第 讲单因素实验设计

合集下载

第11讲 单因素实验设计

第11讲 单因素实验设计
(between-subjects experimental design) betweendesign)
被试间设计的一般目的是确定在两个或多 个实验处理条件之间观测指标是否存在差 异。 重要特征: 重要特征:
随机抽样(random sampling) 随机抽样( sampling) 随机分派被试(random assignment) 随机分派被试( assignment)
心理学研究方法 11
被试内设计的特点
被试内设计的优点: 被试内设计的优点: 相对于被试间设计而 言,被试需要量少是 其优点。同时, 其优点。同时,其主 要优点在于能够从根 本上消除源于个体差 异的所有问题——处 异的所有问题——处 理混淆和处理效应模 糊。 被试内设计的缺点: 被试内设计的缺点: 被试缩减问题; ① 被试缩减问题; 时间相关问题; ② 时间相关问题; 顺序效应问题, ③ 顺序效应问题,如 后延效应( 后延效应(carryover effect) effect)和累积误差 error)。 (progressive error)。
心理学研究方法
25
案例分析
某厂技术员开发了两种新的加工工艺,为 某厂技术员开发了两种新的加工工艺, 决定是否推广此工艺, 决定是否推广此工艺,需确定其是否比老 加工工艺有更好的效费比和加工质量。 加工工艺有更好的效费比和加工质量。 确定新工艺的效果可能受到“ 确定新工艺的效果可能受到“员工操作技 能水平” 能水平”的干扰
心理学研究方法
10
单因素被试内设计
(within-subjects experimental design) withindesign) 自变量
处理1 处理 处理2 处理2 处理3 处理
S1
处理2 处理 处理3 处理3 处理1 处理

单因素实验设计及结果分析

单因素实验设计及结果分析

单因素实验设计及结果分析实验设计是科学研究中至关重要的一部分,它帮助研究者确定实验的目的、方法和结果的解释。

在本文中,我们将探讨单因素实验设计及其结果分析方法。

单因素实验设计在科学研究和统计分析中被广泛应用,它可以帮助我们了解一个因素对实验结果的影响。

单因素实验设计是指在一个实验中,研究者只改变一个因素(独立变量),并观察这个因素对实验结果(依赖变量)的影响。

这种实验设计有助于我们分析变量之间的因果关系。

下面将介绍一些常见的单因素实验设计及其结果分析方法。

1. 随机分组设计:这是一种常见的单因素实验设计方法。

研究者通过随机将被试分为实验组和对照组,实验组接受独立变量的处理,而对照组则不接受处理。

比较两组的实验结果,可以得出独立变量对实验结果的影响。

2. 重复测量设计:这种设计方法适用于需要连续观察同一组被试的实验。

研究者在不同时间点对被试进行多次测量,比较测量结果的差异,以确定独立变量对实验结果的影响。

3. 配对设计:配对设计适用于需要考虑个体差异的实验。

在这种设计中,被试会与其他被试进行配对,以使每对配对中的两个被试在某些重要特征上相似。

然后,每对配对中的一名被试接受独立变量的处理,而另一名被试作为对照。

结果的分析是单因素实验中不可或缺的一部分。

下面将介绍一些常见的对实验结果进行分析的统计方法。

1. 描述统计分析:描述统计分析是对数据进行总结和描述的方法。

通过计算均值、标准差、百分位数等参数,我们可以对实验结果的整体特征进行描述。

2. 方差分析:方差分析是一种用于比较不同组之间差异的方法。

通过计算组间方差和组内方差之间的比值,我们可以确定独立变量对实验结果是否有显著影响。

3. T检验:T检验是一种用于比较两组均值差异是否显著的方法。

在单因素实验中,可以使用独立样本T检验(用于比较不同组)或配对样本T检验(用于比较同一组在不同条件下的均值)。

4. 相关分析:当我们需要研究两个变量之间的关系时,可以使用相关分析。

2.1 实验设计_单因素

2.1 实验设计_单因素

1、实验设计
• 实验设计流程:
1. 实验目的:弄清蛋白酶1号的最佳酶促反应 条件; 2. 实验方法:以酪蛋白为底物,TCA终止反应, 查询 实验方法 确立 实验目的
在不同温度、pH值、离子强度的条件下进
行反应,以Lowery法检测TCA可溶多肽的含 量,换算为酶促活力。结合Bradford检测蛋 白质含量,计算酶比活力。 3. 实验模式:单因素实验,结合正交/响应面 法进行拟合优化。 4. 数据记录:见下表 准备 数据记录 选择 实验模式
0.076 0.072 0.081
平行2 平行3
Lowery标准方程:y=38.169x+1.2793
2、方差检验
1、定义:
单因素方差分析用来研究一个控制变量的不同水平是否对观测变 量产生了显著影响。例如:分析不同施肥量是否给农作物的产量 产生显著影响;研究不同学历是否对工资收入产生显著影响等。
2、观测变量方差的分解
II-1、实验设计_单因素
《实验设计与数 据分析》 Nov. 14th, 2014目录1. 单因 Nhomakorabea实验设计
– 实验设计 – 均分法
2. 方差分析
– SPSS方差检验 – LSD法
3. 数据处理
– 数据表 – 数据图(柱形图、折线图)
情境导入
• 某公司以大豆蛋白为原料生产多肽类产品。 为提高生产效果,新引入不同来源的蛋白酶 9种,并且,需要对不同蛋白酶的最佳水解 条件进行研究。 • 假设你是公司新员工,接到该任务后,该如 何设计实验,并正确评估蛋白酶的最佳催化 条件?
每次实验点都取在实验范围的中点,即中点 取点法
优点
每做一个实验就可去掉试验范围的一半,且 取点方便,试验次数大大减小,故效果较好

单因素优化实验设计(参考课件)

单因素优化实验设计(参考课件)

20
40
50 55 60
7
3.黄金分割法(0.618法)
• 1)单峰函数(实验中指标函 数)
• 注:单峰函数不一定是光滑 的,甚至也不一定是连续的, 它只要求在定义区间内只有 一个“峰”。
• 函数的单峰性使我们可以根 据消去法原理逐步地缩小搜 索区间,已知其中包括了极 小点的区间,称为搜索区间。
8
4
2.对分法(中点取点)
• 1)作法 每次实验点都取在实验范围的中点,即中
点取点法。 • 2)优点:每做一个实验就可去掉试验范围的
一半,且取点方便,试验次数大大减小,故效 果较好。 • 3)适用情况:适用于预先已了解所考察因素 对指标的影响规律,能从一个试验的结果直接 分析出该因素的值是取大了或取小了的情况, 即每做一次实验,根据结果就可确定下次实验 方向的情况,这无疑使对分法应用受到限制。
为 的区间,即有 ac db 。
即 1

2.无论删掉哪一段,例如删掉(db),在留下的新区间[ad]内,再插入一新点 e, 使 e,f(即为原区间中 c)在新区间[a,d]中的位置与 c,d 在原区间[a,b]中的位置具有 相同的比列。 这就保证了每次都以同一入的比率缩短区间。这样做的目的是为了减少函数值的 计算次数。
从图 a),b)看,在新区间[a,d]内,已包含算出了函数值的 点 f((即为原区间中 c))。所以在其内只需再取一个点(而 不是两个点)计算函数值,就可进一步把新区间短缩。
根据条件 2 有:
af ac ad ad ad ab

1
,有
2

将②式代入①式,得关于 的一元二次方程 2 1 0
设 f (x1) 和 f (x2 ) 表示 x1、x2 两点的实验结果,且 f (x) 值 越大,效果越好,分几种情况讨论。

单因素实验方案设计

单因素实验方案设计

单因素实验方案设计那咱就以“探究不同肥料对盆栽小番茄生长的影响”为例,设计一个单因素实验方案哈。

一、实验标题。

“肥料对对碰:哪种肥料让小番茄长得更棒?”二、实验目的。

咱就想知道不同的肥料施在盆栽小番茄上,会对小番茄的生长有啥不一样的影响。

像个头啊、果实产量啊、叶子颜色这些方面会有啥差别。

三、实验材料。

1. 小番茄苗。

去花卉市场或者找个靠谱的种苗基地,挑那种健康、长得差不多高(大概10 15厘米左右)的小番茄苗,咱一共准备30棵,这样样本数量也还可以,能说明点问题。

2. 肥料。

选择三种不同的肥料。

第一种呢,是传统的有机肥,就那种腐熟的鸡粪肥,这可是纯天然的好东西。

第二种,是普通的复合肥,市面上常见的那种氮磷钾配比合适的。

第三种,咱来个新型的液体肥,说是有各种微量元素啥的。

3. 花盆和土壤。

准备30个差不多大小的花盆,别太大也别太小,直径大概20 25厘米就成。

然后装上一样的土,这土呢,就从同一个花池里挖出来的营养土,保证土质基本一致。

4. 其他工具。

小铲子,用来种小番茄苗和施肥的时候翻翻土;浇水壶,用来给小番茄浇水。

四、实验方法。

1. 分组。

把这30棵小番茄苗随机分成三组,每组10棵。

就像分糖果一样,随便抓,抓到哪棵算哪棵进哪个组。

这三组呢,第一组是有机肥组,第二组是复合肥组,第三组是液体肥组。

2. 种植和施肥。

先把小番茄苗种到花盆里,种的时候小心点,别伤着根了。

种好之后,给每个花盆做个小标记,写上是哪个组的。

施肥呢,按照肥料的说明书来。

有机肥组呢,每个花盆里先施上大概100克的有机肥,把它和土拌匀了再种小番茄苗。

复合肥组,按照说明,每盆施5克左右的复合肥,也是和土拌匀。

液体肥组呢,按照稀释比例配好溶液,然后每盆浇上大概200毫升的液体肥溶液。

3. 日常养护。

把这30盆小番茄都放在一个光照比较充足的地方,比如说朝南的阳台或者院子里。

每天早上给它们浇一样多的水,大概每盆200 300毫升,具体看土壤的干湿情况。

单因素实验的设计

单因素实验的设计

为 的区间,即有 ac db 。
即 1

2.无论删掉哪一段,例如删掉(db),在留下的新区间[ad]内,再插入一新点 e, 使 e,f(即为原区间中 c)在新区间[a,d]中的位置与 c,d 在原区间[a,b]中的位置具有 相同的比列。 这就保证了每次都以同一入的比率缩短区间。这样做的目的是为了减少函数值的 计算次数。
解出

5 1 0.618 2
(另一根
5 1 2 负数,舍)
3 5 0.382
再由①式得
2
3) 0.618法一般步骤
• ①确定实验范围(在一般情况下,通过预实验或其它先验信息,确定了 实验范围[a,b] );
• ②选实验点(这一点与前述均分、对分法的不同处在于它是按0.618、 0.382的特殊位置定点的,一次可得出两个实验点x1,x2的实验结果);
• ③根据“留好去坏”的原则对实验结果进行比较,留下好点,从坏点处 将实验范围去掉,从而缩小了实验范围;

④在新实验范围内按0.618、0.382的特殊位置再次安排实验点,
重复上述过程,直至得到满意结果,找出最佳点。
3) 0.618法具体作法
x1=a+0.618(b-a) x2=a+0.382(b-a)
下面通过实例,说明黄金分割法设计实验的具体步骤。 例 1: 目前,合成乙苯主要采用乙烯与苯烷基化的方法。为了因地 制宜,对于没有石油乙烯的地区,我们开发了乙醇和苯在分子筛催化下 一步合成乙苯的新工艺: C6H6+C2H5OH—→C6H5C2H5+H2O 筛选了多种组成的催化剂,其中效果较好的一种催化剂的最佳反应温 度,就是用黄金分割法通过实验找出的。 初步实验找出,反应温度范围在 340-420℃之间。在苯与乙醇的摩 尔比为 5:1,重量空速为 11.25h-1 的条件下,苯的转化率 XB 是:

单因素实验设计

单因素实验设计

单因素试验设计是指只有一个因素(或仅考查一个因素)对试验指标构成影响的试验。

单因素试验设计要求对试验水平进行布局和优化,是一种水平试验设计。

单因素试验设计方法可分为两类:同时试验设计和序贯试验设计。

同时试验设计就是一次给出全部试验水平,一次完成全部试验并得到最佳试验结果,如穷举试验设计。

序贯试验设计要求分批进行试验,后批试验需根据前批试验结果进一步优化后序贯进行,直到获取最佳试验结果,如平分试验设计、黄金分割试验设计。

一、试验范围与试验精度(一)试验范围试验范围指试验水平的范围。

试验设计时需预先确定试验范围,一般采用两种方法:○1经验估计。

可凭经验估计试验范围,并在试验过程中作调整。

○2预先试验。

要求在较大范围内进行探索,通过试验逐步缩小范围。

(二)试验间隔与试验精度试验间隔是指试验水平的间距,试验精度是指试验结果逼近最佳水平的程度。

显然,试验间隔与试验精度是一对矛盾,试验间隔越大,试验精度越低。

在保证试验精度的条件下,试验水平变化而引起的试验结果变动必须显著地超过试验误差。

(三)试验顺序在确定试验顺序时,往往习惯于按照试验水平高低依次做试验。

这样,随着试验的进行,有些因素会发生缓慢变化甚至影响试验结果。

因此,正确的做法是采用随机化方法来确定试验顺序。

在试验工作量较少或者试验准确度要求较低时,也可以采用按水平高低或者选取中间试验点的方法来进行试验排序。

需强调指出,以上不仅对单因素试验设计,而且对所有试验设计方法都适用。

二、单因素试验设计(一)平分试验设计平分试验设计就是平分试验范围,把其中间点作为新试验点,然后不断缩小试验范围直到找到最佳条件。

当试验结果呈单向变化时,也就是说最佳试验点只可能在试验中间点的一侧,可采用平分试验设计。

该方法简便易行,但要注意单向性特征。

(二)穷举试验设计与均分试验设计穷举试验设计是将所有可能的试验点在一批试验中全部进行试验。

均分试验设计是根据试验精度要求,均分整个试验范围以获得所有试验点。

第四讲 真实验(一) 单因素实验设计

第四讲 真实验(一) 单因素实验设计

被试命名不同清晰度图形的正确数
方差分析表 • F (2, 33) = 5.315, p = 0.01, MSe = 276.783
• • • • •
多重比较 主效应显著时,需进一步弄清楚哪些水平间差异显著 因素只包含两个水平,主效应显著即两个水平间差异显著 因素包含两个以上的水平,主效应显著需进行多重比较 方差分析: 高清晰>中清晰;高清晰>低清晰。 F(1,22)= 4.78,p < 0.05,MSe = 285.59 中、低清晰无差异
单因素随机区组实验设计
• • • 适用情境: 研究中有一个自变量,自变量有2个或多个水平 研究中还有一个无关变量,也有两个或多个水平 自变量的水平和无关变量的水平之间没有交互作用
当无关变量是被试变量时,将区组内的被试分 配给不同的实验处理;区组内的被试在无关变量上更 同质,接受实验处理时可以看作不受无关变量的影响 ;区组之间的变异反映了无关变量的影响,可以利用 方差分析进行分离,以减少误差变异
2字频(高、低) ×2字号(大、小)两因素设计
1000
1000
800
800
阅读反应时/ms
600 字频高 字频低 400
阅读反应时/ms
600 字频高 字频低 400
200
200
0 大 字号 小
0 大 字号 小
简单效应 • 在因素实验中,一个因素的水平 在另一个因素的某个水平上的变 异,称简单效应 • 方差分析中发现几个因素间交互 作用显著时,需要进一步做简单 效应检验,以说明因素间交互作 用的实质 • 如一个2×2的两因素实验中,A 因素的两个水平在B1水平上的 方差叫A在B1水平上的简单效应 ,在B2水平上的方差叫A在B2 水平上的简单效应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高照明度 中等照明度
低照明度
组X
X
组Y
Y
组Z
Z
目录
原始数据表如下:
姓名
1 张明 ……
30 刘修 31 刘冬
…… 60 黄卫 61 李家
…… 90 张岩
组别(V1)
工作效率(V2)
高(照明度) 56

67
中等
53
中等
61

45

68
目录
不同照明条件对工作效率影响研究的统计分析:
不同照明条件下工作效率比较
如果水平数为2,则进行 independent samples T test; 如果水平数大于2,则进行完全随机的方差分析: analyze— compare means—One-Way ANOVA
(3目) 录两个处理水平的单因素完全随机设计举例
不同照明条件对工作效率的影响研究
研究2种照明条件下工人车零件的效率。被试60人,随机分 为2组,每组30人,每组被试分别接受1种处理,见下表:
高照明度
低照明度
组X
X
组Y
Y
目录
不同照明条件对工作效率的影响研究:
原始数据表
姓名
组别(V1)
工作效率(V2)
1 张明 ……
29 刘修
30 刘冬
31 黄卫
32 李家 ……
60 张岩
高(照明度) 56

67

53

61

45

68
目录
不同照明条件对工作效率影响研究的统计分析:
表1 不同照明条件下工作效率比较
目录
-- 基本方法:首先将被试在无关变量上进行匹配,并区分为 不同的组别(每一区组内的被试在无关变量上相似,不同区 组的被试在无关变量上不同),然后把各区组的被试随机分 配给自变量的各个水平,每个被试只接受一个水平的处理。
除了被试变量,环境因素也是潜在可考虑的区组变量, 如时间、季节、地点、仪器等方面的因素也可以进行区组。
目录
平方和分解: SST = SSA + SSE
SST是总平方和; SSA是因素A的效应平方和;SSE是误差平 方和,指不能由实验处理解释的变异,是由被试间个体差 异和实验误差引起的。
目录
(2)数据处理方法(SPSS统计软件): –包含的统计变量:实验的自变量A,实验的因变量Y。 –预期的统计结果:自变量A的主效应是否显著。 –实施的统计过程:
Yij 表示实验中第i个被试在第j个处理水平上的观测值。μ表示 总体平均数,αj表示水平j的处理效应,πi表示区组效应,εi(j) 表示误差变异。
总变异组成:实验处理引起的变异;区组引起的变异;误差 引起的变异。
目录
平方和分解:
SST = SSA + SSB + SSE
SST是总平方和; SSA是因素A(实验处理)的效应平方和 ;SSB是区组变量的效应平方和;SSE是误差平方和,指不 能由实验处理和区组解释的变异。
目录
(5) 单因素完全随机实验设计 应用延伸---- 控制组的应用
② 随机实验组控制组后测设计
• 基本模式:
组1 X O1
组2
O2
X 表示研究者操纵的实验处理,O1和O2表示后测成绩。
② 目随录机实验组控制组后测设计—应用举例
以“初一年级数学自学辅导教学协作实验研究”为例
• 研究目的:对数学自学辅导教学与传统教学的效果进行比较 • 研究者随机选择了北京市若干所中学,并将从小学升入中学 的学生随机分为两班,随机选择其中一个班为实验组,另一个 班为控制组。 • 实验班采用数学自学辅导教学方式,实验材料为自学辅导教 材,内容为初一代数;控制组采用传统课堂教学方式,学习材 料为统编教材,内容与实验班相同,时间为一个学期。
目录
– 实验设计模型:Yij = μ+αj+εi(j) (i=1,2,...,n; j=1,2,...,p) • Yij 表示实验中第i个被试在第j个处理水平上的观测值。μ表 示总体平均数,αj表示水平j的处理效应,εi(j)表示误差变异。
• 即:总变异由两部分组成:实验处理引起的变异(αj); 误差引起的变异(εi(j))。
目录
(3) 应用举例
研究题目:文章的生字密度对学生阅读理解的影响。 研究假设:阅读理解随着生字密度的增加而下降。 实验变量:自变量——生字密度,含有4个水平(5:1、10:1、
15:1、20:1); 因变量——阅读测验的分数; 无关变量——被试的智力水平。
目录
实验设计:单因素随机区组实验设计 被试及程序:首先给32个学生做智力测验,并按测验分数将被 试分成8个组,每组4人(智力水平相等),然后随机分配每个 区组内的4个被试阅读一种生字密度的文章。
组别
人数 制造零件数(个) 统计检验
高照明度组 低照明度组
30 78.65±13.24 t=3.876**
30 67.55 ±17.12
注:**表示p<0.01
(4目) 录3个处理水平的单因素完全随机实验设计举例
不同照明条件对工作效率的影响研究:
研究3种照明条件下工人车零件的效率。被试90人,随机分 为3组,每组30人,每组被试分别接受1种处理,见下表:
目录
(1)基本特点 – 适用条件:研究中有一个自变量(P≥2),两个无关变量 (P≥2),三个变量的水平数P相等;假定自变量的水平与无 关变量的水平之间无交互作用。
目录
– 基本方法:一个无关变量的水平被分配给P行,另一个无关 变量的水平被分配给P列,随机分配处理水平给P2个方格,每 个处理水平仅在每行、每列中出现一次,每个方格单元中分 配一个或多个被试接受处理,实验中需要的被试数量为 N = n P2 。
拉丁方格的标准块和随机化:任意选择一个拉丁方格标准块, 然后先随机化标准块的行,再随机化标准块的列。如上图所示。
目录
– 误差控制:区组法(无关变量纳入法)的扩展,通过统 计处理,可以分离出两个无关变量引起的变异,进一步提 高实验精度。
目录
– 实验设计模型: Yijkl = μ+αj+βk+γl + ε pooled (i=1,2,......,n; j=1,2,......,p; k=1,2,......,p; l=1,2,......,p) Yijkl 表示被试i在处理水平j上的分数,μ表示总体平均数,αj表 示水平j 的处理效应;βk 表示无关变量B的效应,γl 表示无关 变量C的效应, ε pooled 表示误差变异。
• 实验实施处理前,前测验是要求两组学生阅读20个标题, 并预测其所述内容。然后用3周时间对实验组进行标题阅读 教学,而对控制组进行常规阅读教学。
• 3周教学结束后,同时对两组学生进行同样的后测验,要求 学生阅读类似于前测验的20个标题,并预测其所报道的内容。 • 记分方式:对前测、后测所预测内容实施5点量表的客观计 分标准,计算得分作为因变量指标。
数据: x1 x2 x3 x4 x5 x6 x7 x8 a1: 3 6 4 3 5 7 5 2 a2: 4 6 4 2 4 5 3 3 a3: 8 9 8 7 5 6 7 6 a4: 9 8 8 7 12 13 12 11
目录
SPSS中数据输入格式
生字密度
1 2 3 4 1 2 3 4 1 2 3 4
(2目)数录据处理方法(SPSS统计软件)
– 包含的统计变量:自变量A,区组变量X,因变量Y。 – 实施的统计过程:
如果水平数为2,则进行 paired-samples T test; 如果水平数大于2,则进行完全随机方差分析: analyze — General Linear Model —Univariate… – 预期的统计结果:自变量A的主效应是否显著;无关变量即 区组变量效应是否显著;若自变量主效应显著,则进行平均数 多重检验。
3. 单因素拉丁方实验设计(运用较少,作了解)
拉丁方设计是一个包含P行、P列,把P个字母分配给 方格的管理方案,其中每个字母在每行中出现一次,在每 列中出现一次。
扩展了随机区组设计的原则,可以分离出两个无关 变量的效应。一个无关变量的水平在横行分配,另一个无 关变量的水平在纵列分配,自变量的水平分配给方格的每 个单元。
区组
1 1 1 1 2 2 2 2 3 3 3 3
阅读测验分数
3 4 8 9 6 6 9 8 4 4 8 8
目录 – 思考与讨论:
• 请大家结合学习或生活实际,想一个单因素完全随 机的实验设计…… • 并在想出的实验设计的基础上,区分出一个无关变 量,想一个单因素随机区组实验设计……
目录
单因素实验设计
目录
① 随机实验组控制组前测后测设计----应用举例
• 研究目的:通过一系列教学程序和方法的训练,来培养学 生根据报纸标题预测所报道内容的能力。 • 随机选取了46名8年级的学生,并随机将他们分为两组, 随机选择其中一个组为实验组,接受标题阅读教学,而另一 个组为控制组,仍接受常规阅读教学。
目录
目录
• 思考与讨论: – 如何验证一种智力开发玩具是否确实有助于提 高儿童的智力水平? – 请提出实验设计方案。
目录
单因素实验设计
2. 单因素随机区组实验设计
(1)基本特点: – 适用条件:研究中有一个自变量,自变量有两个或多于两 个水平;研究中还有一个无关变量,并且自变量的水平与无 关变量的水平之间无交互作用。
总变异组成:实验处理A引起的变异;无关变量B、C引起的 变异;误差引起的变异。
目录
平方和分解:
SST = SSA + SSB + SSC + SSE
SST是总平方和; SSA是因素A(实验处理)的效应平方和; SSB是无关变量B的效应平方和; SSC是无关变量C的效应平 方和; SSE是误差平方和。
相关文档
最新文档