
作业 提升
知识点 1 矩形的定义
定义
有一个角是 直角的平行 四边形叫做
矩形
图示
知1-讲
数学表达式 ∵在ABCD 中,∠ A=90°(或∠ B=90° 或∠ C=90°或∠ D=90°),∴ ABCD 是 矩形

矩形的性质与判定第2课时课件北师大版九年级数学上册

矩形的性质与判定第2课时课件北师大版九年级数学上册

6. 如图,在平行四边形 ABCD 中,过点 D 作 DE ⊥ AB 于点 E ,点 F 在
CD 边上, CF = AE ,连接 AF , BF .
(1)求证:四边形 BFDE 是矩形;
(1)证明:∵四边形 ABCD 是平行四边形,
∴ DF ∥ EB , AB = CD .
又∵ CF = AE ,∴ DF = BE . ∴四边形 BFDE 是平行四边形.
已知:如图2,四边形ABCD是平行四边形,AC=DB.
A
求证:四边形ABCD是矩形.
B
图2
D
C
探究新知
证明:∵ 四边形ABCD是平行四边形,
∴ AB=DC,AB∥DC.
又∵ BC=CB,AC=DB,
A
D
∴ △ABC≌△DCB .∴∠ABC=∠DCB .
∵ AB∥DC,∴∠ABC+∠DCB=180°.B
第4题图
1
2
3
4
5
6
10
.

第2课时
矩形的判定
知识梳理
课时学业质量评价
5. 如图,在▱ ABCD 中,下列条件① AC = BD ;②∠1+∠3=90°;③

OB = AC

;④∠1=∠2,其中能判断▱ ABCD 是矩形的有 ①②③④
第5题图
1
2
3
4
5
6
.
第2课时
矩形的判定
知识梳理
课时学业质量评价
形,若 AC =8 cm,则 BC 的长为(
D
)cm.
第3题图
A. 4
B.
C. 2
1
2
3
D. 4
4

2_矩形的性质与判定_第1课时_教案1

2_矩形的性质与判定_第1课时_教案1

第一章特别平行四边形2.矩形的性质与判断(一)一、学生知识状况剖析学生的知识技术基础:矩形的性质一课,是在学生掌握了三角形全等的证明、平行四边形的性质和判断,菱形的性质和判断以及具备了基本的推理能力的基础上安排的,是学习正方形的基础,学完本节课后,学生应掌握矩形的性质,会应用性质进行推理解题。

学生的活动经验基础:本节是九年级的第一章第二节的内容,这个年纪段的学生已经具备自主研究和合作学习的能力,他们喜爱着手,喜爱思虑一些有挑战性的问题,喜爱向他人展现自己的成就。

部分学生对学习数学有较强的兴趣,拥有必定的研究数学识题的能力和数学活动的经验,逻辑推理能力较强。

但大多数学生要把解题的整个过程表述完好、清楚比较困难。

二、教课任务剖析《矩形的性质与判断》一课属于初中平面几何要点知识。

本节是在学习了平行四边形的性质与判断以及菱形的基础上,在掌握了证明平行四边形有关内容及特别平行四边形的一般研究方法以后学习的,它既是平行四边形的延长,又为后边正方形的学习供给知识、方法的支持,为进一步研究其余图形确立基础。

依照新课标要求,《矩形的性质》不可以只逗留在知识教课上,而是要把经历研究图形的基天性质的过程,发展学生的基本的推理技术放在首要地点。

矩形是的平行四边形中的一种特别图形,在生活中有着宽泛的应用,所以课本好多地方以图片形式体现了矩形的“原型”,旨在唤起学生的生活经验,促使数学学习。

所以本节课的教课目的是:1.知识与技术 :(1)掌握矩形的的定义,理解矩形与平行四边形的关系。

(2)理解并掌握矩形的性质定理 ; 会用矩形的性质定理进行推导证明 ;(3)会初步运用矩形的定义、性质来解决有关问题,进一步培育学生的剖析能力.2.过程与方法:(1)经历研究矩形的看法和性质的过程,发展学生合情推理的意识;(2)经过灵巧运用矩形的性质解决有关问题,掌握几何思想方法,并浸透运动联系、从量变到质变的看法.3.感情态度与价值观:(1)在察看、丈量、猜想、归纳、推理的过程中,体验数学活动充满研究性和创建性,感觉证明的必需性,培育谨慎的推理能力,领会逻辑推理的思想价值。

北师大版九年级数学上册1.2.2矩形的性质与判定优秀教学案例

北师大版九年级数学上册1.2.2矩形的性质与判定优秀教学案例
3.小组合作:我组织学生进行小组合作,让他们共同探讨矩形的性质和判定方法。这种小组合作的学习方式不仅能够培养学生的团队合作和沟通能力,还能够促进他们之间的互相学习和共同进步。
4.反思与评价:在课堂的最后阶段,我组织学生进行反思,让他们回顾本节课所学的矩形的性质和判定方法,巩固知识。同时,我设计相关的练习题目,让学生进行实践操作,检验他们对矩形性质和判定方法的掌握程度。这种反思与评价的教学策略能够培养学生的自我评估和自我改进能力,提高他们的学习效果。
北师大版九年级数学上册1.2.2矩形的性质与判定优秀教学案例
一、案例背景
本节课的教学内容是北师大版九年级数学上册1.2.2矩形的性质与判定。矩形是初中数学中的重要几何图形之一,它具有独特的性质和判定方法。在本节课中,学生需要掌握矩形的性质,包括对角线相等、四个角都是直角等,同时还需要学习如何判定一个四边形是矩形。
在教学过程中,我以实际生活中的情境为导入,让学生观察教室的黑板,发现黑板是一个矩形。通过这个实例,让学生初步感知矩形的性质,并激发他们对本节课的学习兴趣。接着,我引导学生通过小组合作、讨论交流的方式,探索矩形的性质和判定方法。在学生掌握矩形的性质后,我组织学生进行实践操作,让他们运用所学知识解决实际问题,如测量教室的长和宽等。
(四)反思与评价
1.在课堂的最后阶段,组织学生进行反思,让他们回顾本节课所学的矩形的性质和判定方法,巩固知识。
2.设计相关的练习题目,让学生进行实践操作,检验他们对矩形性质和判定方法的掌握程度。
3.教师对学生的学习情况进行评价,及时给予肯定和鼓励,提高他们的学习积极性和自信心。
作为一名特级教师,我深知教学策略的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学策略,以激发学生的学习兴趣,培养他们的几何思维和问题解决能力,提高他们的学习效果。同时,我还会注重学生的情感态度与价值观的培养,让他们在愉快的氛围中学习和成长。

北师大版九年级(上)数学第2讲:矩形的性质与判定(教师版)——王琪

北师大版九年级(上)数学第2讲:矩形的性质与判定(教师版)——王琪

矩形的性质与判定一、矩形的定义有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.二、矩形的性质①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).三、矩形的判定①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等四、矩形判定解题思路①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.五、矩形的面积设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.1.如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()A.1个B.2个C.3个D.4个解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OD=OB,AC=BD,∴OA=OD=OC=OB,∵AE平分∠BAD,∴∠DAE=45°,∵∠CAE=15°,∴∠DAC=30°,∵OA=OD,∴∠ODA=∠DAC=30°,∴∠DOC=60°,∵OD=OC,∴△ODC是等边三角形,∴①正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°∴∠DAC=∠ACB=30°,∴AC=2AB,∵AC>BC,∴2AB>BC,∴②错误;∵AD∥BC,∴∠DBC=∠ADB=30°,∵AE平分∠DAB,∠DAB=90°,∴∠DAE=∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∵四边形ABCD是矩形,∴∠DOC=60°,DC=AB,∵△DOC是等边三角形,∴DC=OD,∴BE=BO,∴∠BOE=∠BEO=(180°﹣∠OBE)=75°,∵∠AOB=∠DOC=60°,∴∠AOE=60°+75°=135°,∴③正确;∵OA=OC,∴根据等底等高的三角形面积相等得出S△AOE=S COE,∴④正确;故选C.2.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED,正确的个数是()A.1 B.2 C.3 D.4解:∵∠AFC=135°,CF与AH不垂直,∴点F不是AH的中点,即AF≠FH,∴①错误;∵四边形ABCD是矩形,∴∠BAD=90°,∵AD=,AB=1,∴tan∠ADB==,∴∠ADB=30°,∴∠ABO=60°,∵四边形ABCD是矩形,∴AD∥BC,AC=BD,AC=2AO,BD=2BO,∴AO=BO,∴△ABO是等边三角形,∴AB=BO,∠AOB=∠BAO=60°=∠COE,∵AF平分∠BAD,∴∠BAF=∠DAF=45°,∵AD∥BC,∴∠DAF=∠AFB,∴∠BAF=∠AFB,∴AB=BF,∵AB=BO,∴BF=BO,∴②正确;∵∠BAO=60°,∠BAF=45°,∴∠CAH=15°,∵CE⊥BD,∴∠CEO=90°,∵∠EOC=60°,∴∠ECO=30°,∴∠H=∠ECO﹣∠CAH=30°﹣15°=15°=∠CAH,∴AC=CH,∴③正确;∵△AOB是等边三角形,∴AO=OB=AB,∵四边形ABCD是矩形,∴OA=OC,OB=OD,AB=CD,∴DC=OC=OD,∵CE⊥BD,∴DE=EO=DO=BD,即BE=3ED,∴④正确;即正确的有3个,故选C.3.在△ABC中,点D、E、F分别在BC、AB、CA上,且DE∥CA,DF∥BA,则下列三种说法:①如果∠BAC=90°,那么四边形AEDF是矩形②如果AD平分∠BAC,那么四边形AEDF是菱形③如果AD⊥BC且AB=AC,那么四边形AEDF是菱形其中正确的有()A.3个B.2个C.1个D.0个解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形;∵∠BAC=90°,∴四边形AEDF是矩形;∵AD平分∠BAC,∴∠EAD=∠FAD,∴∠FAD=∠ADF,∴AF=DF,∴四边形AEDF是菱形;∵AD⊥BC且AB=AC,∴AD平分∠BAC,∴四边形AEDF是菱形;故①②③正确.故选A.4.下列命题中,真命题是()A.对角线互相平分且相等的四边形是矩形B.对角线互相垂直且相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相垂直且相等的四边形是菱形解:A、对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;正确;即可得C 错误;B、D、对角线互相垂直且相等的四边形可能是如图:所以错误;故选:A.5.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2 B.2.2 C.2.4 D.2.5解:连接AP,∵∠A=90°,PE⊥AB,PF⊥AC,∴∠A=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选C.6.如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线于点E,若∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.2 B.2 C.3 D.3解:连接CF,如图所示:∵DE是AC的中垂线,∴AF=CF,∠CDE=90°,∴∠ACF=∠A=30°,∴∠CFB=∠A+∠ACF=60°,∵AF=BF,∴CF=BF,∴△BCF是等边三角形,∴CF=BC=2,∠BCF=60°,∴CD=CF•cos30°=,∠BCD=60°+30°=90°,∵BE⊥DF,∴∠E=90°,∴四边形BCDE是矩形,∴四边形BCDE的面积=BC•CD=2×=2;故选:A.7.在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21° C.23° D.24°解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°;故选:C.8.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5 B.4 C.D.解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴DC=6,∵AD=BC=10,∴AC==2,∴BO=AC=,故选D.9.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.11.下列关于菱形、矩形的说法正确的是()A.菱形的对角线相等且互相平分B.矩形的对角线相等且互相平分C.对角线互相垂直的四边形是菱形D.对角线相等的四边形是矩形解:A、错误.菱形的对角线互相垂直平分.B、正确.矩形的对角线相等且互相平分.C、错误.对角线互相垂直的四边形不一定是菱形.D、错误.对角线相等的四边形不一定是矩形.故选B.12.下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线相等且互相平分D.矩形的对角线互相垂直且平分解:A、对角线相等的四边形是矩形,不正确;B、对角线互相平分的四边形是矩形,不正确;C、矩形的对角线相等且互相平分,正确;D、矩形的对角线互相垂直且平分,不正确;故选:C.13.已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.证明:∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC.∴∠AFE=∠C=90°.∵AD=DE.∴△ADF≌△DEC.∴AF=DC.∵DC=AB.∴AF=AB.14.在矩形ABCD中,点E,点F为对角线BD上两点,DE=EF=FB.(1)求证:四边形AFCE是平行四边形;(2)若AE⊥BD,AF=2,AB=4,求BF的长度.(1)证明:连接AC,交BD于O,如图所示:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OB=OD,∵DE=FB,∴OE=OF,∴四边形AFCE是平行四边形;(2)解:∵DE=EF=BF,AE⊥BD,∴AD=AF=2,∴BD===2,∴BF=BD=.15.已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.证明:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形(有两组对边分别平行的四边形是平行四边形),∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形(有一个角是直角的平行四边形是矩形).16.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.18.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.(1)证明:∵点O是AC中点,∴AO=OC,∵OE=OD,∴四边形ADCE是平行四边形,∵AD是等腰△ABC底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===15,∴四边形ADCE的面积是AD×DC=15×8=120.19.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则 DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.20.如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.21.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD 的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.22.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).23.如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?解:根据题意得:CQ=2t,AP=4t,则BP=24﹣4t,∵四边形ABCD是矩形,∴∠B=∠C=90°,CD∥AB,∴只有CQ=BP时,四边形QPBC是矩形,即2t=24﹣4t,解得:t=4,答:当t=4s时,四边形QPBC是矩形.24.在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AD=DF,求证:AF平分∠BAD.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,即BE∥DF,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)由(1)可知AB∥CD,∴∠BAF=∠AFD,∵AD=DF,∴∠DAF=∠AFD,∴∠BAF=∠DAF,即AF平分∠BAD.基础演练1.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC解:∵四边形ABCD是矩形,∴AB∥DC,AC=BD,OA=OC,不能推出AC⊥BD,∴选项A、B、D正确,选项C错误;故选C.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等 B.对边相等C.对角线相等D.对角线互相平分解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:D.4.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是一个学习小组拟定的方案,其中正确的是()A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量对角线是否相等 D.测量其中三个角是否都为直角解:A、对角线是否相互平分,能判定平行四边形;B、两组对边是否分别相等,能判定平行四边形;C、对角线相等的四边形不一定是矩形,不能判定形状;D、其中四边形中三个角都为直角,能判定矩形.故选D.5.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF 中点,则AM的最小值为()A.B.C.D.解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即等于,∴AM的最小值是.故选D.6.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个解:①矩形是轴对称图形,两组对边的中点的连线所在的直线是它的对称轴,故错误;②两条对角线相等的平行四边形是矩形,故错误;③有两个邻角相等的平行四边形是矩形,故错误;④两条对角线相等且互相平分的四边形是矩形;正确;⑤两条对角线互相垂直平分的四边形是菱形;故错误.故选A.7.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.5解:设FC′=x,则FD=9﹣x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故选D.8.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是()A.3cm B.6cm C.10cm D.12cm解:∵四边形ABCD是矩形,∴OA=OC=OB=OD=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3,故选A.9.已知四边形ABCD中,对角线AC与BD相交于点O,AD∥BC,下列判断中错误的是()A.如果AB=CD,AC=BD,那么四边形ABCD是矩形B.如果AB∥CD,AC=BD,那么四边形ABCD是矩形C.如果AD=BC,AC⊥BD,那么四边形ABCD是菱形D.如果OA=OC,AC⊥BD,那么四边形ABCD是菱形解:A、如果AB=CD,AC=BD,那么四边形ABCD是等腰梯形,不一定矩形;B、如果AD∥BC,AB∥CD,则四边形ABCD是平行四边形,又AC=BD,那么四边形ABCD是矩形;C、如果AD∥BC,AD=BC,则四边形ABCD是平行四边形,又AC⊥BD,那么四边形ABCD是菱形;D、如果AD∥BC,OA=OC,则四边形ABCD是平行四边形,又AC⊥BD,那么四边形ABCD是菱形;故选:A.10.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故选:B.11.下列说法中,正确的是()A.同位角相等B.矩形的对角线一定互相垂直C.对角线相等的四边形是矩形 D.四条边相等的四边形是菱形解:A、错误.应该是两直线平行,同位角相等.B、错误.应该是矩形的对角线相等且互相平分.C、错误.对角线相等的四边形不一定是平行四边形.D、正确.四条边相等的四边形是菱形.故选D.12.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P是斜边BC上一动点,PE⊥AB于E,PF⊥AC 于F,EF与AP相交于点O,则OF的最小值为()A.4.8 B.1.2 C.3.6 D.2.4解:∵四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,OE=OF,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即OF的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC.在Rt△ABC中,由勾股定理,得BC==10.∵AB=6,AC=8,∴10AP=6×8,∴AP=.∴OF=EF=故选D.巩固提高13.如图,两张宽为2(cm)的矩形纸条交叉叠放,其中重叠部分是四边形ABCD.(1)试判断四边形ABCD的形状,并说明理由;(2)若∠BAD=60°,求重叠部分的面积.解:(1)四边形ABCD是菱形.理由如下:如图,过点B作BE⊥AD与E,作BF⊥CD于F,∵两纸条为矩形纸条,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∵两纸条宽度都是2cm,∴BE=BF,∴平行四边形ABCD的面积=AD•BE=CD•BF,∴CD=AD,∴四边形ABCD是菱形;(2)∵∠BAD=60°,∴∠ABE=90°﹣∠BAD=90°﹣60°=30°,∴AE=AB,在Rt△ABE中,根据勾股定理得,AB2=AE2+BE2,即AB2=(AB)2+22,解得AB=,所以,重叠部分的面积=×2=.14.如图,矩形ABCD中AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm╱s的速度移动,点Q沿DA边从点D开始向点A以1cm╱s的速度移动,如果点P,Q同时出发,用t(s)表示移动时间(0≤t≤6).那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,说明是否与t的大小有关.解:(1)∵点P沿AB边从点A开始向点B以2cm╱s的速度移动,点Q沿DA边从点D开始向点A以1cm╱s的速度移动,∴AP=2t,AQ=AD﹣DQ=6﹣t,∵△QAP为等腰直角三角形,∴AP=AQ,∴2t=6﹣t,解得t=2,∴t=2s时,△QAP为等腰直角三角形;(2)四边形QAPC的面积=12×6﹣×12•t﹣×6•(12﹣2t)=36,所以,四边形QAPC的面积与t无关.15.已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.(1)求证:AF=DC;(2)若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论.证明:(1)∵AF∥DC,∴∠AFE=∠DCE,又∵∠AEF=∠DEC(对顶角相等),AE=DE(E为AD的中点),∴△AEF≌△DEC(AAS),∴AF=DC;(2)矩形.由(1),有AF=DC且AF∥DC,∴四边形AFDC是平行四边形,又∵AD=CF,∴AFDC是矩形(对角线相等的平行四边形是矩形).16.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形.17.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)解:如图,过点B作BH⊥AE于点H.∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠DCB=∠D=90°.∵AB=14,DE=8,∴CE=6.在Rt△ADE中,∠DAE=45°,∴∠DEA=∠DAE=45°.∴AD=DE=8.∴BC=8.在Rt△BCE中,由勾股定理得.在Rt△AHB中,∠HAB=45°,∴BH=AB•sin45°=7.∵在Rt△BHE中,∠BHE=90°,∴sin∠AEB=.18.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,又∵∠ACB=90°,∴四边形DECF是矩形,∴EF=CD.19.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.20.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC==6,∴矩形ABCD的面积=AB•BC=6×6=36.21.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD= 100 °时,四边形BECD是矩形.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案为:100.22.如图,已知E、F为平行四边形ABCD的对角线上的两点,且BE=DF,∠AEC=90°.求证:四边形AECF为矩形.证明:连接AC交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵BE=DF,∴OE=OF.∵OA=OC,∴AECF是平行四边形;∵∠AEC=90°,∴四边形AECF为矩形.23.平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴DF∥BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)∵AB∥CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD==5,∴矩形的面积为20.24.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.1.一矩形两对角线之间的夹角有一个是60°,且这角所对的边长5cm,则对角线长为()A.5cm B.10cm C.5cm D.无法确定解:如图,∵四边形ABCD是矩形,∴OA=OB,∵AC、BD的夹角∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5cm,∴AC=2OA=2×5=10cm.故选B.2.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选B.3.能够判定一个四边形是矩形的条件是()A.对角线互相平分且相等 B.对角线互相垂直平分C.对角线相等且互相垂直 D.对角线互相垂直解:A、对角线互相平分且相等的四边形是矩形,故正确;B、对角线互相垂直平分的是菱形,故错误;C、对角线相等且互相垂直的四边形不一定是矩形,故错误;D、对角线互相垂直的四边形不一定是矩形,故错误,故选A.4.若O是四边形ABCD对角线的交点且OA=OB=OC=OD,则四边形ABCD是()A.平行四边形B.矩形 C.正方形D.菱形解:∵OA=OB=OC=OD,∴四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形.故选B.5.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是()A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.4解:连接AP.∵AB=6,AC=8,BC=10,∴AB2+AC2=36+64=100,BC2=100,∴AB2+AC2=BC2,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠AEP=∠AFP=∠BAC=90°,∴四边形AEPF是矩形,∴AP=EF,∵∠BAC=90°,M为EF中点,∴AM=EF=AP,当AP⊥BC时,AP值最小,此时S△BAC=×6×8=×10×AP,AP=4.8,即AP的范围是AP≥4.8,∴2AM≥4.8,∴AM的范围是AM≥2.4(即x≥2.4).综上所述,x的取值范围是:2.4≤x<4.故选:D.6.如图,在△ABC中,AB=8,BC=6,AC=10,D为边AC上一动点,DE⊥AB于点E,DF⊥BC于点F,则EF的最小值为()A.2.4 B.3 C.4.8 D.5解:如图,连接BD.∵在△ABC中,AB=8,BC=6,AC=10,∴AB2+BC2=AC2,即∠ABC=90°.又∵DE⊥AB于点E,DF⊥BC于点F,∴四边形EDFB是矩形,∴EF=BD.∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,∴EF的最小值为4.8,故选:C.7.已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.证法一:∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF(全等三角形对应边相等);证法二:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵AE=CF,∴AD﹣AE=BC﹣CF,即ED=BF,而ED∥BF,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).8.如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.证明:∵DF⊥AE于F,∴∠DFE=90°在矩形ABCD中,∠C=90°,∴∠DFE=∠C,在矩形ABCD中,AD∥BC ∴∠ADE=∠DEC,∵AE=AD,∴∠ADE=∠AED,∴∠AED=∠DEC,∠DFE=∠C=90°,又∵DE是公共边,∴△DFE≌△DCE(AAS),∴DF=DC.9.在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.(1)证明:∵CE∥BF,∴∠CED=∠BFD,∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,∴△BDF≌△CDE(AAS);(2)四边形BFCE是矩形,证明:∵△BDF≌△CDE,∴DE=DF,∵BD=DC,∴四边形BFCE是平行四边形,∵BD=CD,DE=BC,∴BD=DC=DE,∴∠BEC=90°,∴平行四边形BFCE是矩形.10.如图,在△ABC中,AB=AC,D为BC边的中点,以AB、BD为邻边作▱ABDE,连接AD,EC.求证:四边形ADCE是矩形.证明:∵AB=AC,D为BC边的中点,∴AD⊥BC,BD=CD,∴∠ADC=90°,∵四边形ABDE是平行四边形,∴AE∥BD,AE=BD,∴AE∥CD,AE=CD,∴四边形ADCE是平行四边形,又∵∠ADC=90°,∴四边形ADCE是矩形.11.如图所示,BD,BE分别是∠ABC与它的邻补角∠ABP的平分线.AE⊥BE,AD⊥BD,E,D为垂足,求证:四边形AEBD是矩形.证明:∵BD,BE分别是∠ABC,∠ABP的平分线,∴∠ABD+∠ABE=(∠ABC+∠ABP)=90°.即∠EBD=90°.又∵AE⊥BE,AD⊥BD,∴∠AEB=∠ADB=90°,∴四边形AEBD是矩形.12.如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE∥AB.试说明:(1)AE=DC;(2)四边形ADCE为矩形.证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;(2)∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.1.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.2.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2 B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2 D.x2+62=(10﹣x)2解:如图,设折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10﹣x)2.故选D.3.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形解:A、根据邻边相等的平行四边形是菱形可以得到该结论正确;B、根据对角线互相垂直的平行四边形是菱形可以得到该选项正确;C、根据对角线相等的平行四边形是矩形可以判断该选项正确;D、不能得到一个角是直角,故错误,故选D.4.如图,要使▱ABCD成为矩形,需添加的条件是()A.AB=BC B.AO=BO C.∠1=∠2 D.AC⊥BD解:A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AO=BO,∴OA=OC=OB=OD,即AC=BD,∴平行四边形ABCD是矩形,故本选项正确;C、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,∵∠1=∠2,∴∠1=∠ACB,∴AB=BC,∴四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;故选B.5.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档