广东省广州市天河中学2017高考数学(理科)一轮复习基础知识检测:合情推理和演绎推理.doc
广东省广州市天河中学2017高考数学一轮复习简单逻辑联结词、全称量词和存在量词03课件

④若偶函数 f (x) loga | x b | (a 0, a 1)在(, 0) 内单调递
增,则 f (a 1) f (b 2) 其中真命题的序号为
.
特称命题:有的三角形是直角三角形 全称命题:所有的三角形都不是直角三角形
全称命题:所有自然数的平方是正数.
特称命题:有些自然数的平方不是正数
(4)t:某些梯形的对角线互相平分.
﹁ t:每一个梯形的对角线都不互相平分,真命题.
☺写出下列命题的否定
(1) 8≥7;
87
(2) 2是偶数且2是质数;
2不是偶数或 2不是质数; (3) 1和2的平方是正数;
1和2的平方不全是正数; (4) 三角形没有外接圆;
三角形有外接圆; (5)若abc=0,则a,b,c中至少有一个为0.
若abc=0, 则a,b,c中都不为0.
☺写出下列命题的否定
(6)不等式 x2 -2x-3 >0是解集是{x|x > 3 } 不等式 x2 -2x-3 >0是解集不是{x|x > 3 }
(7) “末位数字是0或5的整数能被5整除”
否定形式: 末位数是0或5的整数,不能被5整除 否命题:
末位数不是0且不是5的整数,不能被5整除.
经验证,a =3符合题意.
【6】
题型四 综合题型
a3
y 0, 3x y 7 0 x 2 y 3 0, x 2 0,
a =-2时两直线重合.
题型四 综合题型
【7】设 p : f (x) ln x 2x2 mx 1在 (0, ) 内单调递
增, q : m ≥ 5 ,则 p 是 q 的 充分不必要 条件.
∀a,b∈R,方程ax+b=0有唯一解. 是一个假命题.
广东广州市天河中学2017高考数学一轮复习 分类加法计数原理和分步乘法计数原理基础知识检测 理

分类加法计数原理与分步乘法计数原理基础热身1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( )A.30个 B.42个C.36个 D.35个2.在“庆国庆、展才艺”国庆庆祝活动中,甲、乙、丙三位同学欲报名“朗诵比赛”、“歌唱比赛”,但学校规定每位同学限报其中的一个,且乙知道自已唱歌不如甲,若甲报唱歌,则乙就报朗诵,则他们三人不同的报名方法有( )A.3种 B.6种C.7种 D.8种3.记4名同学报名参加学校三个不同体育队,每人限报一队的不同报法种数为A;记3个班分别从5个风景点中选择一处游览的不同选法种数为B,则A,B分别是( ) A.43,53 B.34,35C.34,53 D.43,354.设A,B是两个非空集合,定义A*B={(a,b)|a∈A,b∈B},若P={0,1,2},Q={1,2,3,4},则P*Q中元素的个数是( )A.4 B.7C.12 D.16能力提升5.如图K57-1,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )A.72种 B.48种C.24种 D.12种6.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A.6种 B.12种C.24种 D.30种7.从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A.36 B.48 C.52 D.548.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为( )A.80 B.120C.140 D.509.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“良数”.例如:32是“良数”,因为32+33+34不产生进位现象;23不是“良数”,因为23+24+25产生进位现象.那么小于1000的“良数”的个数为( )A.27 B.36C.39 D.4810.十字路口来往的车辆,如果不允许回头,共有________种行车路线.11.将1,2,3,…,9这9个数字填在如图K57-2所示的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数有________种.12.学校安排4名教师在六天里值班,每天只安排一名教师,每人至少安排一天,至多安排两天,且这两天要相连,那么不同的安排方法有________种(用数字作答).13.用红、黄、蓝三种颜色之一去涂图K57-3中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为1、5、9的小正方形涂相14.(10分)有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.15.(13分)某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法?难点突破16.(1)(6分)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) A.56 B.65C.5×6×5×4×3×22D.6×5×4×3×2(2)(6分)如图K57-4所示,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有( )A.288种 B.264种C.240种 D.168种答案解析【基础热身】1.C [解析] b有6种取法,a也有6种取法,由分步乘法计数原理共可以组成6×6=36个虚数.2.B [解析] 从甲着手分析,分两类:若甲报唱歌,乙则报朗诵,丙可任选,有2种报名方法;若甲报朗诵,则乙、丙均可任选,有2×2=4(种)报名方法.所以共有2+4=6(种)不同的报名方法.3.C [解析] 4名学生参加3个运动队,每人限报一个,可以报同一运动队,应该是人选运动队,所以不同的报法种数是34,故A=34;3个班分别从5个风景点中选择一处游览,应该是班选风景点,故不同的选法种数是53,故B=53.4.C [解析] 由分步乘法计数原理知有3×4=12个.【能力提升】5.A [解析] 先分两类:一是四种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24种涂法;二是用三种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72种.6.C [解析] 方法1:两人各选修2门的种数为C24C24=36,再求出两人所选两门都相同和都不同的种数均为C24=6,故恰好有1门相同的选法有24种.方法2:恰有1门相同,先从4门选1门,选法C14,然后甲从剩下的3门选1门,乙再从甲选后剩下的2门中选1门,根据乘法原理共有选法4×3×2=24种.7.B [解析] 若取出的数字含有0,则是2×A23=12个,若取出的数字不含0,则是C12C23 A33=36个.根据加法原理得总数为48个.8.A [解析] 分两类:若甲组2人,则乙、丙两组的方法数是C13A22,此时的方法数是C25C13 A22=60;若甲组3人,则方法数是C35A22=20.根据分类加法计数原理得总的方法数是60+20=80.9.D [解析] 一位良数有0,1,2,共3个;两位数的良数十位数可以是1,2,3,两位数的良数有10,11,12,20,21,22,30,31,32,共9个;三位数的良数有百位为1,2,3,十位数为0的,个位可以是0,1,2,共3×3=9个,百位为1,2,3,十位不是零时,十位个位可以是两位良数,共有3×9=27个.根据分类加法计数原理,共有48个小于1000的良数.10.12 [解析] 由分步乘法计数原理有4×3=12.11.6 [解析] 左上方只能填1,右下方只能填9,此时4的上方只能填2.右上方填5时,其下方填6,7,8;右上方填6时,其下方填7,8;右上方填7时,其下方只能填8,此时左下方的两个格填法随之确定.故只能有3+2+1=6种填法.12.144 [解析] 有两名教师要值班两天,把六天分为四份,两个两天连排的是(1,2),(3,4);(1,2),(4,5);(1,2),(5,6);(2,3),(4,5);(2,3),(5,6);(3,4),(5,6),共六种情况,把四名教师进行全排列,有A44=24种情况,根据分步乘法计数原理,共有不同的排法6×24=144种.13.108 [解析] 分步求解.只要在涂好1,5,9后,涂2,3,6即可,若3与1,5,9同色,则2,6的涂法为2×2,若3与1,5,9不同色,则3有两种涂法,2,6只有一种涂法,同理涂4,7,8,即涂法总数是C13(2×2+C12×1)×(2×2+C12×1)=3×6×6=108.14.[解答] (1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步计数原理知共有方法36=729种.(2)每项限报一人,且每人至多限报一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步计数原理得共有报名方法6×5×4=120种.(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理得共有不同的报名方法63=216种.15.[解答] 首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第二类:2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法.再由分类计数原理知共有6+12=18种选法.第三类:2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.【难点突破】16.(1)A (2)B [解析] (1)因为每位同学均有5种讲座可选择,所以6位同学共有5×5×5×5×5×5=56种选择,故本题选A.(2)分三类:①B、D、E、F用四种颜色,则有A44×1×1=24种方法;②B、D、E、F用三种颜色,则有A34×2×2+A34×2×1×2=192种方法;③B、D、E、F用两种颜色,则有A24×2×2=48,所以共有不同的涂色方法24+192+48=264种.。
广东省天河地区2017高考数学一轮复习试题精选立体几何03理

立体几何031.一个几何体的三视图如图所示,则该几何体的表面积为 .【答案】75+【解析】由三视图可知,该几何体是底面是直角梯形的四棱柱。
棱柱的高为4,,底面梯形的上底为4,下底为5,腰CD 所以梯形的面积为(45)32722S +⨯==,梯形的周长为34512++=,所以四个侧面积为12)448⨯=,所以该几何体的表面积为27482752+⨯=+2.三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为_________.【答案】【解析】取AC 的中点,连结BE,DE 由主视图可知,BE AC BE DE ⊥⊥.DC ABC ⊥且4,2DC BE AE EC ====.所以4BC ==,即BD ==。
3.如右图, 设A 、B 、C 、D 为球O 上四点,若AB 、AC 、AD 两两互相垂直,且AB AC =2AD =,则A 、D 两点间的球面距离 .【答案】23π【解析】因为AB 、AC 、AD 两两互相垂直,所以分别以AB 、AC 、AD 为棱构造一个长方体,在长方体的体对角线为球的直径,所以球的直径24R ===,所以球半径为2R =,在正三角形AOD 中,3AOD π∠=,所以A 、D 两点间的球面距离为233R ππ=. 4.若某几何体的三视图 (单位:cm) 如图所示,则此几何体的表面积是 cm 2.【答案】62)π+【解析】由三视图可知,该几何体试题是半个圆锥,如图底面半径为2,圆锥的高为3.=所以底面积为21222ππ⨯=,三角形14362VAB S ∆=⨯⨯=,圆锥的底面弧长为2π,圆锥的侧面积为122π⨯=,所以圆锥的表面积为626(2ππ+=+。
5.已知一个几何体的三视图如下图所示(单位:cm),其中正视图是直角梯形,侧视图和俯视图都是矩形,则这个几何体的体积是________cm 3.【答案】32【解析】由三视图可知,该几何体为一个放到的四棱柱,以梯形为低,所以梯形面积为1(12)322⨯+=,四棱柱的高为1,所以该几何体的体积为32。
广东省广州市天河中学2017高考数学一轮复习 两角和与差的正弦、余弦、正切基础知识检测 文

两角和与差的正弦、余弦、正切基础热身1. 已知sin α=23,则cos(π-2α)=( )A .-53B .-19 C.19 D.532.已知cos α=35,0<α<π,则tan ⎝⎛⎭⎪⎫α+π4=( ) A.15 B .-1 C.17 D .-73.若(sin θ+cos θ)2=3x +3-x,θ∈⎝ ⎛⎭⎪⎫0,π2,则tan θ=( )A .1 B.33C. 3D. 24.已知tan ⎝⎛⎭⎪⎫x +π4=2, 则tan x tan2x 的值为________.能力提升5.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形6.函数y =cos 2⎝⎛⎭⎪⎫x -π2是( ) A .最小正周期是π的偶函数 B .最小正周期是π的奇函数 C .最小正周期是2π的偶函数 D .最小正周期是2π的奇函数7.设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin2θ=( )A .-79B .-19 C.19 D.798.若sin α-sin β=1-32,cos α-cos β=12,则cos(α-β)的值为( )A.12B.32C.34 D .19.在△ABD 中,tan A =12,cos B =31010,则tan C 的值是( )A .-1B .1 C. 3 D .-210.已知tan α,tan β是方程x 2+33x +4=0的两根,α,β∈⎝⎛⎭⎪⎫-π2,π2,则α+β=________.11.若sin ⎝ ⎛⎭⎪⎫3π2-2x =35,则tan 2x 等于________.12.函数y =sin x 1+cos x 在⎣⎢⎡⎭⎪⎫π2,π上的最小值是________.13.已知锐角三角形ABC 中,sin(A +B )=35,sin(A -B )=15,则tan Atan B=________.14.(10分)已知函数f (x )=2sin 13x -π6,x ∈R .(1)求f (0)的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,求sin(α+β)的值.15.(13分)[2011·绵阳一诊] 在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且a cos C ,b cos B ,c cos A 成等差数列.(1)求B 的值;(2)求2sin 2A +cos(A -C )的范围.难点突破16.(12分)已知在△ABC 中,sin A (sin B +cos B )-sin C =0,sin B +cos2C =0,求角A 、B 、C 的大小.答案解析【基础热身】1.B [解析] ∵sin α=23,∴cos ()π-2α=-cos2α=-(1-2sin 2α)=-19.2.D [解析] 由cos α=35,0<α<π,得sin α=45,tan α=43,所以tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=-7.故选D.3.A [解析] (sin θ+cos θ)2=⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫θ+π42=2sin 2⎝ ⎛⎭⎪⎫θ+π4≤2,而3x +3-x≥2,又θ∈⎝⎛⎭⎪⎫0,π2,所以sin θ+cos θ=2,所以θ=π4,所以tan θ=1.故选A.4.49 [解析] 因为tan ⎝⎛⎭⎪⎫x +π4=2,所以tan x =13,tan2x =2×131-19=2389=34,即tan x tan2x =49.【能力提升】5.C [解析] ∵在△ABC 中,2cos B sin A =sin C =sin(A +B )=sin A cos B +cos A sin B , ∴sin A cos B -cos A sin B =0,即sin(A -B )=0,∴A =B .6.A [解析] y =cos 2⎝⎛⎭⎪⎫x -π2=sin 2x =1-cos2x 2,最小正周期是T =2π|2|=π,且是偶函数,故选A.7.A 【解析】 sin2θ=-cos ⎝ ⎛⎭⎪⎫π2+2θ=-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫π4+θ.由于sin ⎝ ⎛⎭⎪⎫π4+θ=13,代入得sin2θ=-79,故选A.8.B [解析] 将sin α-sin β=1-32,cos α-cos β=12两式平方后相加得cos(α-β)=32. 9.A [解析] 由cos B =31010,得sin B =1010,所以tan B =13,所以tan C =-tan(A +B )=-tan A +tan B 1-tan A tan B=-1.故选A.10.-2π3[解析] 根据已知tan α+tan β=-33,tan αtan β=4,所以tan(α+β)=tan α+tan β1-tan αtan β=3,由于tan α,tan β均为负值,故-π<α+β<0,所以α+β=-2π3.11.4 [解析] 由sin ⎝ ⎛⎭⎪⎫3π2-2x =-cos2x ⇒cos2x =-35,tan 2x =sin 2x cos 2x =1-cos2x 1+cos2x =4.12.1 [解析] y =2sin x 2cosx22cos2x 2=tan x 2,x 2∈⎣⎢⎡⎭⎪⎫π4,π2,∵y =tan x 2在⎣⎢⎡⎭⎪⎫π2,π上单调递增,∴x =π2时,y min =1. 13.2 [解析] ∵sin(A +B )=35,sin(A -B )=15,∴⎩⎪⎨⎪⎧sin A cos B +cos A sin B =35,sin A cos B -cos A sin B =15,解得⎩⎪⎨⎪⎧sin A cos B =25,cos A sin B =15,所以tan A tan B =sin A cos B cos A sin B=2.14.[解答] (1)f (0)=2sin ⎝ ⎛⎭⎪⎫-π6=-2sin π6=-1.(2)∵1013=f 3α+π2=2sin 13×3α+π2-π6=2sin α,65=f (3β+2π)=2sin 13×(3β+2π)-π6= 2sin β+π2=2cos β,∴sin α=513,cos β=35,又α,β∈⎣⎢⎡⎦⎥⎤0,π2,∴cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫5132=1213,sin β=1-cos 2β=1-⎝ ⎛⎭⎪⎫352=45, 故sin(α+β)=sin αcos β+cos αsin β=513×35+1213×45=6365.15.[解答] (1)由题意知,2b cos B =a cos C +c cos A , ∴2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B ,又∵sin B ≠0,∴cos B =12,∴B =π3.(2)2sin 2A +cos(A -C )=2sin 2A +cos ⎝ ⎛⎭⎪⎫A -23π+A =2sin 2A +cos ⎝ ⎛⎭⎪⎫2A -23π=1-cos2A -12cos2A +32sin2A=1+3⎝ ⎛⎭⎪⎫12sin2A -32cos2A =1+3sin ⎝ ⎛⎭⎪⎫2A -π3.∵0<A <23π,-π3<2A -π3<π,∴-32<sin ⎝⎛⎭⎪⎫2A -π3≤1. ∴2sin 2A +cos(A -C )∈⎝ ⎛⎦⎥⎤-12,1+3.【难点突破】16.[解答] 方法一:由sin A (sin B +cos B )-sin C =0得sin A sin B +sin A cos B -sin(A +B )=0.所以sin A sin B +sin A cos B -sin A cos B -cos A sin B =0, 即sin B (sin A -cos A )=0.因为B ∈(0,π),所以sin B ≠0,从而cos A =sin A .由A ∈(0,π)知,A =π4,从而B +C =3π4.由sin B +cos2C =0得sin B +cos2⎝⎛⎭⎪⎫3π4-B =0,即sin B -sin2B =0.即sin B -2sin B cos B =0,由此得cos B =12,B =π3.所以A =π4,B =π3,C =5π12.方法二:由sin B +cos2C =0得sin B =-cos2C =sin ⎝ ⎛⎭⎪⎫3π2-2C .因为0<B ,C <π,所以B =3π2-2C 或B =2C -π2.即B +2C =3π2或2C -B =π2.由sin A (sin B +cos B )-sin C =0,得sin A sin B +sin A cos B -sin(A +B )=0. 所以sin A sin B +sin A cos B -sin A cos B -cos A sin B =0. 即sin B (sin A -cos A )=0.因为sin B ≠0,所以cos A =sin A .由A ∈(0,π),知A =π4.从而B +C =34π,知B +2C =3π2不合要求.再由2C -B =12π,得B =π3,C =5π12.所以A =π4,B =π3,C =5π12.。
广东省广州市天河中学高考数学一轮复习 合情推理和演绎推理03课件

a2)…(1-an).试通过计算 c1,c2,c3 的值,推测 cn=__n___1___.
c1=2(1-a1)=2×(1-14)=32, c2=2(1-a1)(1-a2)=2×(1-14)×(1-19)=43, c3=2(1-a1)(1-a2)(1-a3)=2×(1-14)×(1-19)×(1-116)=54,
a4n-1=0, a2n=an, n∈N*, 则 a2 009=___1___, a2 014= ___0__.
解析 a2 009=a4×503-3=1,a2 014=a1 007=a252×4-1=0.
题型二
类比推理
例2.(2010 陕西)观察下列等式:
13 23 1 22 , 13 23 33 1 2 32 ,
类比推理是先找出前十项的表达式,再过渡到前九项,是两 次类比.
【5】在平面内,三角形的面积为 s,周长为 c,则它的内
切圆的半径
r
2s c
.在空间中,三棱锥的体积为
V ,表面积为
s,利用类比推理的方法,可得三棱锥的内切球(球面与三棱 锥的各个面均相切)的半径_R___3_SV__.
【6】在RtABC中,若C 90,AC b,BC a,则△ABC
T8
_T_4_,
T12
__T_8 _,
T16
__T1_2 _
成等比数列.
此题是一个数列与类比推理结合的问题,既考查 了数列中等差数列和等比数列的知识,也考查了通过 已知条件进行类比推理的方法和能力.
【2】若数列an 是等差数列,对于 bn
1 n
(a1
a2
L
广东省天河地区2017高考数学一轮复习试题精选直线与圆理

直线与圆1.倾斜角为135︒,在y 轴上截距为1-直线方程是〔 〕A. 01=+-y xB. 01=--y xC. 01=-+y xD. 01=++y x【答案】D【解析】直线斜率为tan1351k ==-,所以满足条件直线方程为1y x =--,即10x y ++=,选D.2.30y +-=倾斜角是 A .6π B .3π C .65π D .32π 【答案】D【解析】直线斜截式方程为3y =+,即直线斜率tan k α==,所以,选D. 1l :280ax y +-=与直线2l :(1)40x a y +++=平行 ,那么a 值为〔 〕A. 1B. 1或2C. -2D. 1或-2 【答案】A【解析】直线1l 方程为,假设1a =-,那么两直线不平行,所以1a ≠-,要使两直线平行,那么有,由,解得1a =或2a =-。
当2a =-时,,所以不满足条件,所以1a =,选A.4. “1k =〞是“直线0x y k -+=与圆221x y += 相交〞A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】要使直线0x y k -+=与圆221x y += 相交,那么有圆心到直线距离。
即k ≤所以k ≤≤,所以“1k =〞是“直线0x y k -+=与圆221x y += 相交〞充分不必要条件,选A.5.1by +=与圆221x y +=相交于A,B 两点(其中a,b 是实数),且△AOB 是直角三角形(O 是坐标原点),那么点P(a,b)与点(0,1)之间距离最大值为 ( )A.1+B.2 1【答案】A【解析】因为△AOB 是直角三角形,所以圆心到直线距离为2,所以,即2222a b +=。
所以,由,得22,b b ≤≤≤。
所以点P(a,b)与点(0,1)之间距离为d ====,即,因为b ≤≤所以当b =1d ====+选A. 6.假设点(1,1)P 为圆2260x y x +-=弦MN 中点,那么弦MN 所在直线方程为〔 〕 A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --=【答案】D 【解析】圆标准方程为22(3)9x y -+=,圆心为(3,0)A ,因为点(1,1)P 弦MN 中点,所以AP MN ⊥,AP 斜率为,所以直线MN 斜率为2,所以弦MN 所在直线方程为12(1)y x -=-,即210x y --=,选D.点(1,3)P 且在x 轴上截距和在y 轴上截距相等直线方程为〔 〕〔A 〕40x y +-= 〔B 〕30x y -= 〔C 〕40x y +-=或30x y += 〔D 〕40x y +-=或30x y -=【答案】D【解析】假设直线过原点,设直线方程为y kx =,把点(1,3)P 代入得3k =,此时直线为3y x =,即30x y -=。
广东省天河地区2017高考数学一轮复习试题精选集合02文
集合0216.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B = ( ) (A )1(0,)2(B )1(,1)2(C )1(,1)(0,)2-∞- (D )1(,1)(,1)2-∞- 【答案】B【.解析】1{|(21)(1)0}{1}2B x x x x x x =-+>=><-或,所以1{1}2A B x x =<< ,即1(,1)2,选B.17.设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则=⋃B A C U )(( ) A . {}2,1 B . {}4,32, C .{}4,3 D .{}4,3,2,1 【答案】B【.解析】因为{}4,3,2,1=U ,{}2,1=A ,所以{34}U A =,ð,所以{2,3,4}U C A B ⋃=(),选B.18.已知集合{}24A x x =<,{}0,1,2B =,则A B =(A )φ (B ){}0 (C ){}0,1(D ){}0,1,2 【答案】C【.解析】因为{}24{22}A x x x x =<=-<<,所以{0,1}A B = ,选C.19.已知命题:0p x ∃≥,使23x=,则 ( ) A .:0p x ⌝∀<,使23x≠ B .:0p x ⌝∃<,使23x≠ C .:0p x ⌝∃≥,使23x≠ D .:0p x ⌝∀≥,使23x≠ 【答案】D【.解析】全称命题的否定式特称命题,所以选D.20.设集合{1,2,3,4,5}U =,{1,2,3}A =,{2,3,4}B =,则()U A B ð等于 (A) {2,3} (B) {1,4,5} (C) {4,5} (D) {1,5}【答案】B【.解析】因为{2,3}A B = ,所以(){1,4,5}U A B = ð,选B. 21.设集合{02}A x x =<<,集合2{log 0}B x x =>,则A B 等于 A .{}|2x x < B .{}|x x >0 C .{}|02x x << D .{}|12x x << 【答案】D【.解析】2{log 0}{1}B x x x x =>=>,所以A B {}|12x x =<<,选D.22.设集合{1,2,3,4},{|||2,}P Q x x x ==≤∈R ,则P Q 等于( )A .{1}B .{1,2}C .{3,4}D .{2,1,0,1,2}-- 【答案】B【.解析】{2}{22}Q x x x x =≤=-≤≤,所以{1234}{22}{1,2}P Q x x =-≤≤= ,,,,所以选B.23.设等比数列{}n a 的公比为q ,前n 项和为n S .则“||q =627S S =”的( )(A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【.解析】若1q =,显然不成立。
广东省天河地区2017高考数学一轮复习试题精选三角函数01理
三角函数01α是第二象限角,(),4P x 为其终边上一点,且,那么tan α=〔 〕A.43B.34C.34-D.43- 【答案】D【解析】因为α是第二象限角,所以,即x <。
又,解得3x =-,所以,选D.tan(2)y x ϕ=+最小正周期是A .2πB .πC .2π D .4π 【答案】C【解析】根据正切函数周期公式可知最小正周期为,选C.3(,),sin ,tan 225παπαα∈=则=A .247B .2425C .2425-D .247-【答案】D【解析】因为所以,所以。
所以2232()2tan 244tan 231tan 71()4ααα⨯-===----,选D. 4.=A .4B .2C .2-D .4-【答案】D01313sin10cos102sin(1030)cos10sin170cos10sin10sin10cos10sin10cos10---=-==000002sin(20)2sin 2041sin10cos10sin 202--===-,选D. 5.集合|,42k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭,中角所表示范围〔阴影局部〕是【答案】C【解析】当2k n =时,2242n n πππαπ+≤≤+,此时α终边和终边一样。
当21k n =+时,2242n n ππππαππ++≤≤++,此时α终边和终边一样。
所以选C.6.f 〔x 〕=sin 〔x+2π〕,,那么()f x 图象 〔 〕A .与g 〔x 〕图象一样B .与g 〔x 〕图象关于y 轴对称C .向左平移2π个单位,得到g 〔x 〕图象 D .向右平移2π个单位,得到g 〔x 〕图象【答案】D【解析】因为()cos()cos()sin 22g x x x x ππ=-=-=,所以()f x 向右平移2π个单位,可得到()g x 图象,选D.7.一等腰三角形周长是底边长5倍,那么顶角余弦值为A.518 B. 34378【答案】D【解析】设底边长为x ,那么两腰长为2x ,那么顶角余弦值微微222(2)(2)7cos 2228x x x x x θ+-==⨯⨯。
广东省广州市天河中学高考数学一轮复习合情推理和演绎推理01课件
结论:∀d∈M,d 也具有某属性.
第二页,共15页。
要点梳理
忆一忆知识要点
(2)类比推理:根据两个(或两类)对象之间在某些方面的相似(xiānɡ 或 相同(,x推iān演ɡ出tó它nɡ们)在其他方面也 相似(x或iān相ɡ 同sì) 的推理.类 比推理是由特殊到特殊的推理. 类比推理的基本模式:A:具有属性 a,b,c,d;
且
n∈N*) , 故
1Hale Waihona Puke +1 22+
1 32
+
…
+
2
1 0122
2×2 <2
001122-1=42
023 012.
第九页,共15页。
类比推理(lèi bǐ tuī 例 2 请用类比推l理ǐ)完成下表:
平面
空间
三角形两边之和大于第 三棱锥任意三个面的面积之
三边
和大于第四个面的面积
三角形的面积等于任意 三棱锥的体积等于任意一个
维过程,也是人们在学习和生活中经常运用的思维方 式.在解决问题过程中,合情推理具有猜测和发现结论, 探索和提供思路的作用.合情推理的结论可能为真,也 可能为假,结论的正确性有待于进一步的证明. 2.应用三段论解决问题时,应首先明确什么是大前提,什么 是小前提,如果大前提与推理形式是正确的,结论必定 是正确的.如果大前提错误,尽管推理形式是正确的, 所得结论也是错误的.
图①
又 BC2=AB2+AC2,
第十三页,共15页。
∴A1D2=AABB2+2·AACC22=A1B2+A1C2. ∴A1D2=A1B2+A1C2. 类比 AB⊥AC,AD⊥BC 猜想: 四面体 A—BCD 中,AB、AC、AD 两两垂直, AE⊥平面 BCD,则A1E2=A1B2+A1C2+A1D2.
广东省天河地区高考数学一轮复习试题精选集合与逻辑02理
集合与逻辑0226.命题“所有实数的平方都是正数”的否定为A .所有实数的平方都不是正数B .有的实数的平方是正数C .至少有一个实数的平方不是正数D .至少有一个实数的平方是正数【答案】C【解析】全称命题的否定是特称命题.,所以“所有实数的平方都是正数”的否定是“至少有一个实数的平方不是正数”选C.27.设集合{}2A=230x x x +->,集合{}2B=210,0x x ax a --≤>.若A B 中恰含有一个整数,则实数a 的取值范围是 A .30,4⎛⎫ ⎪⎝⎭ B .34,43⎡⎫⎪⎢⎣⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞【答案】B【解析】{}2A=230{13}x x x x x x +->=><-或,因为函数2()21y f x x ax ==--的对称轴为0x a =>,(0)10f =-<,根据对称性可知要使AB 中恰含有一个整数,则这个整数解为2,所以有(2)0f ≤且(3)0f >,即44109610a a --≤⎧⎨-->⎩,所以3443a a ⎧≥⎪⎪⎨⎪<⎪⎩。
即3443a ≤<,选B. 28.下列命题中,真命题是 A .01,2>--∈∀x x R xB .βαβαβαsin sin )sin(,,+<+∈∀RC .01,2=+-∈∃x x R xD .βαβαβαcos cos )sin(,,+=+∈∃R 【答案】D【解析】因为22151()24x x x --=--,所以A 错误。
当0αβ==时有sin()sin sin αβαβ+=+,所以B 错误。
221331()244x x x -+=-+≥,所以C 错误。
当2παβ==时,有sin()cos cos αβαβ+=+,所以D 正确,选D.29.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】若0b =,则()cos f x x b x x =+=为奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合情推理与演绎推理基础热身1.在等差数列{a n}中,若a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,公比q>1,则b4,b5,b7,b8的一个不等关系是() A.b4+b8>b5+b7B.b4+b8<b5+b7C.b4+b7>b5+b8D.b4+b7<b5+b82.规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再退2步”的规律移动.如果将此机器狗放在数轴原点,面向正方向,以1步的距离为1个单位长度移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是()A.P(2007)=403B.P(2008)=404C.P(2009)=403D.P(2010)=4043.已知命题:若数列{a n}为等差数列,且a m=a,a n=b(m≠n,m、n∈N*),则a m+n=bn-amn-m;现已知等比数列{b n}(b n>0,n∈N*),b m=a,b n=b(m≠n,m、n∈N*),若类比上述结论,则可得到b m+n=()A.m-n b ma n B.n-m b na mC.n-mb n a m D.n-mb m a n4.有下列推理:①A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P的轨迹为椭圆;②由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式;③由圆x2+y2=r2的面积S=πr2,猜想出椭圆x2a2+y2b2=1的面积S=πab;④科学家利用鱼的沉浮原理制造潜艇.以上推理不是归纳推理的序号是________.(把所有你认为正确的序号都填上)能力提升5.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n (x )=f n -1′(x ),n ∈N ,则f 2013(x )=( )A .sin xB .-sin xC .cos xD .-cos x6.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180°B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人C .由平面正三角形的性质,推测空间四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式7.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A (-3,4),且法向量为n =(1,-2)的直线(点法式)方程为:1×(x +3)+(-2)×(y -4)=0,化简得x -2y +11=0.类比以上方法,在空间直角坐标系中,经过点A (1,2,3)且法向量为n =(-1,-2,1)的平面的方程为( )A .x +2y -z -2=0B .x -2y -z -2=0C .x +2y +z -2=0D .x +2y +z +2=08.“因为指数函数y =a x 是增函数(大前提),而y =⎝⎛⎭⎫13x是指数函数(小前提),所以y =⎝⎛⎭⎫13x 是增函数(结论)”,上面推理的错误是( ) A .大前提错导致结论错 B .小前提错导致结论错 C .推理形式错导致结论错D .大前提和小前提错都导致结论错9.把正整数按一定的规则排成了如图K67-1所示的三角形数表.设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如a 42=8.若a ij =2009,则i 与j 的和为( )12 43 5 76 8 10 129 11 13 15 1714 16 18 20 22 24图K67-1A .105B .106C .107D .10810.对于命题:若O 是线段AB 上一点,则有|OB →|·OA →+|OA →|·OB →=0. 将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA →+S △OCA ·OB →+S △OAB ·OC →=0. 将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________.11.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看做(0,+∞)上的变量,则(πr 2)′=2πr ①,①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看做(0,+∞)上的变量,请你写出类似于①的式子:________________②,②式可以用语言叙述为:________________.12.在计算“11×2+12×3+…+1n n +1 (n ∈N *)”时,某同学学到了如下一种方法:先改写第k 项:1k k +1 =1k -1k +1,由此得11×2=11-12,12×3=12-13,…,1n n +1 =1n -1n +1, 相加,得11×2+12×3+…+1n n +1 =1-1n +1=n n +1.类比上述方法,请你计算“11×2×3+12×3×4+…+1n n +1 n +2(n ∈N *)”,其结果为________.13.某少数民族的刺绣有着悠久的历史,图K67-2为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形,则f (n )的表达式为____________(n ∈N *).图K67-214.(10分)蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图K67-3为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数.(1)试给出f(4),f(5)的值,并求f(n)的表达式(不要求证明);(2)证明:1f 1 +1f 2 +1f 3 +…+1f n <43.图K67-315.(13分)如图K67-4所示,点P为斜三棱柱ABC-A1B1C1的侧棱BB1上一点,PM ⊥BB1交AA1于点M,PN⊥BB1交CC1于点N.(1)求证:CC1⊥MN;(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EF·cos∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.图K67-4难点突破16.(12分)规定C mx =x · x -1 ·…· x -m +1 m !,其中x ∈R ,m 是正整数,且C 0x =1,这是组合数C m n (m ,n 是正整数,且m ≤n 的一种推广).(1)求C 5-15的值;(2)组合数的两个性质:①C m n =C n -mn.②C m n +C m -1n =C m n +1.是否都能推广到C mx (x ∈R ,m 是正整然)的情形?若能推广,请写出推广的形式,并给出证明;若不能,则说明理由.(3)已知组合数C m n 是正整数,证明:当x ∈Z ,m 是正整数时,C mx ∈Z.答案解析【基础热身】1.A [解析] 在等差数列{a n }中,由于4+6=3+7时有a 4·a 6>a 3·a 7,所以在等比数列{b n }中,由于4+8=5+7,所以应有b 4+b 8>b 5+b 7或b 4+b 8<b 5+b 7.∵b 4=b 1q 3,b 5=b 1q 4,b 7=b 1q 6,b 8=b 1q 7 ∴(b 4+b 8)-(b 5+b 7)=(b 1q 3+b 1q 7)-(b 1q 4+b 1q 6) =b 1q 6·(q -1)-b 1q 3(q -1)=(b 1q 6-b 1q 3)(q -1)=b1q3(q3-1)(q-1).∵q>1,b n>0,∴b4+b8>b5+b7.故选A.2.D[解析] 显然每5秒前进一个单位,且P(1)=1,P(2)=2,P(3)=3,P(4)=2,P(5)=1,∴P(2007)=P(5×401+2)=401+2=403,P(2008)=404,P(2009)=403,P(2010)=402,故选D.3.B[解析] 等差数列中的bn和am可以类比等比数列中的b n和a m,等差数列中的bn-am可以类比等比数列中的b na m,等差数列中的bn-amn-m可以类比等比数列中的n-m b na m.故b m+n=n-m b na m.4.①③④[解析] ①为演绎推理,②为归纳推理,③④为类比推理.【能力提升】5.C[解析] f1(x)=(sin x)′=cos x,f2(x)=(cos x)′=-sin x,f3(x)=(-sin x)′=-cos x,f4(x)=(-cos x)′=sin x,f5(x)=(sin x)′=cos x=f1(x),f6(x)=(cos x)′=-sin x=f2(x),f n+4(x)=…=…=f n(x),故可猜测f n(x)以4为周期,有f4n+1(x)=f1(x)=cos x,f4n+2(x)=f2(x)=-sin x,f4n+3(x)=f3(x)=-cos x,f4n+4(x)=f4(x)=sin x,所以f2013(x)=f503×4+1(x)=f1(x)=cos x,故选C.6.A[解析] 两条直线平行,同旁内角互补——大前提,∠A,∠B是两条平行直线被第三条直线所截得的同旁内角——小前提,∠A+∠B=180°——结论.故A是演绎推理,而B、D是归纳推理,C是类比推理.故选A.7.A[解析] 类比直线方程求法得平面方程为(-1)×(x-1)+(-2)×(y-2)+1×(z-3)=0即x+2y-z-2=0.8.A[解析] y=a x是增函数这个大前提是错误的,从而导致结论错.9.C[解析] 由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,2009=2×1005-1,所以2009为第1005个奇数,又前31个奇数行内数的个数的和为961,前32个奇数行内数的个数的和为1024,故2009在第32个奇数行内,所以i=63,因为第63行的第一个数为2×962-1=1923,2009=1923+2(m -1),所以m =44,即j =44,所以i +j =107.10.V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 [解析] 平面上的线段长度类比到平面上就是图形的面积,类比到空间就是几何体的体积.11.⎝⎛⎭⎫43πR 3′=4πR 2 球的体积函数的导数等于球的表面积函数 12.n 2+3n4 n +1 n +2[解析]∵1k k +1 k +2=12⎣⎡⎦⎤1k k +1 -1 k +1 k +2 ,依次裂项,求和得n 2+3n 4 n +1 n +2. 13.f (n )=2n 2-2n +1 [解析] 由f (1)=1,f (2)=1+3+1,f (3)=1+3+5+3+1,f (4)=1+3+5+7+5+3+1,可得f (n )=1+3+5+…+2n -1+…+3+1,∴f (n )=2× n -1 [1+ 2n -3 ]2+(2n -1)=2n 2-2n +1.14.[解答] (1)f (4)=37,f (5)=61.由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6,f (4)-f (3)=37-19=3×6,f (5)-f (4)=61-37=4×6,…因此,当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1) =6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1. 又f (1)=1=3×12-3×1+1,所以f (n )=3n 2-3n +1.(2)证明:当k ≥2时,1f k =13k 2-3k +1<13k 2-3k =13⎝⎛⎭⎫1k -1-1k .所以1f 1 +1f 2 +1f 3 +…+1f n <1+13⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1+13⎝⎛⎭⎫1-1n <1+13=43. 15.[解答] (1)证明:∵PM ⊥BB 1,PN ⊥BB 1,PM ∩PN =P , ∴BB 1⊥平面PMN ,∴BB 1⊥MN . 又CC 1∥BB 1,∴CC 1⊥MN . (2)在斜三棱柱ABC -A 1B 1C 1中,有S 2平面ABB 1A 1=S 2平面BCC 1B 1+S 2平面ACC 1A 1- 2S 平面BCC 1B 1S 平面ACC 1A 1cos α.其中α为平面BCC 1B 1与平面ACC 1A 1所成的二面角的大小. 证明:∵CC 1⊥平面PMN , ∴上述的二面角的平面角为∠MNP .在△PMN 中,∵PM 2=PN 2+MN 2-2PN ·MN cos ∠MNP ,∴PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos ∠MNP , 由于S 平面BCC 1B 1=PN ·CC 1,S 平面ACC 1A 1=MN ·CC 1, S 平面ABB 1A 1=PM ·BB 1=PM ·CC 1,∴S 2平面ABB 1A 1=S 2平面BCC 1B 1+S 2平面ACC 1A 1-2S 平面BCC 1B 1·S 平面ACC 1A 1·cos α.【难点突破】16.[解答] (1)根据新规定直接进行演算即可C5-15=-15 -16 -17 -18 -195!=-11628.(2)性质①不能推广.反例:当x =2,m =1时,C 12有意义,但C2-12无意义.性质②能推广,且推广形式不变:C m x +C m -1x =C m x +1(x ∈R ,m 是正整数).证明如下:Cm x+Cm -1x=x x -1 x -2 … x -m +1m !+x x -1 x -2 … x -m +2m -1 !=x x -1 x -2 … x -m +2 m !·(x +1)=1m !·(x +1)[(x +1)-1][(x +1)-2]…[(x +1)-m +1]=C m x +1.(3)需要就x 与m 的大小做出逻辑划分并进行严密的论证. 当x ≥m 时,x ,m 都是正整数,C m n 就是组合数,结论显然成立;当0≤x <m 时,C m x=x x -1 x -2 …0… x -m +1m !=0∈Z ,结论也成立; 当x <0时,C m x=x x -1 x -2 … x -m +1m !=(-1)m 1m !(-x +m -1)(-x +m -2)…(-x +1)(-x )=(-1)m C m-x +m -1 ∵-x +m -1>0,∴C m -x +m -1是正整数,故C m x =(-1)m C m -x +m -1∈Z.综上所述,当x ∈Z ,m 是正整数时,C m x ∈Z.。