数学建模人口模型论文

合集下载

数学建模论文-基于双线性系统、差分方程的人口增长模型模板

数学建模论文-基于双线性系统、差分方程的人口增长模型模板

基于双线性系统、差分方程的人口增长模型摘要社会经济的许多领域的规划都必须考虑人口这一重要因素。

而人口普查只能为我们提供某几个时间点的横截面数值,但在现实生活中,人们常常需要其他时间点的人口总数及其构成。

于是一个迫切的任务就是如何用少数的几个时点的信息比较准确的得到较详尽的其他时点的人口数据。

人口系统发展是一个动力学过程,为强惯性系统,人口死亡率和出生率构成人口增长的双线性系统。

针对中短期预测,基于统计理论,将5年的死亡出生率,死亡率求期望,建立了人口增长的定常差分方程模型,预测至2015的人口发展趋势,通过MATLAB求解得到2015年的总人口为14.17亿,乡村城镇化趋势明显;并且人口在2025左右出现峰值,约为15.1亿。

针对长期预测,根据动力学发展过程理论,当时间尺度接近惯性系统的时间常数(社会人口的平均寿命)时,人口状态将发生明显改变。

由此建立了人口增长的时变差分模型。

并通过MATLAB求解,预测2050年的人口总数为14.33亿,人口系统达稳定状态。

然后,利用Leslie矩阵分析模型的稳定性。

当时间t(年)充分大时人口增长也趋于稳定。

针对长期模型的检验,对不同的总和生育率做出了人口总数的变化曲线。

得出当总和生育率的更替水平临界值略大于2.0。

关键词:差分方程,强惯性系统,Leslie矩阵,总和生育率一.问题重述与分析1.1问题重述中国乃泱泱人口大国,人口规模是城市规划和土地利用总体规划中一项重要的控制性指标,人口规模是否合理,不仅影响到未来地区经济和社会发展,而且会影响到地区生态环境可持续发展。

因此准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和现实意义。

根据国家人口报告,对短期、中期和长期人口预测作如下定义:十年内为短期,十到十五年为中期,五十年及其以上为长期。

人口发展过程是一个很缓慢的过程。

它的“时间常数”接近平均期望寿命约七、八十年的时间。

人口状态随时间变化的过程称为人口发展过程。

数学建模中国人口增长论文 2

数学建模中国人口增长论文 2

中国人口增长预测摘要当今社会,人口问题以及人口增长所带来的社会问题越来越受到人们的关注,如老龄化问题,城乡差异问题,以及由人口增长带来的环境问题和能源问题等等。

本文结合中国实际情况讨论了我国人口增长趋势,并建立模型分析了老龄化问题,城乡人口差异问题的原因。

首先我们假设题目所提供的调查数据有一定的代表性,而且我国人口的增长情况不受自然灾害以及突发事件等因素的影响,另外我们查阅了大量的资料,对题目附录中所给的数据做了恰当的处理。

然后我们参考了传统的“指数增长模型(Malthus模型)”,根据它可以比较准确的预测中短期内人口的增长情况,由于我国是世界上老龄化速度最快的国家之一,随着人口老龄化程度的加大,人口死亡率也会逐渐升高,“指数增长模型”不能用来预测我国长期人口增长情况,根据我国的特殊国情,我们想到以(老年人口数+死亡人口数)—(少年人口数+出生人口数)的差值来衡量我国老龄化的发展速率以及人口增长情况,即差值为负时,少年人口数与出生人口数的和大于老年人口数与死亡人口数的和,这时人口呈增长趋势,反之,少年人口数与出生人口数的和小于老年人口数与死亡人口数的和,人口出现负增长。

最后,我们利用MathLab软件计算得出中国人口将在2050年达到资源环境最大人口承载量16亿左右。

接着,为了分析城乡人口差异形成的原因,我们把题目所给数据根据城、镇、乡分开来计算,分别做出它们的(老年人口数+死亡人口数)—(少年人口数+出生人口数)的差值图,见图五、六、七。

进行分析比较,发现我国城市进入老龄化高峰期要比乡镇早10年左右,城市约在2030年左右达到老龄化高峰,而乡镇的老龄化高峰期将会在2040年左右到来。

也就是我国城市会比乡村提前10年进入人口负增长时期,由此可以判断我国计划生育政策在控制城市人口数量的工作中收到了良好的效果。

而且分析差值还可以发现同一时期乡村的差值要比城市大的多,说明了我国乡村育龄期妇女的总生育率要比城镇的高的多。

数学建模 之 人口模型

数学建模 之 人口模型

数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。

首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。

对两种模型的求解,我们引入了微分方程。

其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。

先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。

一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。

然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。

附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。

故假设等价于:单位时间人口增长量与当时人口成正比。

设人口增长率为常数r 。

时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。

毕业设计_数学建模论文中国人口增长预测

毕业设计_数学建模论文中国人口增长预测

中国人口增长预测摘要本文从中国人口的实际情况和人口增长的特点出发,根据题目和中国统计年鉴中的相关数据,建立了两个关于中国人口增长的数学模型,并对中国人口做出了分析和预测。

模型一:利用中国统计年鉴中 2000—2005 年人口的数据,运用灰色理论的基本原理建立 GM(1,1) 模型。

该模型利用离散数据列进行生态处理,建立动态的微分方程,对我国近5年、10年、20年的总人口分别进行了预测。

又根据中国人口城乡分布不同且总趋势也不同的特点,把全国人口分为城市人口、城镇人口、乡村人口三部分分别进行灰色预测。

结果表明,该模型较好的反映并预测中国人口短中期和长期的变化情况。

模型二:按人口年龄结构特征,将人口分为幼年(0—14岁)男女、中年(15—49岁)男女、老年(50岁以上)男女。

各年龄段的人口变化是由出生率、死亡率和转化为其他年龄段的转化人数决定的。

根据各年龄段人口数量变化特点,对各年龄段转化人数引入转化因子,改进马尔萨斯模型,附带出生率、死亡率、生育率、出生性别比率等约束条件,建立了新的具有年龄结构的人口增长模型。

结合我国人口的特点,运用已知数据和利用微分方程的数值解,预测出男性和女性幼年、中年、老年的人口数量。

可反映中国不同年龄结构的人口分布情况。

关键词:灰色预测;小误差频率;微分方程组;人口模型;转移因子一.问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

因此人口预测的科学性、准确性是至关重要的。

英国人口学家马尔萨斯的人口指数增长模型和荷兰生物学家的Logistic模型都是经典的人口预测模型。

但是,影响中国人口的因素较多,人口结构较复杂,这些模型对人口预测很粗略,甚至是不准确的。

因此,我们要根据我国具体的人口结构现状(如老龄化进程加速)、人口的分布现状(如乡村人口城镇化)、人口比率现状(如出生人口性别比持续升高)等特点,来较准确、较具体地对中国人口进行预测,建立人口增长的数学模型,由此对中国人口中短期和长期增长趋势做出预测。

人口增长的预测(数学建模论文

人口增长的预测(数学建模论文

关键字:人口数平衡点方程模型运动预测曲线稳定增长人口一题目:请在人口增长的简单模型的基础上。

" (1)找到现有的描述人口增长,与控制人口增长的模型;" (2)深入分析现有的数学模型,并通过计算机进行仿真验证;" (3)选择一个你们认为较好的数学模型,并应用该模型对未来20年的某一地区或国家的人口作出有关预测;" (4)就人口增长模型给报刊写一篇文章,对控制人口的策略进行论述。

二摘要:本次建模是依照已知普查数据,利用Logistic模型,对中国人口的增长进行预测。

首先假设人口增长符合Logistic模型,即引入常数,用来表示自然环境条件所能容许的最大人口数。

并假设净增长率为,即净增长率随着人口数N(t)增长而减小,当N(t) 时,净增长率趋于零。

按照这个假设,。

用参数=3.0,r=0.0386, =1908, =14.5。

画出N=N(t)的图像,作为人口增长模型的一种近似。

做微分方程解的定性分析,求出N=N(t)的驻点和拐点,按照函数作图方法列出定性分析表,作出相轨迹的运动图。

当初始人口<时,方程的解单调递增到地趋向,这意味着如果使用Logistic模型描述人口增长,则人口发展地总趋势是渐增到最大人口数,因此可作为人口的预测值,也称谓平衡点。

用导数做稳定分析,为判断平衡点是否为稳定,可在平面上绘制f(x)的图象,然后像函数绘图那样,用导数进行定性分析,通过图看出人口数N(t)按时间是递增的,当人口数未达到饱和状态的时候,将逐渐地趋向,这意味着是稳定的平衡点。

按该模型,未来人口的数量将随着时间的演化,从初始状态出发达到极限状态,这样就给出了人口的未来预测。

三问题的提出1. Malthus模型英国统计学家Malthus(1766-1834)发现人口增长率是一个常数。

设t时刻人口为N(t),因为人口总数很大,可近似把N(t)当作连续变量处理。

Malthus的假设是:在人口的自然增长过程中,净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与人口总数成正比。

人口增长模型论文

人口增长模型论文

人口增长模型论文 LELE was finally revised on the morning of December 16, 2020人口增长分析以及模型建立目录一、我国人口转变的过程及特点 (3)(一)我国人口转变过程及带来的人口红利 (3)(二)我国人口转变的特点 (3)四、我国充分利用机遇,有效迎接挑战的政策措施 (11)(二)、转变经济增长方式,优化利用人口红利 (11)(四) ............................................................................................................................... 、按照人口转变的规律设计未来的养老模式 (11)论文摘要:我国推行计划生育政策以来,共少出生4亿多人,使世界人口数量达到60亿推迟4年。

纵观全局,21世纪头20年,对我国来说,是一个必须抓住并且可以大有作为的战略机遇期。

认识人口变化规律,作出较准确预测,是有效控制人口增长的前提运用数学建模的方法,对我国人口做出分析和预测是一个值得深入研究的问题,对我国制定与社会经济发展相协调的健康的人口发展计划有着决定性意义。

论文关键词:人口转变;人口红利经济增长数学建模一、我国人口转变的过程及特点(一)、我国人口转变过程及带来的人口红利一国人口生育率的迅速下降在造成人口老龄化加速的同时,少儿抚养比亦迅速下降,劳动年龄人口比例上升,在老年人口比例达到较高水平之前,将形成一个劳动力资源相对丰富、抚养负担轻、于经济发展十分有利的“黄金时期”,人口经济学家称之为“人口红利”。

根据许多发达国家的经验,人口转变通常要经历一些共同的阶段。

第一阶段特征为高出生率、高死亡率,从而导致低自然增长率;第二阶段为高出生率、低死亡率,导致高自然增长率;第三阶段则是低出生率、低死亡率,导致低自然增长率。

人口预测建模论文

中国人口增长预测模型摘要本文讨论中国人口增长预测的模型。

采用了确定性离散模型中的差分方程建模。

通过对影响人口增长的因素进行分析,我们建立了一个与时间有关的递推的差分方程模型。

与人口增长有关的因素我们分别给出了说明与预测。

对于生育率我们采用线性回归分析,拟合出生育率的线性函数。

对于死亡率及婴儿死亡率我们给出了一个递减的线性函数。

并对死亡率进行了分段。

考虑城镇迁移率对人口增长的影响是本文的亮点,通过收集迁移率资料的过程中我们发现,大多数迁移统计和人口普查所获得的迁移数据与中国人口迁移的实际水平有较明显的差距。

我们在建立漏报率估算的计量经济与线性拟合模型的基础上对城镇迁移率做出了很好的预测。

在考虑人口增长的时候分为城镇和乡村来计算,并且将每年迁移的人数很好的结合到了差分方程的模型中。

对于长期的人口预测,我们是在短期模型的基础上,加上一些确定的值为约束条件。

根据人数增长的历史以及更替水平周期上的曲线所确定的。

关键词:差分方程,城镇迁移率,线性回归一问题的重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。

近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。

2007年初发布的《国家人口发展战略研究报告》(附录1)还做出了进一步的分析。

关于中国人口问题已有多方面的研究,并积累了大量数据资料。

附录2就是从《中国人口统计年鉴》上收集到的部分数据。

试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。

二模型假设1. 正式迁移和非正式迁移的漏报率是一样的。

2. 从五岁到六十岁的人群的死亡率保持不变。

数学建模-人口增长模型

人口增长模型摘要本文根据某地区的人口统计数据,建立模型估计该地区2010年的人口数量。

首先,通过直观观察人口的变化规律后,我们假设该地区的人口数量是时间的二次函数,建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数,从而可以预测2010年的人口数为333.8668百万。

然后,我们发现从1980年开始该地区的人口增长明显变慢,于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们建立了阻滞增长模型,利用此模型我们最后求出2010年的人口预报数为296.3865。

关键字:人口预报,二次函数模型,阻滞增长模型问题重述:根据某地区人口从1800年到2000年的人口数据(如下表),建立模型估计出该地区2010年的人口 ,同时画出拟合效果的图形。

符号说明)(t x t 时刻的人口数量 0x 初始时刻的人口数量 r 人口增长率m x 环境所能容纳的最大人口数量,即0)( m x r问题分析首先,我们运用Matlab软件[1]编程(见附件1),绘制出1800年到2000年的人口数据图,如图1。

18001820184018601880190019201940196019802000图1 1800年到2000年的人口数据图从图1我们可以看出1800年到2000年的人口数是呈现增长的趋势的,而且类似二次函数增长。

所以我们可以建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数。

于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们可以建立一个阻滞增长模型。

模型建立模型一:二次函数模型我们假设该地区t时刻的人口数量的人口数量)(tx是时间t的二次函数,即:2()=++x t at bt c我们可以根据最小二乘法,利用已有数据拟合得到具体参数。

即,要求a、b和c,使得以下函数达到最小值:221(,,)()ni i i i E a b c at bt c x ==++-∑其中i x 是i t 时刻该地区的人口数,即有:2222)3.28020002000...)2.718001800(),,(-+⋅+⋅++-+⋅+⋅=c b a c b a c b a E令0,0,0E E E a b c∂∂∂===∂∂∂,可以得到三个关于a 、b 和c 的一次方程,从而可解得a 、b 和c 。

数学建模论文-人口预测模型

中国人口预测模型摘要本文对人口预测的数学模型进行了研究。

首先,建立一次线性回归模型, 灰色序列预测模型和逻辑斯蒂模型。

考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下:单位:(万人)其中加权系数为:,其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为分组长度方式预测短期和长期人口增长,然后对人口模型进行了改进,构建了反映生育率和死亡率变化率负指数函数,并给出了反映城乡人口迁移的人口转移向量最后我们BP神经网络模型检验以上模型的正确性关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络一、问题重述1. 背景人口增长预测是随着社会经济发展而提出来的。

在过去的几千年里,由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。

而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。

而人口增长预测是对未来进行预测的各环节中的一个重要方面。

准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。

2. 问题人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。

例如,中国人口预期寿命约为70 岁左右,因此,长期人口预测最好预测到70年以后,中期40—50 年,短期可以是5 年、10年或20 年。

根据2007 年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。

数学建模论文(人口预报问题)

数学建模论文人口预报问题实验组员:肖育鑫, 蒋忠炳,陈昶实验组长:陈昶实验指导:许志军老师2010年4月5日一、摘要 (3)二、问题重述 (3)三、模型假设 (4)四、分析与建立模型 (5)五、模型求解 (5)六、模型检验 (7)七、模型分析讨论及推广 (10)八、参考文献 (10)九、附录 (10)人口预报问题一、摘要人口是人类最为关心的问题之一,认识人口数量的变化规律,做出较为准确的预测,在现实社会有很大的作用,是帮住有效地控制人口增长的前提。

对于人口问题,我们可通过建立指数增长模型(马尔萨斯人口模型)和阻滞增长模型(logistic模型)分别对人口进行预算,据经验,建立logistic模型求解预测更加精确。

建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测对未来的一段时期的人口结构作出总结性的结论,同时对两个模型作出一个总体的评价。

关键字指数增长阻滞增长模型人口模型二、问题重述表1-1 江苏省人口统计数据上表给出了江苏省1981年到2001年共21的人口数据,以1981 作为起始年,建立:(1)建立江苏省人口的指数增长模型(马尔萨斯人口模型),并 利用该模型进行人口预测,与上表的实际人口数据进行比较,并 计算其误差大小。

(2)建立江苏省人口的阻增长模型(logistic 模型),并利用 该模型进行人口预测,与上表的实际人口数据进行比较,并计算 其误差大小。

三、模型假设(1)对于问题一:①假设人口增长率r 是常数(或单位时间内人口增长量与当时人口呈正比);②假设人口平稳增长,无大型自然灾害、战争等因素影响; ③假设时刻t 的人口函数是连续可导的;④其中我们假设t 表示年份,r 表示人口增长率,x 表示人口数量。

(2)对于问题二:①假设人口增长率r 为人口x(t)的函数r(x)(减函数),最简单地可假设(),,0r x r sx r s =->(线性函数),r 叫做固有增长率; ②自然资源和环境条件年容纳的最大人口容量为m x ; ③假设在时刻t ,人口增长的速率与当时人口数成正比;④其中我们假设t 表示年份,r 表示人口增产率,x 表示人口数量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论文题目:中国人口模型与预测姓名:陈贵华学号:设施农业专业:二班姓名:刘艳阳学号:********专业:数学与应用数学金融班姓名:王方杰学号:********专业:数学与应用数学金融班注:团体合作,无明确分工!!中国人口模型与预测目录一.摘要 (2)二.问题重述................................................................ 错误!未定义书签。

三.问题的分析 (5)四.建模过程................................................................ 错误!未定义书签。

(一)Malthus模型................................................ 错误!未定义书签。

1.模型假设 ..................................................... 错误!未定义书签。

2.定义符号说明 ............................................. 错误!未定义书签。

3.模型建立 ..................................................... 错误!未定义书签。

4.模型求解 ..................................................... 错误!未定义书签。

(二)Logistic模型.............................................. 错误!未定义书签。

1.基本假设 ..................................................... 错误!未定义书签。

2.定义符号说明 ............................................. 错误!未定义书签。

3.模型建立 ..................................................... 错误!未定义书签。

4.模型求解 ..................................................... 错误!未定义书签。

五.模型的评价与改进 ............................................... 错误!未定义书签。

六.参考文献................................................................ 错误!未定义书签。

一.摘要:中国是世界上的人口大国,近三十年来,我国的人口政策在控制人口数量方面取得了非凡的成绩,使得人口发展逐步走向有计划、可控制的平稳增长时期。

但随着经济的发展和人口老龄化等现象的出现,如何调整人口政策使之与社会发展相适应,是我们亟待研究思考的问题。

本文根据我国近三十年的人口数据对其人口现状,人口老龄化程度等方面运用MATLAB软件对各方面进行分析,并给出我国调整人口生育政策的时机、具体方案以及根据模型给出我国人口增长状况的预测结果。

中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。

当前中国的人口存在着最为明显的三大特点:(1)人口基数大,人口数量的控制难度仍很大。

(2)人口整体素质不高,特别是县域及以下农村人口素质普遍偏低。

(3)人口结构不合理,城乡差别、地区差别和人口素质差别很大。

人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。

在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。

对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。

政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。

我国是世界第一人口大国,地球上每九个人中就有二个中国人,在20世纪的一有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。

长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。

随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。

我国人口问题已积重难返,对我国人口进行准确的预测是制定合理的社会经济发展规划的重要依据。

本文根据人口预测的重要意义及其特点,并采用了英国人口学家马尔萨斯提出的预测人口的指数增长模型(MALTHUS模型)及荷兰生物数学家VERHULST提出的阻滞增长模型(Logistic模型),合理的建立了中国人口发展MALTHUS模型与Logistic模型并对中国未来人口进行了初步预测,进而对中国未来人口和经济发展做出合理的规划。

二.问题重述我国是世界上人口最多的国家,故人口问题是我国最严重的问题。

同时人口问题是当今世界上最严峻也是人们最关注的问题之一,所以认识人口数量的发展规律,建立合理数学模型,对未来人口作出清晰准确的预测是非常有意义的。

随着中国计划生育的开展,人口问题也慢慢得到控制,但因人口基数太大,进而导致人口过多的问题始终无法解决,经济.科学.人民生活质量始终无法有显著的提高,口增长过快,人民生活水平很难提高。

拿粮食供应来说,要保证城乡人民的口粮、工业用粮和其他用粮,将来每人每年平均用粮最少应该达到八百斤。

如果多生一亿人口,就必须多生产八百亿斤粮食。

现在我国每人平均大约两亩耕地,如果增加到十三亿人口,每人平均耕地将下降到一亩多。

在目前条件下,在这样少的土地上,要生产出每人平均八百斤粮食,还要生产出足够数量的经济作物,是相当困难的。

此外,人口增长过快,不但为就学就业增加困难,还会使能源、水源、森林等自然资源消耗过大,加重环境污染,使生产条件和人民生活环境变得很坏,很难改善。

因此,我们通过历年中国人口数量的数据,并采用了英国人口学家马尔萨斯提出的预测人口的指数增长模型(MALTHUS模型)及荷兰生物数学家VERHULST提出的阻滞增长模型(Logistic模型),建立合理的数学模型来解决下列问题:(1)建立两个数学模型寻找出往年人口增长规律;(2)根据目前我国的国情与政策,预测未来中国人口将增长到哪个数据;(3)根据对未来人口的预测数据,结合当今社会的发展趋势,提出有利于发展中国特色社会主义现代化的合理的人口和经济的发展规划;(4)就“合理控制人口增长提高我国政治.文化.经济的国际竞争力”谈谈我们自己的看法和建议。

三.问题的分析由题意可知,目的就是为了建立一种模型,得出合理的人口增长的趋势,做出中国未来人口经济发展的规划,人口增长模型是由生育、死亡、疾病、灾害、环境、社会、经济等诸多因素影响和制约的共同结果,如此众多的因素不可能通过几个指标就能表达清楚,他们对人口增长的潜在而复杂的影响更是无法精确计算。

这反映出人口系统具有明显的灰色性,适宜采用指数增长模型(MALTHUS模型)及阻滞增长模型(Logistic模型)模型去发掘和认识原始时间序列综合各种参数量所包含的内在规律。

指数增长模型(MALTHUS模型)及阻滞增长模型(Logistic模型)模型属于全因素的非线性拟合外推类法,其特点是单数列预测,在形式上只用被预测对象的自身序列建立模型,根据其自身数列本身的特性进行建模、预测,与其相关的因素并没有直接参与,而是将众多直接的明显的和间接的隐藏着的、已知的、未知的因素包含在其中,忽略各类灰色量进行预测,不必拼凑数据不准、关系不清、变化不明的参数,而是从自身的序列中寻找信息建立模型,发现和认识内在规律进行预测。

基于以上思想我们建立了预测人口的指数增长模型(MALTHUS模型)及阻滞增长模型(Logistic模型)建模过程模型一指数增长模型1,模型假设:1. 假设附件中所给数据真实可靠且具有预测性。

2. 不考虑国内外的人口迁移对我国人口的影响。

3. 不考虑香港、台湾以及澳门人口。

4. 假设在社会稳定的前提下,生育和死亡率都比较稳定。

2,定义符号说明1 . 设时刻t的人口为X(t);2. 净增长率为r;3. 把X(t)当作连续的,可微的的函数;3,建立模型:按照Malthus的理论,在t到t+0t时间内人口的增长量为:{X(t+0t)-X(t)}/0t=rX(t)t令0t 0,则得到微分方程dX/dt=rX 1式X(0)=Xo 2式4,模型求解解微分方程1,得 X(t)=Xo*exp(r*t)5,参数估计用matlab进行数据拟合(详细过程在附录),可得r=0.0234;X(0)=871.56,模型检验将r=0.0130 ;X(0)=101654;代入指数增长模型预测的1979到2012的人口数,如下表:人口的指数增长模型数据matlab拟合图形1975198019851990199520002005201020158001000120014001600180020002200人口的指数增长模型拟核图模型二1,模型假设:1.一定时间内没有重大迁移,比如,移民2. 假设在社会稳定的前提下,生育和死亡率都比较稳定。

3.不包括港、澳、台人口。

2,定义符号说明:(a ) 设时间t 时刻的人口自然增长率为x(t).(b ) 人口的增长率的变化率r 为人口自然增长率x (t )的函数r (x )(减函数),于是,假定r (x )=r-kx.r,k>0,r叫做固有增长率。

(c)自然资源和环境条件年容纳的最大容量为xm3,建立模型:当x=x0时,增长率的变化率为0,即r(x0)=0,于是k=r/x0代入r(x)=r-kx 得 r(x)=r(1-X/X0) (1) 将上式代入dxt=rx 和x(0)=x0解一阶线性微分得模型dx/dt=r(1-x/x0)x 及 x(0)=x04,模型求解解一阶线性微分得x(t)=x0/*exp(-rt)5,参数估计利用表中数据1982—1990年的状况对r和am拟合得:r=0.0015, xm=2048106,模型检验将r=-0.06, x0=6.18代入模型后得表格如下:19801985199019952000200520102015人口自然增长率正比增长拟核图根据1978-2012年人口数据调查及分析得到出生率,死亡率以及自然增长率如下表;可以发现到我国的人口日趋老龄化,所以只有提高劳动生产率、加快发展,才能更好地满足扶养老人的各种需求,六、模型的评价及总结以及优化本文通过对历史数据的研究,选择能够描述数据规律的曲线作为预测模型。

相关文档
最新文档