八年级数学矩形的性质
八年级数学《矩形》重点知识总结及经典例题

八年级数学《矩形》重点知识总结及经典例题学习目标1.了解矩形的概念及与平行四边形的关系.2.掌握矩形的性质及识别方法.3.能灵活地运用矩形的有关知识的计算和证明.学法指导矩形是特殊的平行四边形,平行四边形具有的性质矩形也具有,并且它还具有自己的特殊性.基础知识讲解1.矩形的概念有一个角为直角的平行四边形叫矩形.由概念可知,矩形首先是平行四边形,只是增加一个角是直角这个特殊条件.2.矩形的性质(1)具有平行四边形的一切性质.(2)矩形的四个内角是直角.(3)矩形的对角线相等且互相平分.(4)矩形即是中心对称图形又是轴对称图形.3.矩形的识别方法(1)有一个内角是直角的平行四边形是矩形.(2)对角线相等且互相平分的平行四边形为矩形.4.矩形的识别方法运用时应注意以下几点(1)用有一个内角是直角的平行四边形来判定一个四边形是否是矩形时须同时满足两个条件;一是有一个角是直角,二是平行四边形,也就是说有一个角是直角的四边形不一定是矩形,必须加上平行四边形这个条件才是矩形.(2)用“对角线相等的平行四边形是矩形”来判定一个四边形是否是矩形时也必须满足两个条件:一是对角线相等,二是平行四边形.重点难点重点:矩形的定义,性质及识别方法.难点:矩形的性质及识别方法的灵活运用.易错误区分析运用矩形的识别方法来判断四边形是否是矩形时易忽略满足的条件例1.对角线相等的四边形是矩形,这个结论正确吗?错解:这个结论正确正解:这个结论不正确分析:对角线相等的平行四边形才是矩形.典型例题例1.如图12-2-1所示:已知矩形ABCD的两条对角线AC,BD相交于O,∠AOD=120°,AB=4cm,求矩形对角线长.分析:注意到矩形的对角线相等且平分这个特性,不难求解.解∵ABCD 为矩形∴AC =BD ,且OA=21AC ,OB=21BD ,∴OA=OB , ∵∠AOD=120°,∴∠AOB=60° ∴△AOB 为等边三角形∴OB =OA =AB =4,∴BD =2OB =2×4=8cm .例2.如图12-2-2所示:□ABCD 中AC ,BD 直交于O ,EF ⊥BD 垂足为O ,EF 分别交AD ,BC 于点E ,F ,且AE=EO=21DE.求证:□ABCD 为矩形分析:观察给出的已知图象的特征,要证□ABCD 为矩形,显然只要证AC =BD 即可,若Rt △DOE 的斜边上的中线OM ,易证△AOE ≌△DOM ,∴OA =OD 问题得证.证明:取DE 的中点M ,连结OM ,∴在Rt △DOE 中,OM=21DE=DM , ∴OE=AE=21DE ,∠OME=∠OEA ∴OM =OE ,DM =AE ,∠OMD =∠OEM ,∴△OMD ≌△OEA ,∴OA=OD ,在□ABCD 中,∵OA=21AC ,OD=21BD , ∴AC =BC ∴□ABCD 为矩形.例3.已知:如图所示,E 是已知矩形ABCD 的边CB 延长线上的一点,CE =CA ,F 是AE 的中点.求证:BF ⊥FD分析:由于CE =CA ,F 是AE 的中点,若连结CF ,则CF ⊥AE .所示∠AFC =90°.所以要证BF ⊥FD ,只须再证∠CFB =∠AFD .易知,只要证△AFD ≌△BCF .证法一:连结CF .因为CE =CA ,F 是AE 中点,所以CF ⊥AE .所以∠AFD+∠DFC =90°,因为四边形ABCD 为矩形,所以AD =BC ,∠ABC =∠BAD =90°. 又∵F 是Rt △ABE 斜边BE 的中点,所以BF =AF ,所以∠FAB =∠FBA ,所以∠FAD=∠FBC .所以△FAD ≌△FBC .所以∠CFB=∠AFD ,所以∠CFB+∠DFC =90°,即BF ⊥FD .证法二:如图所示:延长BF交DA延长线于点G,连结BD.因为四边形ABCD是矩形,所以AD BC,AC=BD,所以∠AGF=∠EBF,∠GAF=∠BEF.因为F是AE的中点,所以AF=FE.所以△AGF≌△EBF所以GF=BF,AG=BE.所以GD=EC.因为CA=CE,CA=BD,所以BF⊥DF.例4.已知如图:矩形ABCD中,E为CD的中点.求证:∠EAB=∠EBA.分析:证角相等.若两角在同一个三角形中,可证三角形为等腰三角形.证明:∵四边形ABCD为矩形∴∠D=∠C=90°,AD=BC∵E为DC的中点,∴△ADE≌△BCE ∴AE=BE ∴∠EAB=∠EBA.例5.如图:已知矩形ABCD中,CF⊥BD于F,∠DAB的平分线AE与FC的延长线相交于点E,判断CA与CE的大小关系,并说明理由.分析:要判断CA与CE的大小关系,如果能证到∠EAO=∠E即可得CA=CE解:OA=CO过点A作AM⊥DB,可得AM∥EF,∠MAE=∠E∴∠DAM=∠DBA=∠OAB,∴∠MAE=∠EAO∴∠EAO=∠E ∴CE=CA创新思维例1.如图所示△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在这一边的对边上,那么符合要求的矩形可以画两个:矩形ACBD和矩形AEFB.解答问题(1)设图(2)中矩形ACBD和矩形AEFB的面积分别为S1,S2,则S1 S2.(填“>”“<”“=”)(2)如图(3)中△ABC为钝角三角形,按短文中的要求把它补成矩形,则符合要求的矩形可以画个,利用图(3)把它画出来.(3)过图(4)△ABC 是锐角三角形且三边满足BC >AC >AB ,按短文中的要求把它补成矩形,那么符合要求的矩形可以画 个,利用图(4)把它画出来. (4)在(3)中所画的矩形中,哪一个的周长最小?为什么?分析:本题主要考查矩形的性质和计算.解:(1)如图甲过点C 作CG ⊥AB 于G ,则CG=AE .∵S 1=2S △ABC =2×21×AB ·CG=AB ·CG ,S 2=AE ·AB=CG ·AB ∴S 1=S 2 (2)有2个如图乙(3)有3个如图丙(4)设矩形BCED ,ACHQ ,ABGF 的周长分别为L 1,L 2,L 3,BC =a ,AC =b ,AB =c .易知,这些矩形的面积相等,令其面积为S ,则有L 1=a a s 22+,L 2=b s 2+2b ,L 3cs 2+2c , ∵L 1-L 2=s a 2+2a-(b b s 22+)=2(a-b )ab s ab -,而ab ﹥s ,a ﹥b ∴L 1-L 2﹥0,即L 1﹥L 2.同理L 2>L 3.∴以AB 为边的矩形周长最小.例2.如图△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角线于点F.(1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?证明你的结论.分析:先证∠OCE =∠OEC 就有EO =CO ,同理有FO =CO ,即有EO =FO .当0运动到AC 的中点时,四边形AECF 对角钱互相平分.∠EcF =90°.则四边形AECF 为矩形.证明:(l )∵MN ∥BC ,∴∠1=∠3 又∵CE 为∠ACB 的角平分线,∴∠1=∠2,∴∠2=∠3,∴OE =OC ,同理可证OF =OC ,∴OE=OF(2)当O 运动到AC 的中点时,四边形AECF 为矩形,因为AO =OC ,OE =OF.解:由矩形的特征,AC =EF ,由AE ∥CF ,CE ∥AF 知BECD 是平行四边形,故AE =CF ,从而AC =FE .中考练兵1.如图所示,在矩形ABCD 中,点E ,F 分别在AB ,CD 上BF ∥DF ,若AD =12cm ,AB =7cm ,且AE :EB=5:2,则阴影部分的面积为 .分析:由已知可判断四边形EBFD 是平行四边形.由平行线之间的距离处处相等,可知BE 边上的高与AD 的长相等.因此求BE 的长是关键.本题还可运用平移的方法,将△AED沿AB方向平移,使DE与BF重合,得空白部分所组成的图形是长12cm,宽5cm的矩形,可求其面积,然后将矩形ABCD的面积,减去空白部分的面积,即可得阴影部分的面积.也可通过矩形的面积减去二个全等三角形的面积,而得出阴影部分面积。
矩形的性质与计算方法

矩形的性质与计算方法矩形是一种具有特殊性质和计算方法的几何图形,拥有广泛的应用领域和实际价值。
本文将详细介绍矩形的性质和计算方法,并探讨其在数学和实际生活中的应用。
一、矩形的性质1. 边长性质:矩形的四条边长度相等,对应边两两平行。
2. 角性质:矩形的四个角都是直角。
3. 对角线性质:矩形的对角线相等,且相互平分。
二、矩形的计算方法1. 周长计算:矩形的周长等于两条相邻边的长度之和的两倍。
即,周长C = 2 × (a + b),其中a和b分别表示相邻边的长度。
2. 面积计算:矩形的面积等于两条相邻边的长度相乘。
即,面积A = a × b,其中a和b分别表示相邻边的长度。
3. 对角线计算:矩形的对角线长度可以通过勾股定理计算。
即,对角线d = √(a² + b²),其中a和b分别表示相邻边的长度。
三、矩形的应用1. 数学领域应用:矩形是数学中的基本几何图形,它在数学的各个分支中都有重要的应用,如代数、几何、概率等。
矩形的性质和计算方法是解决各类与矩形相关问题的基础。
2. 建筑领域应用:矩形是建筑设计和施工中常见的形状,比如房屋的平面图通常是矩形。
矩形的性质和计算方法可以帮助建筑师和工程师计算房屋的面积、周长,从而更好地规划和布置建筑空间。
3. 器物设计应用:矩形形状的器物在生活中随处可见,如桌子、书架、电视等。
矩形的性质和计算方法可以帮助设计师确定正确的比例,确保产品的美观和功能性。
4. 地理测量应用:矩形的性质和计算方法在地理测量中也有重要应用,如测算土地面积、建筑用地面积等。
通过测量边长和角度,可以精确计算各类地理空间和物体的尺寸和形状。
结语:矩形作为一种特殊的几何图形,具有独特的性质和重要的计算方法。
理解矩形的性质和熟悉计算方法对于数学学习和实际应用都很重要。
通过学习矩形的相关知识,我们可以更好地理解和应用几何学,同时也有助于我们更好地规划和设计生活、工作和学习中的各类场景。
初中数学矩形的性质及其判定

矩形中考要求知识点睛矩形的性质及判定1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且相等.②角的性质:四个角都是直角.③对角线性质:对角线互相平分且相等.④对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,30 角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得.3.矩形的判定判定①:有一个角是直角的平行四边形是矩形.判定②:对角线相等的平行四边形是矩形.判定③:有三个角是直角的四边形是矩形.例题精讲模块一矩形的概念【例1】矩形的定义:__________________的平行四边形叫做矩形.【答案】有一个角是直角;【例2】矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.【答案】都是直角,相等,经过对边中点的直线;【例3】矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.【答案】平行四边形;对角线相等;三个角【例4】矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【解析】省略 【答案】A【巩固】矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH ⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形 【解析】省略 【答案】2BC AB =模块二 矩形的性质【例5】如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠=FED CBA【解析】省略 【答案】15︒【例6】矩形ABCD 中,对角线AC 、BD 相交于O ,∠AOB =60°,AC =10cm ,则BC =______cm ,周长为 .【答案】,【例7】如图,在矩形ABCD 中,,E F 分别是,BC AD 上的点,且BE DF =. 求证:ABE ∆≌CDF ∆.D EFCAB【解析】省略【答案】∵四边形ABCD 是矩形∴90AB AD B D =∠=∠=,. 在ABE ∆和CDF ∆中, 又∵BE DF =, ∴ABE ∆≌CDF ∆.【例8】如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。
人教版初中八年级下册数学课件 《矩形》平行四边形(第1课时矩形的性质)

A
D
O
B
C
基础训练 1. 下面性质中,矩形不一定具有的是( D)
A.对角线相等
B.四个角都相等
C.是轴对称图形 D.对角线垂直
2. 过四边形的各个顶点分别作对角线的平行线,若这四条平行 线围成一个矩形,则原四边形一定是( D )
A.对角线相等的四边形 B.对角线互相平分且相等的四边形 C.对角线互垂直平分的四边形 D.对角线垂直的四边形
3.如图,在Rt△ABC中,∠ACB=90°,∠A=30°.点D是 AB的中点,点E为边AC上一点,连接CD,DE,以DE为边在 DE的左侧作等边△DEF,连接BF. 判断△BCD的形状;
温馨提示:矩形的定义有两个要素:
A
D
①四边形是平行四边形
②有一个角是直角,二者缺一不可。
B
C
矩形是特殊的平行四边形,因此它具有平行四边形的所有性质, 但它也有自己独特的性质。
2.矩形的性质(从边、角、对角线三个方面总结)
(1).边:①两组对边分别平行 ② 两组对边分别相等
A
D
几何语言:∵四边形ABCD是矩形
3. 已知矩形的一条对角线与一边的夹角是40°,则两条对 角线所夹锐角的度数为( )D
A.50° B.60° C.70° D.80°
4. 矩形ABCD中,AB=2BC,E在CD上,AE=AB,则∠BAE等于
()
A
A.30° B.45° C.60° D.120°
例2. 如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小 三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?
B
C
∴AB//CD,AD//BC
AB=CD,AD=BC
初中数学矩形知识点总结

初中数学矩形知识点总结一、基本概念1. 矩形的定义矩形是一个有四个顶点的四边形,它的相对边相等且平行,且对角线相等的四边形称为矩形。
也可以说矩形是一种特殊的平行四边形。
2. 矩形的特点(1)矩形的四条边两两平行,相邻的两条边相等。
(2)对角线相等,且互相平分。
(3)矩形的内角为直角(90°)。
3. 矩形的符号表示用符号表示的矩形通常为ABCD,其中A、B、C、D分别为顶点,AB、BC、CD、DA分别为边,AD和BC为对角线。
常用的表示法有□ABCD、□A=□B=□C=□D等。
4. 矩形的四边和对角线矩形的周长P等于底和高的2倍,即P=2(A+B),其中A、B分别为矩形的底和高。
矩形的面积S等于底乘高,即S=AB。
对角线AC等于√(A²+B²),其中A、B分别为矩形的底和高。
二、矩形的性质1. 矩形内角性质矩形的内角为直角(90°),即∠A=∠B=∠C=∠D=90°。
2. 矩形的对角线性质任意两个对角相等,即AD=BC,AC=BD。
3. 矩形的边和角的关系矩形的相对边相等且平行,对角也相等。
4. 矩形的周长和面积矩形的周长等于底和高的2倍,即P=2(A+B);面积等于底乘高,即S=AB。
其中A、B分别为矩形的底和高。
5. 矩形的对角线关系对角线相等,即AC=BD;对角线互相平分,即AC平分∠A和∠C,BD平分∠B和∠D。
6. 矩形的对角线和面积关系对角线的平方等于底和高的平方和,即AC²=AB²+BC²=AD²+DC²。
7. 矩形的高的性质一个矩形的高等于它的边长的最小值。
8. 矩形的对角线的性质对角线的相交点是矩形中点。
三、矩形的相关定理1. 矩形的对角线长度定理在一个矩形中,对角线的平方等于底边的平方加上高的平方,即AC²=AB²+BC²=AD²+DC²。
八年级数学矩形的性质

A
D
O
P
B
C
4.已知:如图,在矩形ABCD中, 对角线相交 于点O,∠AOB=60°,AE平分∠BAD,AE 交BC于E,求∠BOE的度数. 75°
A
D
O
B
E
C
根据矩形性质2:
A
D
矩形的对角线相等. O
∵四边形ABCD是矩形. B
C
∴AC=BD 又∵0A=0C=
1
AC,OB=OD=
1
BD.
2
A2
┏C
性质2:
矩形的对角线相等.
符号语言:
∵四边形ABCD是矩形. ∴AC=BD
根据矩形性质2:
A
D
矩形的对角线相等.
O
∵四边形ABCD是矩形. B
C
∴AC=BD
又∵0A=0C= 1 AC,OB=OD= 1 BD.
2
2
∴OA=OB=OC=OD.
注: 矩形被两条对角线分成的四个小三角形
都是等腰三角形,并且面积相等.
∴OA=OB=OC=OD.
O
结论:
B
C
直角三角形斜边上的中线等于斜边的一半.
归纳: 直角三角形的性质: (1)直角三角形的两个锐角互余. (2)直角三角形两条直角边的平方和等于斜边的 平方. (3)直角三角形斜边上的中线等于斜边的一半.
例3 如图矩形ABCD的对角线AC、BD相交
于点O,E为矩形ABCD外一点,AE⊥CE,
那么BE⊥DE吗?
为什么?
解题思路:
E
由OE=OA=OC
A
D
得到OE=OB=OD 再得到∠BED=90°
O
B
C
矩形的性质和用途
矩形的性质和用途矩形是几何学中最基本的形状之一,具有许多独特的性质和广泛的应用。
本文将就矩形的性质和常见用途展开讨论。
一、性质1. 边长关系:矩形的两对相邻边长相等,对角线长度相等。
这个性质使得矩形有较好的对称性,可以方便地进行计算和推导。
2. 角度特性:矩形的四个角均为直角,即90度。
这使得矩形在建筑、绘图、设计等领域中应用广泛。
3. 面积计算:矩形的面积可以通过长度乘以宽度来计算,公式为A=长×宽。
这个简单的计算公式方便了矩形面积的求解,在测量、工程设计等方面具有重要作用。
4. 对角线性质:矩形的对角线相互垂直且相互平分。
这个性质使得矩形可以用于工程测量、图形构建以及装饰设计等方面。
二、用途1. 建筑和土木工程:矩形在建筑和土木工程中扮演重要角色。
例如,在房屋建设中,房间的墙壁往往是矩形的,矩形的角度特性使得房间更稳定和对称。
此外,建筑平面图中的墙壁、窗户、门等也常常利用矩形的性质来进行设计。
2. 绘图和设计:矩形在绘图和设计中常被使用。
绘制平面图、制作建筑物的模型、设计网页布局等都需要利用矩形的性质和对称性。
矩形还可以用于绘制地图、棋盘等。
3. 数学和几何学:矩形是几何学中最经典的形状之一,形成了许多数学定律和公式。
矩形的性质被广泛应用于数学问题的解决过程中,如计算面积、周长等。
4. 家居和室内设计:矩形的简单性质使得它在家居和室内设计领域中得到广泛运用。
例如,家具的设计往往以矩形为基础,包括桌子、座椅、柜子等。
墙壁、地板、天花板等室内元素也可以利用矩形的性质进行设计和布局。
5. 电子设备:矩形在电子设备中也有重要的应用。
例如,电视屏幕、电脑显示器、手机屏幕等都采用了矩形的形状。
此外,电子电路板的设计和制造也需要矩形的性质来进行布局和连接。
6. 艺术和装饰:矩形在艺术和装饰方面具有重要的地位。
矩形的简洁性和对称性使得它适合于许多装饰设计和艺术创作。
例如,画框、相框、墙画等的形状常常是矩形的。
矩形的性质和计算方法
矩形的性质和计算方法矩形,是数学中一种简单而重要的几何形状。
它具有一些独特的性质和计算方法,使得它在数学、几何学以及实际生活中都有着广泛的运用。
在本文中,我们将深入探讨矩形的性质和计算方法,帮助读者更好地理解和应用矩形。
一、矩形的定义和基本性质矩形是一个平面上的四边形,它的四个内角均为直角。
相较于其他四边形,矩形具有以下基本性质:1. 四个内角均为直角:在一个矩形中,每个内角都是90度,这使得矩形在建筑、绘画等领域有广泛应用。
2. 两对相对边相等:矩形的相对边长相等,即两条相对边的长度相同。
这个性质使得矩形在制作家具等方面有着重要作用。
3. 对角线相等且相互平分:矩形的对角线相等且相互平分,这使得对角线在计算和绘制矩形时有重要作用。
二、矩形的计算方法1. 矩形的周长计算:矩形的周长等于其各边长之和的两倍。
设矩形的长为L,宽为W,则矩形的周长C计算公式为C=2(L+W)。
2. 矩形的面积计算:矩形的面积等于其长乘以宽。
设矩形的长为L,宽为W,则矩形的面积S计算公式为S=L×W。
3. 矩形的对角线计算:矩形的对角线长度可以通过两条边长计算得到。
设矩形的长为L,宽为W,则矩形的对角线D计算公式为D=√(L²+W²)。
三、矩形的应用领域矩形作为一种常见的几何形状,在许多领域都有广泛的运用,下面列举了一些例子:1. 建筑设计:在建筑设计中,矩形被广泛应用于房屋的平面设计中。
例如,房间的墙壁、门窗等常常采用矩形形状,使得建筑结构更加稳定和美观。
2. 图形绘制:绘画和图形设计中经常使用矩形作为基本的几何形状。
矩形可以用于绘制桌子、窗户、书架等物品,使得画面更具立体感。
3. 计算机图形学:在计算机图形学中,矩形被广泛用于表示屏幕、视窗等显示区域。
矩形的性质和计算方法也为计算机图形学提供了基础。
4. 统计学和金融计算:在统计学和金融计算中,矩形被用作柱状图、条形图、表格等的基本形状,方便数据的展示和分析。
初中数学八年级下册《矩形的性质》教学设计及说课稿模板
初中数学《矩形的性质》教学设计及说课稿模板《矩形的性质》教学设计一、教学目标【知识与技能】学生掌握矩形的定义和性质,理解矩形与平行四边形的区别与联系,会初步运用矩形的定义和性质来解决有关问题。
【过程与方法】经历探索矩形的定义和性质的过程,通过演示、观察、动手操作、归纳总结等活动,增强动手操作能力,增强主动探究意识。
【情感态度价值观】在探究矩形的性质的活动中,培养严谨的推理能力以及合作探究的精神,体会逻辑推理的思维价值,感受数学活动的乐趣。
二、教学重难点【教学重点】矩形的性质。
【教学难点】矩形的性质的探究和灵活应用。
三、教学过程(一)引入新课演示改变平行四边形活动框架的形状,当有一个角是直角时引导学生观察图形特征,引出矩形的定义;通过提问并引导学生观察矩形还有哪些特殊的性质,从而导入新课《矩形的性质》(二)探索新知通过三个活动引导学生从角、对角线、对称性等几个方面去探究矩形的性质。
活动1:让学生观察、猜测、(一小组为单位)动手测量验证,然后老师多媒体演示动画,让学生总结矩形的性质;引导学生用几何语言证明矩形的性质。
活动2:学生拿出矩形纸跟着老师动手折叠探究矩形的对称性、然后多媒体动画演示,得到矩形既是轴对称图形又是中心对称图形。
活动3:老师引导学生观察矩形ABCD,用多媒体课件演示从矩形中抽象出直角三角形,学生归纳,教师补充得出矩形性质的推论,并引导学生证明。
(1)推论直角三角形斜边上的中线等于斜边的一半。
(2)总结直角三角形的性质(三)课堂练习已知矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长?(四)小结作业提问:今天有什么收获?引导学生回顾:矩形的性质。
课后作业:设计一个图表清楚的展示四边形、平行四边形、矩形之间的关系。
四、板书设计《矩形的性质》说课稿尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《矩形的性质》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。
《矩形的性质》说课稿
《矩形的性质》说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、合同协议、规章制度、策划方案、讲话致辞、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, job reports, contract agreements, rules and regulations, planning plans, speeches, evidence letters, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《矩形的性质》说课稿《矩形的性质》说课稿作为一名教学工作者,很有必要精心设计一份说课稿,说课稿有助于教学取得成功、提高教学质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。