第五篇-单因素实验设计及实验因素水平确定方法解读

合集下载

第五章 真实验设计 1单因素完全随机

第五章  真实验设计  1单因素完全随机

实验设计中使用的符号
X:表示一种处理,即研究者操作或变化的实验变量(自变量); 在比较不同的处理时,以X0, X1, X2 …表示
O:表示处理前或后的一种观测或度量
自左至右:表示时间次序或先后
同一横行的X或O:表示这些X或O作用于同一组被试
R:表示被试已被随机化选择、分配 M:表示把被试加以配对 ……由虚线所隔开的各组是非同质的,虚线表示不能随机选择和 部署两组
同样A在B2水平上是否简单效应; B在A1水平上是否简单效应; B在A2水平上是否简单效应;
5.比较(comparisons) 对各处理水平平均数之间差异的估价叫比较。

例如,在一个2X3两因素实验中,A因素和B因素的 主效应都是显著的。对于A因素来说,主效应显著 明显是由于A1水平与A2水平之间的差异显著,而B 因素的主效应显著则有多种可能


2.处理与处理水平的结合

处理与处理水平的结合都是指实验中一个特定的、 独特的实验条件。 例如,在一个探讨人在快速呈现条件下命名汉字的 2X2两因素完全随机实验设计中,有呈现速度(A)和 汉字频率(B)两个因素,其中呈现速度有50毫秒(A1) 和100毫秒(A2)两个水平,汉字有高频字(B1)和低 频字(B2)两个水平。这时,实验中有4种处理水平 的结合:A1B1、A1B2、A2B1、A2B2 。
第五章 真实验设计
第一节 单因素完全随机设计
心理学研究方法
理论(或思辨)的研究方法 现象学(或描述)的研究方法
观察法
个案法 访谈法 实证的研究方法 相关法
实验法 传统实验心理学方法 认知实验心理学方法
认知神经科学方法

做实验研究,需要具备两方面的知识:
1) 是有关研究课题的知识;作为研究基础的理论背 景、研究的基本假设与预期……。研究课题的确 定主要取决于研究者对所要研究的问题的专业知 识,它保证开展的研究在特定的领域中有继承、 有发展、有一定的科学价值。 2) 是有关实验的一般结构,即实验设计及统计学知 识。研究的质量主要取决于研究者的实验设计及 统计学知识,它保证研究结果的可靠性,结论的 合理性。

5-0实验设计与单因子实验设计及分析

5-0实验设计与单因子实验设计及分析

随机化
随机化是指试验材料的分配,人员安排和各试验点的试验次 序都要随机确定。 随机化的好处: 能使各试验结果相互独立; 可使不可控因子的影响“抵消”部分,不至于积累成灾; 可使试验误差得到准确的估计。 随机化的方法: 用随机数表进行; 设计一个试验:把试验号放入袋中,再按抽得到的次序进行 试验。
总平方和的分解公式
单因子试验共有 n m1 m2 mr 个数据,其总平均值为
1 r mi 1 r 1 y yij mi yi , yi n i 1 j 1 n i 1 mi
r mi
y
j 1
mi
ij

这 n 个数据的波动可用总偏差平方和 S T 表示:
Q ( y1 y ) 2 ( y 2 y ) 2 ( y k y ) 2 ( y j y ) 2
j 1
称为 k 个数据的偏差平方和,有时简称为平方和,它是一个重要的 统计量。 •偏差平方和 Q 常用来度量若干个数据集中与分散(即波动)的程度. •Q 中的 k 个偏差 y1 y,y2 y, ,yk y 间有一个恒等式:
因子
因子,影响试验结果的因素,常用A,B,C等表示。 水平,因子所处的状态。常用A1,A2,B1,B2等表示。
可控因子:对其水平可作审慎改变的因子。
如,反应温度,反应时间,原料产地,原料配比等。 不可控因子,又称噪声因子或误差因子:在实际操作中不能控制其水
平的因子。或难以控制其水平的因子。或要花费昂贵才能控制其水平
第五章 实验设计与分析
• 第一节 实验设计概要 • 第二节 单因子试验的设计与分析
第一节 实验设计概要
• • • • 什么是试验? 几个名词的解释 基本原则 试验设计一般指南

单因素实验设计及结果分析

单因素实验设计及结果分析

单因素实验设计及结果分析实验设计是科学研究中至关重要的一部分,它帮助研究者确定实验的目的、方法和结果的解释。

在本文中,我们将探讨单因素实验设计及其结果分析方法。

单因素实验设计在科学研究和统计分析中被广泛应用,它可以帮助我们了解一个因素对实验结果的影响。

单因素实验设计是指在一个实验中,研究者只改变一个因素(独立变量),并观察这个因素对实验结果(依赖变量)的影响。

这种实验设计有助于我们分析变量之间的因果关系。

下面将介绍一些常见的单因素实验设计及其结果分析方法。

1. 随机分组设计:这是一种常见的单因素实验设计方法。

研究者通过随机将被试分为实验组和对照组,实验组接受独立变量的处理,而对照组则不接受处理。

比较两组的实验结果,可以得出独立变量对实验结果的影响。

2. 重复测量设计:这种设计方法适用于需要连续观察同一组被试的实验。

研究者在不同时间点对被试进行多次测量,比较测量结果的差异,以确定独立变量对实验结果的影响。

3. 配对设计:配对设计适用于需要考虑个体差异的实验。

在这种设计中,被试会与其他被试进行配对,以使每对配对中的两个被试在某些重要特征上相似。

然后,每对配对中的一名被试接受独立变量的处理,而另一名被试作为对照。

结果的分析是单因素实验中不可或缺的一部分。

下面将介绍一些常见的对实验结果进行分析的统计方法。

1. 描述统计分析:描述统计分析是对数据进行总结和描述的方法。

通过计算均值、标准差、百分位数等参数,我们可以对实验结果的整体特征进行描述。

2. 方差分析:方差分析是一种用于比较不同组之间差异的方法。

通过计算组间方差和组内方差之间的比值,我们可以确定独立变量对实验结果是否有显著影响。

3. T检验:T检验是一种用于比较两组均值差异是否显著的方法。

在单因素实验中,可以使用独立样本T检验(用于比较不同组)或配对样本T检验(用于比较同一组在不同条件下的均值)。

4. 相关分析:当我们需要研究两个变量之间的关系时,可以使用相关分析。

第5讲_单因素实验设计说明

第5讲_单因素实验设计说明
预期的统计结果:自变量A的主效应是否显著;无关变量即 区组变量效应是否显著;若自变量主效应显著,则进行平均数 多重检验.
目录
<3> 应用举例
研究题目:文章的生字密度对学生阅读理解的影响. 研究假设:阅读理解随着生字密度的增加而下降. 实验变量:自变量——生字密度,含有4个水平〔5:1、10:1、
15:1、20:1; 因变量——阅读测验的分数; 无关变量——被试的智力水平.
区组的个数根据控制无关变量的需要,每一区组内被试的 个数为多少??
目录
– 误差控制:区组法〔无关变量纳入法.通过统计处理,分离出 由无关变量引起的变异,使它不出现在处理效应和误差变异中, 从而提高方差分析的灵敏度.
目录
– 实验设计模型:Yij = μ+αj+πi +εi<j>

<i=1,2,......,n; j=1,2,......,p>
目录
① 随机实验组控制组前测后测设计----应用举例
• 研究目的:通过一系列教学程序和方法的训练,来培养学 生根据报纸标题预测所报道内容的能力. • 随机选取了46名8年级的学生,并随机将他们分为两组,随 机选择其中一个组为实验组,接受标题阅读教学,而另一个组 为控制组,仍接受常规阅读教学.
目录
Yijkl 表示被试i在处理水平j上的分数,μ表示总体平均 数,αj表示水平j 的处理效应;βk 表示无关变量B的效 应,γl 表示无关变量C的效应, ε pooled 表示误差变异.
总变异组成:实验处理A引起的变异;无关变量B、C引起的变 异;误差引起的变异.
目录
平方和分解:
SST = SSA + SSB + SSC + SSE SST是总平方和; SSA是因素A〔实验处理的效应平方和; SSB是无关变量B的效应平方和; SSC是无关变量C的效应 平方和; SSE是误差平方和.

单因素实验设计.完整版PPT文档

单因素实验设计.完整版PPT文档
第讲单因素实验设计
目录
真实验设计
单因素实验设计 两因素实验设计 三因素实验设计
目录
单因素实验设计
1. 单因素完全随机实验设计
2. 单因素随机区组实验设计
3. 单因素拉丁方实验设计
4. 单因素重复测量实验设计
目录
单因素实验设计
1. 单因素完全随机实验设计
(1)基本特点: –适用条件:研究中有一个自变量,自变量有两个或多于两 个水平。 –基本方法:把被试随机分配给自变量的各个水平,每个被 试只接受一个水平的处理。 –误差控制:随机化法。假设被试之间的变异在各水平间是 随机分布的,在统计上无差异。
3. 单因素拉丁方实验设计(运用较少,作了解)
拉丁方设计是一个包含P行、P列,把P个字母分配给 方格的管理方案,其中每个字母在每行中出现一次,在每 列中出现一次。
扩展了随机区组设计的原则,可以分离出两个无关 变量的效应。一个无关变量的水平在横行分配,另一个无 关变量的水平在纵列分配,自变量的水平分配给方格的每 个单元。
目录
(5) 单因素完全随机实验设计 应用延伸---- 控制组的应用
② 随机实验组控制组后测设计
• 基本模式:
组1 X O1
组2
O2
X 表示研究者操纵的实验处理,O1和O2表示后测成绩。
② 目随录机实验组控制组后测设计—应用举例
以“初一年级数学自学辅导教学协作实验研究”为例
• 研究目的:对数学自学辅导教学与传统教学的效果进行比较 • 研究者随机选择了北京市若干所中学,并将从小学升入中学 的学生随机分为两班,随机选择其中一个班为实验组,另一个 班为控制组。 • 实验班采用数学自学辅导教学方式,实验材料为自学辅导教 材,内容为初一代数;控制组采用传统课堂教学方式,学习材 料为统编教材,内容与实验班相同,时间为一个学期。

单因素实验设计

单因素实验设计
[x1,x2] 内继续实验。见图1
则有两个新试验点
x3 x1 0.618(x2 x1) x4 x1 0.382(x2 x1)
优点
新点 新点
每次可去掉实验范围的0.382,每次缩小的比 例一样(即0.618),除第一次要取二个试点外, 以后每次只取一个试点,用起来较方便,可用较 少的实验次数迅速找到最佳点
单峰函数(实验中指标函数)
单峰函数不一定是光滑的, 甚至也不一定是连续的,它只 要求在定义区间内只有一个 “峰”
函数的单峰性使我们可以 根据消去法原理逐步地缩小搜 索区间,已知其中包括了极小 点的区间,称为搜索区间
0.618法(黄金分割法)的构思
设指标函数是一个单峰函数,即在某区间内 只有一极小点,为最佳实验点
(3)找实验范围内最佳实验点
方法是:在[0,1]区间内选择 1 ,2两点,

1

Fn2 Fn
2

Fn1 Fn
即按分数序列的规律选择实验点位置,比较
结果,然后舍掉不包括最优点的一段,在缩短了 搜索范围后继续找点,比较实验结果,当搜索区 间小于给定精度值时,整个过程结束
分数法具体作法
分两种情况
“留好去坏”的原则,去掉实验范围[a,x2]部 分,在[x2,b]内继续实验。见图1。
若去掉实验范围的左边区间,则新试验点将 安排在新实验范围的0.618的位置上(x3),另一个 试验点在新范围的0.382的位置上(x4)
x3 x2 0.618(x2 b) 新点 x4 x2 0.382(x2 b) a 0.382(b a) 0.382[b a 0.382(b a)]
适用条件
指标函数为单峰函数
下面通过实例,说明黄金分割法设计实验的 具体步骤

单因素实验的设计

单因素实验的设计

为 的区间,即有 ac db 。
即 1

2.无论删掉哪一段,例如删掉(db),在留下的新区间[ad]内,再插入一新点 e, 使 e,f(即为原区间中 c)在新区间[a,d]中的位置与 c,d 在原区间[a,b]中的位置具有 相同的比列。 这就保证了每次都以同一入的比率缩短区间。这样做的目的是为了减少函数值的 计算次数。
解出

5 1 0.618 2
(另一根
5 1 2 负数,舍)
3 5 0.382
再由①式得
2
3) 0.618法一般步骤
• ①确定实验范围(在一般情况下,通过预实验或其它先验信息,确定了 实验范围[a,b] );
• ②选实验点(这一点与前述均分、对分法的不同处在于它是按0.618、 0.382的特殊位置定点的,一次可得出两个实验点x1,x2的实验结果);
• ③根据“留好去坏”的原则对实验结果进行比较,留下好点,从坏点处 将实验范围去掉,从而缩小了实验范围;

④在新实验范围内按0.618、0.382的特殊位置再次安排实验点,
重复上述过程,直至得到满意结果,找出最佳点。
3) 0.618法具体作法
x1=a+0.618(b-a) x2=a+0.382(b-a)
下面通过实例,说明黄金分割法设计实验的具体步骤。 例 1: 目前,合成乙苯主要采用乙烯与苯烷基化的方法。为了因地 制宜,对于没有石油乙烯的地区,我们开发了乙醇和苯在分子筛催化下 一步合成乙苯的新工艺: C6H6+C2H5OH—→C6H5C2H5+H2O 筛选了多种组成的催化剂,其中效果较好的一种催化剂的最佳反应温 度,就是用黄金分割法通过实验找出的。 初步实验找出,反应温度范围在 340-420℃之间。在苯与乙醇的摩 尔比为 5:1,重量空速为 11.25h-1 的条件下,苯的转化率 XB 是:

单因素实验设计

单因素实验设计

单因素实验设计单因素实验设计是指在实验中只有一个研究因素,即研究者只分析一个因素对效应指标的作用,但单因素实验设计并不是意味着该实验中只有一个因素与效应指标有关联。

单因素实验设计的主要目标之一就是如何控制混杂因素对研究结果的影响。

常用的控制混杂因素的方法有完全随机设计、随机区组设计和拉丁方设计等。

一、完全随机设计1.概念与特点又称单因素设计或成组设计,是医学科研中最常用的一种研究设计方法,它是将同质的受试对象随机地分配到各处理组进行实验观察,或从不同总体中随机抽样进行对比研究。

该设计适用面广,不受组数的限制,且各组的样本含量可以相等,也可以不相等,但在总体样本量不变的情况下,各组样本量相同时的设计效率最高。

例如:为了研究煤矿粉尘作业环境对尘肺的影响,将18只大鼠随机分到甲、乙、丙3组,每组6只,分别在地面办公楼、煤炭仓库和矿井下染尘,12周后测量大鼠全肺湿重(g),通过评价不同环境下大鼠全肺平均湿重推断煤矿粉尘对作用尘肺的影响,具体的随机分组可以如下实施:第一步:将18只大鼠编号:1,2,3, (18)第二步:可任意设置种子数,但应作为实验档案记录保存(本例设置spss11.0软件的种子数为200);第三步:用计算机软件一次产生18个随机数,每个随意数对应一只老鼠(本例用spss11.0软件采用均匀分布最大值为18时产成的18个随机数);第四步:最小的6个随机数对应编号的大鼠为甲组,排序后的第7个至第12个随机数随因编号为乙组,最大的6个随机数对应编号的大鼠为丙组(结果见表1)。

表1 分配结果编号 1 2 3 4 5 6 7 8 93.75 8.75 16.29 11.12 5.49 3.98 13.64 16.71 1.69随机数组别甲乙丙乙乙甲丙丙甲编号10 11 12 13 14 15 16 17 1813.62 16.36 2.12 4.74 11.54 3.98 0.13 17.35 16.38 随机数组别丙丙甲乙乙甲甲丙丙2.随机数的产生方法(1)随机数字表:如附表13(马斌荣,医学统计学,第4版),这是一个由0~9十个数字组成60行25列的数字表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
到最佳点的一类科学方法。 优选法可以解决那些试验指标与因素间不能用数学形
式表达,或虽有表达式但很复杂的那些问题。
假定f(x)是定义在区间[a,b]上的函数,但f(x)的表 达式是并不知道的,只有从试验中才能得出在某一点 x0的数值f(x0)。应用单因素优选法,就是用尽量少的 试验次数来确定f(x)的最佳点。
影响较小的因素,对试验指标影响规律已完全掌握的因素,
应当少选或不选,但要作为可控的条件因素参加试验。 (4)在初步筛选因素时,可以考虑多安排一些因素。


在试验设计时,试验因素(输入变量)有两种,一种是在试 验时我们可以人为进行控制的可控因素;一种是人为无法控
制的噪声(随机)因素。
可控因素是在试验过程中我们可以设置和保持其在一个希望 的水平上的因子,它应具有以下特征: 1 、根据经验和以往数据可以确信其对指标 Y 有重要影响。 2、在试验过程中可以比较容易地进行人为改变。


确定实验因素: 在对实验背景、实验条件、实验预期结果充分了 解的基础上结合自身研究内容、现实条件、预期效果 确定实验因素。方法:大量阅读文献及总结。 确定实验因素水平: 文献结合实际!参考单因素优选法!
单因素优选法
优选法就是根据生产和科研中的不同问题,利用数学
原理,合理地安排试验点,减少试验次数,迅速地找
单因素优选法
均分法
平分法 黄金分割法
分数法
抛物线法 分批试验法
1
均分法
在试验范围[a, b]内,根据精度要求和实际情况,均
匀地排开试验点,在每一个试验点上进行试验,并相
互比较,以求得最优点。 作法:如试验范围L=b-a,试验点间隔为N,则试验 点n为(包含两个端点):
n L ba 1 1 N N

5 1 2
0.6180339887
3
黄金分割法(0.618法)
• 0.618法要求试验结果目标函数f(x)是单峰函 数,即在试验范围内只有一个最优点 d,其效 果f(d)最好,比 d 大或小的点都差,且距最 优点 d 越远的试验效果越差。
3
黄金分割法(0.618法)
• 设x1 和x2 是因素范围[a,b]内的任意两个试点,C 点为问题的最优点,并把两个试点中效果较好的点称 由 为好点,把效果较差的点称为差点。则:最优点与好 来 点必在差点同侧,因而我们把因素范围被差点所分成 的两部分中好点所在的那部分称为存优范围。即可以 去掉不包含好点的一段,只留下存优范围。
1
均分法
例2-1 对采用新钢种的某零件进行磨削加工,砂轮转速范 围为420转/分~720转/分,拟经过试验找出能使光洁度最佳 的砂轮转速值。
N = 30 转/分 b-a 720 - 420 n = ———— + 1 = —————— +1 = 11 N 30 试验转速:
420,450,480,510,540,570,600,630,660,690,720
实际中一般试验 设计的因素水平 均取2或3水平。
因素的选取
( 1 )选择依据:专业知识、以往的研究结论、经验教训;
最重要的是在阅读文献基础上结合自身实际情况选择。
( 2 )一般原则:尽可能全面地考虑到影响试验指标的各 个因素,根据实验要求和尽量少选因素 ( 3 )首先选对试验指标影响大的因素、尚未完全掌握其 规律的因素和未曾被考察研究过的因素。那些对试验指标

1
均分法
使用范围: • 这种方法的特点是对所试验的范围进行“普查”,常 常应用于对目标函数的性质没有掌握或很少掌握的情 况。即假设目标函数是任意的情况,其试验精度取决 于试验点数目的多少。
2
ห้องสมุดไป่ตู้平分法
• 适用于试验范围(a,b)内,目标函数为单调(连续或 间断)的情况下,求最优点的方法。
• 前提是有一个具体指标作为标准。
f(x) f(x)
a b 图2-1 连续单调
a
b 图2-2 间断单调
2
平分法
每次选取因素所在试验范围(a, b)的中点处C做试验。 (a+b) 计算公式: C =————— 2 a c × 根据试验结果,如下次试验 在高处(取值大些),就把 此试验点(中点)以下的一 半范围划去;如下次试验在 低处(取值小些),就把此 试验点(中点)以上的一半 范围划去。 (c+b) d = ————— 2 b
其进行中和(即直接控制或降低其对Y的影响)。
2、通过重复精确试验来确定可控因素的最佳水平,当可控因 素的水平足够好时,即可得到可靠的设计(对噪声因素不敏感)。
可控因素
噪声因素
水平的选取
( 1 )水平有两种:量的变化 (数量因素)和质的变化 (质量因素)。 ( 2 )数量因素水平水平范围要足够宽,否则就可出现缩 小甚至抵削变量影响,同时也看不出因素间交互作用对输 出的影响。 ( 3 )水平设置也不可过宽,否则同样可能缩小此因素的 影响,或将其它因素的影响掩盖掉。过宽还可能超出允许 操作范围,造成意外损失。一般要求3个以上。 ( 4 )依据:专业知识、以往的研究结论、经验教训;最 重要的是在阅读文献基础上结合自身实际情况选择。
实验因素与水平
主 要 内 容
实验因素与水平
单因素优选法
实验因素与水平
因素:在实验中,影响试验考核指标的量称为因素。 水平:水平是试验中各因素的不同取值。
一般用“+”,“-”号或1,2,3…来表示因 素的不同水平。当因素只有高低两个水平时, 用“+”号代表高,“-”号代表水平。当因素 有3个以上水平时,用1,2,3来依次表示从低 到高的水平,在同一试验表中,只能出现同类 符号,而不可混用。
d ★ ×
每试验一次,试验范围缩 小一半,重复做下去,直 到找出满意的试验点为止。
3
黄金分割法(0.618法)
• 本方法是在试验范围[a, b]内,首先安排两个试验 点,再根据两点试验结果,留下好点,去掉不好点所 在的一段范围,再在余下的范围内寻找好点,去掉不 好的点,如此继续地作下去,直到找到最优点为止。 • 黄金分割 :
可控因子对Y的影响愈大,则潜在的改善机会愈大。


噪声因素是试验过程中可使试验结果发生偏差,且无法对 其进行控制的因子。它具有以下特征: 1、使试验结果偏离目标。 2、无法或很难人为控制。 当试验中存在噪声因素时,有两种方法可以进行改善。
1 、首先确认此因素对指标 Y的影响程度,如影响大,则须对
相关文档
最新文档