(整理)图像边缘分割

(整理)图像边缘分割
(整理)图像边缘分割

边缘分割

主要内容:

讲解图像锐化的含义及用途,通过分析图像细节特征,讲解图像锐化的方法,主要是常见的边缘算子:梯度算子、Robert算子、Sobel算子、Prewitte算子、拉普拉斯算子、Log算子、高通滤波的原理及实现。

重点:

1.理解锐化和边缘检测的含义;

2.掌握各种算子的特点

3.能够对灰度图像采用各种微分算子进行锐化或边缘检测

难点:

各算子的原理的理解及仿真实现

1.图像细节的基本特征

边缘对应于图像中灰度发生变化的部分,在图像中,常见的边缘主要有以下几种情况:灰度突变、灰度渐变、细线型和点结构,如下图所示,图像中包含了常见的边缘情形。

在图中取一条扫描线,绘制该直线上像素点的灰度曲线、该曲线的一阶微分曲线和二阶微分曲线,从分析这些曲线,得出以下结论:

(1)灰度变化部分呈阶跃形:对应于一阶微分极大值、二阶微分过零点;

(2)灰度变化呈细线形:对应于一阶微分的过0点,二阶微分的极小值点;

(3)灰度渐变性:一般没有精确边界点。

因此,图像锐化和边缘检测可以通过检测图像信号的微分进行。

2.一阶微分算子

均值产生钝化的效果,微分产生锐化的效果。

在图像处理中应用微分最常用的方法是计算梯度。

(1)梯度法

1)原理与公式

对于图像函数f(x,y),它在(x,y)处的梯度为

用矢量的幅度代替它:

离散的数字矩阵,用差分来代替微分:

生成梯度图像:

2)示例

运算:

示例:

(2)单方向的一阶锐化算法

1)原理与模板

单方向的一阶梯度算法是指给出某个特定方向上的边缘信息。

因为图像为水平、垂直两个方向组成,所以,所谓的单方向梯度算法实际上是包括水平方向与垂直方向上的锐化。

水平方向的微分算子:,

垂直方向的微分算子

2)示例

运算:

上述运算结果中存在负值,把负值变到有效范围,方法不同,效果不同:整体加一个正整数,以保证所有的像素值均大于零。可以获得类似浮雕的效果。将所有的像素值取绝对值。可以获得对边缘的有方向提取。

浮雕效果示例:

边缘提取效果示例:

(3)Robert算子

(4)Sobel算子

1)公式

2)两个优点

引入平均因素,对图像中随机噪声有一定的平滑作用。

相隔两行或两列求差分,故边缘两侧的元素得到了增强,边缘显得粗而亮。

3)Sobel算子示例

4)Sobel算子扩展

两种算子检测边缘视觉效果区别不大,但扩展算子检测的边缘具有更精确的方向性,在需要边缘方向信息的情况下,扩展算子应用更广。

(5)Prewitt算子

Prewitt算子与Sobel算子的区别在于模板系数的不同,把模板中间的2变成1,同样具有扩展算子。

Priwitt算子扩展

3.二阶微分算子二阶微分算子

(1)Laplace算子1)公式

2)模板表示

3)Laplace算子锐化

(1)用于拉普拉斯模板中心系数为负

(2)用于拉普拉斯模板中心系数为正

4)Laplace算子示例

5)Laplace变形算子

(2)Wallis微分算子

人眼对画面信号的处理过程有一个近似的对数运算环节,通过对数运算构成非线形动态范围调整,增强图像。 Wallis微分算子结合了Laplace 算子和对数算子,考虑了人眼视觉特性,因此,与Laplace等其他算法相比,可以对暗区的细节进行比较好的锐化。。

4.高斯滤波与边缘检测

高斯滤波与边缘检测

(1)高斯函数

二元高斯函数

一元高斯函数的二阶导数

高斯函数剖面图及一二阶导数图形:

2)高斯函数的某些有用特性

随着逐渐远离原点,权值逐渐减小到零,这表明离中心较近的图像值比远处的图像值更重要;标准差σ决定邻域范围,总权值的95%包含在2σ的中间范围内

一维高斯函数的二阶导数具有光滑的中间突出部分,该部分函数值为负,还有两个光滑的侧边突出部分,该部分值为正。零交叉位于-σ和+σ处,与g(x)的拐点和g′(x)的极值点对应

1D形式绕垂直轴旋转可得到各向同性的2D函数形式(在任意过原点的切面上具有相同的1D高斯截面),其二阶导数形式好像一个宽边帽或称为墨西哥草帽

从数学推导上,帽子的空腔口沿z=g(x,y)轴向上,但在显示和滤波应用中空腔口一般朝下,即中间突起的部分为正,帽边为负。

3)LoG滤波器

Marr用高斯函数先对图像作平滑,然后用Laplacian算子检测边缘,简称LOG滤波器

二元高斯函数:

将g与图像函数f卷积,得到一个平滑的图像函数,对该函数做Laplacian运算,提取边缘。

可以证明:

为LoG滤波器,也称为Marr-Hildrech算子

参数σ称为尺度因子,大的值可用来检测模糊的边缘,小的值

可用来检测聚焦良好的图像细节。

LOG算子的形状如图所示,常

称为墨西哥草帽。

这个滤波器的大小由σ的数值或等价地由w2D的数值来确定。为了不使函数被过分地截短,它应在足够大的窗口内作

计算,窗口宽度通常取为

LOG 滤波器也可以采用模板形式:

经典图像边缘检测

经典图像边缘检测(微分法思想)——Sobel算子 2008-05-15 15:29Sobel于1970年提出了Sobel算子,与Prewitt算子相比较,Sobel算子对检测点的上下左右进一步加权。其加权模板如下: 经典图像边缘检测(微分法思想)——Roberts交叉算子 2008-05-14 17:16 如果我们沿如下图方向角度求其交叉方向的偏导数,则得到Roberts于1963年提出的交叉算子边缘检测方法。该方法最大优点是计算量小,速度快。但该方法由于是采用偶数模板,如下图所示,所求的(x,y)点处梯度幅度值,其实是图中交叉点处的值,从而导致在图像(x,y)点所求的梯度幅度值偏移了半个像素(见下图)。

上述偶数模板使得提取的点(x,y)梯度幅度值有半个像素的错位。为了解决这个定位偏移问题,目前一般是采用奇数模板。 奇数模板: 在图像处理中,一般都是取奇数模板来求其梯度幅度值,即:以某一点(x,y)为中心,取其两边相邻点来构建导数的近似公式:

这样就保证了在图像空间点(x,y)所求的梯度幅度值定位在梯度幅度值空间对应的(x,y)点上(如下图所示)。 前面我们讲过,判断某一点的梯度幅度值是否是边缘点,需要判断它是否大于设定的阈值。所以,只要我们设定阈值时考虑到加权系数产生的影响便可解决,偏导数值的倍数不是一个问题。 经典图像边缘检测(微分法思想)——Prewitt算子 2008-05-15 11:29 Prewitt算子 在一个较大区域中,用两点的偏导数值来求梯度幅度值,受噪声干扰很大。若对两个点的各自一定领域内的灰度值求和,并根据两个灰度值和的差来计算x,y的偏导数,则会在很

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

图像边缘检测算法体验步骤

图像边缘检测算法体验步骤 图像边缘检测算法体验步骤(Photoshop,Matlab)1. 确定你的电脑上已经安装了Photoshop和Matlab2. 使用手机或其他任何方式,获得一张彩色图像(任何格式),建议图像颜色丰富,分辨率比较高,具有比较明显的图像边界(卡通图像,风景图像,桌面图像)3. 将图像保存到一个能够找到的目录中,例如img文件夹(路径上没有汉字)4. 启动Photoshop,打开img文件夹中的图像5. 在工具箱中选择“矩形选择”工具,到图面上选择一个区域(如果分辨率比较高,建议不要太大,否则计算过程比较长)6. 点击下拉菜单【文件】-【新建】,新建一个与矩形选择框同样尺寸的Photoshop图像,不要求保存该图像7. 将该彩色图像转换为亮度图像,即点击下拉菜单【图像】-【模式】-【灰度】,如提示是否合并,选择“Yes”8. 将该单色的亮度图像另存为Windows的BMP文件,点击下拉菜单【文件】-【存储为】,在“存储为”窗口中,为该文件起一个名字,例如test1(保存为test1.bmp)9. 启动Matlab,将当期路径(Current Directory)定位到图像文件夹,例如这里的img文件夹10. 使用imread命令读入该图像,在命令行输入:>> f = imread(test1.bmp);11. 在Matlab中显示该图像,在命令行输入:>> figure, imshow(f)12. 然后,分别使用Matlab图像工具箱中的Edge函数,分别使用Sobel算法,高斯-拉普拉斯(Log)算法和Canny算法得到的边缘图像:在命令行输入:>> g_sobel = edge(f, sobel, 0.05); >> g_log = edge(f, log, 0.003, 2.25); >> g_canny = edge(f, canny, [0.04 0.10], 1.5);13 得到边缘图像计算结果后,显示这些边缘图像: >> figure, imshow(g_sobel) >> figure, imshow(g_log) >> figure, imshow(g_canny)14 可以用不同的图像做对比,后续课程解释算法后,可以变换不同的阈值,得到不同的边缘图像

实验三 图像的边缘检测

实验三图像的边缘检测 一、实验目的与要求 1、了解图像边缘提取的基本概念; 2、了解进行边缘提取的基本方法; 3、编程实现对所给图像的边缘进行提取。 二、知识点 1、边缘检测的思想和原理 图像理解是图像处理的一个重要分支,研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。 由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷积的方法。导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。

一阶导数是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率,而方向上的灰度变化率可以用相应公式进行计算;对于数字图像,应该采用差分运算代替求导,差分公式参考相关教材。 2、常用的梯度算子 (1)Roberts Cross算子,它的2个2 X2模板如图3所示。 图3 Robert Cross算子模板 (2)Prewitt 算子,它的2个3×3模板如图4所示。 图4 Prewitt算子模板 (3)Sobel 算子,它的2个3×3模板如图5所示。 图3 Sobel算子模板 3、高斯拉普拉斯(LoG)算法 高斯拉普拉斯(LoG)算法是一种二阶边缘检测方法。它通过寻找图像灰度值中二阶微分中的过零点(Zero Crossing)来检测边缘点。其原理为,灰度

实验三图像分割与边缘检测

数字图像处理实验报告 学生姓名王真颖 学生学号L0902150101 指导教师梁毅雄 专业班级计算机科学与技术1501 完成日期2017年11月06日

计算机科学与技术系信息科学与工程学院

目录 实验一.................................................................................................. 错误!未定义书签。 一、实验目的.................................................................................................... 错误!未定义书签。 二、实验基本原理 ........................................................................................... 错误!未定义书签。 三、实验内容与要求....................................................................................... 错误!未定义书签。 四、实验结果与分析....................................................................................... 错误!未定义书签。实验总结............................................................................................... 错误!未定义书签。参考资料.. (3) 实验一图像分割与边缘检测 一.实验目的 1. 理解图像分割的基本概念; 2. 理解图像边缘提取的基本概念; 3. 掌握进行边缘提取的基本方法;

图像边缘检测及提取,分水岭算法

1.几种算子图像边缘提取: 程序代码如下: 运行结果: 原图为一堆苹果(彩图),各算子处理后的边缘提取图:

分水岭算法实现: a.直接对图像进行分水岭算法处理 代码如下:(原图还是上题一堆苹果) 运行结果如右图: 很明显,属于过度分割了。下面有改进算法: b.改进算法代码如下: 实现包括下列步骤: (1)读图像。读入图像 (2)对比度最大化。注意到图像中有许多彼此连通的 不同大小的对象。为使通过watershed变换找到的低 谷数目最小,我们使感兴趣的对象的对比度达到最 大。对比度增强的一个常用的技术是综合应用top— hat和bottom—hat变换。 top—hat变换定义为原图像和它的开之差。图像的 开是一与特定结构元素匹配的图像前景部分的集合。 bottom—hat变换定义为在原图像和它的闭之间的 差。图像的闭是一与特定结构元素匹配的图像背景 的集合。 通用的结构元素是正方形,长方形,圆盘,菱 形,球和线。既然图像中我们感兴趣的目标对象看 起来像圆盘,我们用strel函数建立一个半径为15个 像素的圆盘形结构元素。这个圆盘尺度是图像中的 目标对象的平均半径的一个估计。 (3)图像相加减。为使目标对象与分隔它们的间隙之 间的对比达到最大,用“原图top—hat图像+bottom —hat图像”得到增强的结果图。 ( 4)转换感兴趣的对象。调用watershed变换找出图像 的亮度”低谷”,把imcomplement作用 增强过的图像上,将感兴趣的目标对象转换为亮度低谷,得到增强图的补图。 (5)检测亮度低谷。对所得补图运用imextendedmin函数检测低于某特别阈值的所有亮度低谷。

图像边缘检测算子

课程设计任务书 学院信息科学与工程专业电子信息工程 学生姓名*** 班级学号09******* 课程设计题目图像边缘检测算子 课程设计目的与要求: 设计目的: 1.熟悉几种经典图像边缘检测算子的基本原理。 2.用Matlab编程实现边缘检测,比较不同边缘检测算子的实验结果。设计要求: 1.上述实验内容相应程序清单,并加上相应的注释。 2.完成目的内容相应图像,并提交原始图像。 3.用理论对实验内容进行分析。 工作计划与进度安排: 2012年 06月29 日选题目查阅资料 2012年 06月30 日编写软件源程序或建立仿真模块图 2012年 07月01 日调试程序或仿真模型 2012年 07月01 日结果分析及验收 2012年 07月02 日撰写课程设计报告、答辩 指导教师: 2012年 6月29日专业负责人: 2012年 6月29日 学院教学副院长: 2012年 6月29日

摘要 边缘检测是数字图像处理中的一项重要内容。本文对图像边缘检测的几种经典算法(Roberts算子、Sobel算子、Prewitt算子)进行了分析和比较,并用MATLAB实现这几个算法。最后通过实例图像对不同边缘检测算法的效果进行分析,比较了不同算法的特点和适用范围。 关键词:图像处理;边缘检测;Roberts算子;Sobel算子;Prewitt算子

目录 第1章相关知识.................................................................................................... IV 1.1 理论背景 (1) 1.2 数字图像边缘检测意义 (1) 第2章课程设计分析 (3) 2.1 Roberts(罗伯特)边缘检测算子 (3) 2.2 Prewitt(普瑞维特)边缘检测算子 (4) 2.3 Sobel(索贝尔)边缘检测算子 (5) 第3章仿真及结果分析 (7) 3.1 仿真 (7) 3.2 结果分析 (8) 结论 (10) 参考文献 (11)

图像边缘检测方法的研究与实现刘法200832800066

图像边缘检测方法的研究与实现刘法200832800066

青岛大学专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日

题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] ,[j i且处在强度显著变化的位置上的点.边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。

Matlab做图像边缘检测的多种方法

Matlab做图像边缘检测的多种方法 1、用Prewitt算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'prewitt',0.04); % 0.04为梯度阈值 figure(1); imshow(I); figure(2); imshow(BW1); 2、用不同σ值的LoG算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'log',0.003); % σ=2 imshow(BW1);title('σ=2') BW1 = edge(I,'log',0.003,3); % σ=3 figure, imshow(BW1);title('σ=3') 3、用Canny算子检测图像的边缘 I = imread('bacteria.BMP'); imshow(I); BW1 = edge(I,'canny',0.2); figure,imshow(BW1); 4、图像的阈值分割 I=imread('blood1.tif'); imhist(I); % 观察灰度直方图,灰度140处有谷,确定阈值T=140 I1=im2bw(I,140/255); % im2bw函数需要将灰度值转换到[0,1]范围内 figure,imshow(I1); 5、用水线阈值法分割图像 afm = imread('afmsurf.tif');figure, imshow(afm); se = strel('disk', 15); Itop = imtophat(afm, se); % 高帽变换 Ibot = imbothat(afm, se); % 低帽变换 figure, imshow(Itop, []); % 高帽变换,体现原始图像的灰度峰值 figure, imshow(Ibot, []); % 低帽变换,体现原始图像的灰度谷值 Ienhance = imsubtract(imadd(Itop, afm), Ibot);% 高帽图像与低帽图像相减,增强图像figure, imshow(Ienhance); Iec = imcomplement(Ienhance); % 进一步增强图像

数字图像边缘检测的研究与实现

任务书

主要分析几种应用于数字图像处理中的边缘检测算子,根据它们在实践中的应用结果进行研究,主要包括:Robert 边缘算子、Prewitt 边缘算子、Sobel 边缘算子、Kirsch 边缘算子以及Laplacian 算子等对图像及噪声图像的边缘检测,根据实验处理结果讨论了几种检测方法的优劣. 关键词:数字图像处理;边缘检测;算子

图像的边缘是图像的重要特征之一, 数字图像的边缘检测是图像分割、目标区域识别、区域形状提取等图像分析领域十分重要的基础, 其目的是精确定位边缘, 同时较好地抑制噪声, 因此边缘检测是机器视觉系统中必不可少的重要环节。然而, 由于实际图像中的边缘是多种边缘类型的组合, 再加上外界环境噪声的干扰, 边缘检测又是数字图像处理中的一个难题。

目录 第一章边缘的概念 (3) 第二章边缘检测 (4) 第三章边缘检测算子的应用 (8) 第四章边缘检测方法性能比较 (12) 参考文献料 (15)

第1章:边缘检测 1.1 边缘的介绍 图像边缘是图像最基本的特征,边缘在图像分析中起着重要的作用。所谓边缘是指图像局部特性的不连续性。灰度或结构等信息的突变处称为边缘,例如:灰度级的突变,颜色的突变,纹理结构的突变等。边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection).由于边缘检测十分重要,因此成为机器视觉研究领域最活跃的课题之一.本章主要讨论边缘检测和定位的基本概念,并使用几种常用的边缘检测器来说明边缘检测的基本问题. 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标],[j i 且处在强度显著变化的位置上的点. 边缘段:对应于边缘点坐标],[j i 及其方位 ,边缘的方位可能是梯度角. 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘. 边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的 边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。

图像边缘检测技术综述

第 42 卷增刊 1 中南大学学报(自然科学版) V ol.42 Suppl. 1 2011 年 9 月 Journal of Central South University (Science and Technology) Sep. 2011 图像边缘检测技术综述 王敏杰 1 ,杨唐文 1, 3 ,韩建达 2 ,秦勇 3 (1. 北京交通大学 信息科学研究所,北京,100044; 2. 中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳,110016; 3. 北京交通大学 轨道交通控制与安全国家重点实验室,北京,100044) 摘要:边缘检测是图像处理与分析中最基础的内容之一。首先介绍了几种经典的边缘检测方法,并对其性能进行 比较分析;然后,综述了近几年来出现的一些新的边缘检测方法;最后,对边缘检测技术的发展趋势进行了展望。 关键词:数字图像;边缘检测;综述 中图分类号:TP391.4 文献标志码:A 文章编号:1672?7207(2011)S1?0811?06 Review on image edge detection technologies W ANG Min-jie 1 , Y ANG Tang-wen 1,3 , HAN Jian-da 2 ,QIN Y ong 3 (1.Institute of Information Science,Beijing Jiaotong University, Beijing 100044, China? 2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academic of Science,Shenyang 110016, China? 3.State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China) Abstract: Edge detection is one of the most fundamental topics in the research area of image processing and analysis. First, several classical edge detection methods were introduced, and the performance of these methods was compared? then, several edge detection methods developed in the latest years were reviewed? finally, the trend of the research of the image edge detection in the future was discussed. Key words:digital image?edge detection?review 图像是人们从客观世界获取信息的重要来源 [1?2] 。 图像信息最主要来自其边缘和轮廓。所谓边缘是指其 周围像素灰度急剧变化的那些象素的集合,它是图像 最基本的特征。边缘存在于目标、背景和区域之 间 [3?4] ,它是图像分割所依赖的最重要的依据。边缘检 测 [5?8] 是图像处理和计算机视觉中的基本问题, 图像边 缘检测是图像处理中的一个重要内容和步骤,是图像 分割、目标识别等众多图像处理的必要基础 [9?10] 。因 此,研究图像边缘检测算法具有极其重要的意义。 边缘检测是计算机视觉和图像处理领域的一项基 本内容。准确、高效地提取出边缘信息一直是该领域 研究的重点内容 [11] 。最初的经典算法可分为边缘算子 法、曲面拟合法、模板匹配法、门限化法等。近年来, 随着数学理论和人工智能的发展,又出现了一些新的 边缘检测的算法 [12?13] ,如基于数学形态学的边缘检 测 [14] 、小波变换和小波包变换的边缘检测法 [15] 、基于 模糊理论的边缘检测法 [16?17] 、基于神经网络的边缘检 测法 [18] 、基于分形几何的边缘检测算法 [19] 、基于遗传 算法的边缘检测法 [20?21] 、漫射边缘的检测方法 [22] 、多 尺度边缘检测技术 [23] 、亚像素边缘的定位技术 [24] 、 收稿日期:2011?04?15;修回日期:2011?06?15 基金项目:轨道交通控制与安全国家重点实验室开放基金资助项目(RCS2010K02);机器人学国家重点实验室开放基金资助项目(RLO200801);北 京交通大学基本科研业务费资助项目(2011JBM019) 通信作者:王敏杰(1988-), 女, 黑龙江五常人, 硕士研究生, 从事图像处理和计算机视觉研究; 电话: 010-51468132; E-mail: wangminjie1118@https://www.360docs.net/doc/818272132.html,

图像边缘检测方法的研究与实现刘法200832800066

青岛大学 专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班 学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日 题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] i且处在强度显著变化的位置上的点. ,[j 边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.

边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。 Roberts,Sobel,Prewwit是基于一阶导数的边缘检测算子,图像的边缘检测是通过2*2或者3*3模板作为核与该图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。 Laplace边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。Laplace算子的改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是拉普拉斯高斯(LOG)算子。前边介绍的边缘检测算法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数过零点。Canny算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足一定约束条件下推导出的边缘检测最优化算子。 1.3 边缘检测算法 对于边缘的检测常常借助于空域微分算子进行,通过将其模板与图像卷积完成。两个具有不同灰度值的相邻区域之间总存在灰度边缘。灰度边缘是灰度值不连续(或突变) 的结果,这种不连续常可利用求一阶和二阶导数方便地检测到。已有的局部技术边缘检测方法,主要有一次微分(Sobel 算子、Robert s 算子等) 、二次微分(拉普拉斯算子等)。这些边缘检测器对边缘灰度值过渡比较尖锐且噪声较小等不太复杂的图像,大多数提取算法均可以取得较好的效果。但对于边缘复杂、采光不均匀的图像来说,则效果不太理想。主要表现为边缘模糊、边缘非单像素宽、弱边缘丢失和整体边缘的不连续等方面。 用算子检测图像边缘的方法是用小区域模板对图像进行处理,即采用卷积核作为掩模模板在图像中依次移动,完成图像中每个像素点同模板的卷积运算,最终输出的边缘幅度结果可以检测出图像的边缘。卷积运算是一种邻域运算。图像处理认为:某一点像素的结果不但和本像素灰度有关,而且和其邻域点值有关。运用模板在图像上依此对每一个像素进行卷积, 即模板上每一个点的值与其在图像上当前位置对应的像素点值相乘后再相加,得出的值就是该点处理后的新值。 边缘检测算法有如下四个步骤:

一种新的红外热像仪图像边缘检测方法

收稿日期:2013-04-05;修订日期:2013-05-18 基金项目:中央高校基本科研业务费专项资金(2010YD03) 作者简介:夏清(1987-),女,博士生,主要从事红外图像处理、摄影测量与遥感研究。Email:xiaqingfriendxia@https://www.360docs.net/doc/818272132.html, 导师简介:胡振琪(1963-),男,博士生导师,主要从事遥感监测、3S 技术与土地复垦等方面研究。Email:huzqbj@yahoo.一种新的红外热像仪图像边缘检测方法 夏清,胡振琪,位蓓蕾,王亚云,陈超 (中国矿业大学(北京)土地复垦与生态重建研究所,北京100083) 摘要:针对红外热像仪采集的红外影像边缘信息模糊、影像存在噪声、边缘信息难提取的特点,提出了一种基于数学形态学对LOG 算子改进和Roberts 算子数据相结合的边缘检测新方法。该方法首先引进形态学中的开闭运算对具有随机噪声的红外影像进行滤波,接着运用拉普拉斯算法边缘检测,然后再采用Roberts 算子提取边缘信息,建立相应的融合规则及阈值条件,将两种方法检测出的影像边缘信息融合,得到最终的融合影像。最后,对增加椒盐噪声的影像用MATLAB 进行仿真实验,结果表明,该方法结合了两种检测算子的优点,定位精度高,有很强的抗噪性,获得了比较理想的检测效果。关键词:影像处理;边缘检测;数学形态学;LOG 算子;红外影像中图分类号:TP751.1文献标志码:A 文章编号:1007-2276(2014)01-0318-05 New edge detection method for images of infrared thermal imager Xia Qing,Hu Zhenqi,Wei Beilei,Wang Yayun,Chen Chao (Institute of Land Reclamation and Ecological Reconstruction,China University of Mining and Technology(Beijing), Beijing 100083,China) Abstract:According to the character of fuzzy image edge,noise image,difficult to extract the edge information collected by infrared thermal imager,a new edge detection method was proposed.The method combined LOG operator improved by mathematical morphology with Roberts operator.First the thermal infrared camera images with random noise was filtered using opening and closing operation of mathematical morphological.Then the Laplace algorithm was used for edge detection of thermal infrared images.Second,Roberts operator was introduced to extract edge information.Fusing edge information of images detected by two methods,at the same time,establishing corresponding fusion rule and the threshold condition were applied for this images,the final fused image was obtained.Finally,MATLAB was introduced to perform the experimental simulation for adding salt and pepper noise image.The experimental results show that the method has the advantages of two detection operators and has a good effect in noise suppression and positioning accuracy.Meanwhile the proposed algorithm is insensitive to noise and ideal detection results are obtained. Key words:image processing; edge detection;mathematical morphology;the improved LOG operator;infrared image 第43卷第1期 红外与激光工程2014年1月Vol.43No.1Infrared and Laser Engineering Jan .2014

图像边缘检测方法的比较

课程大作业实验报告 图像边缘检测方法的比较 课程名称:数字图像处理 指导教师 报告提交日期2010年05月项目答辩日期2010年05月

目录 1、项目要求 (3) 1.1、要求一 (3) 1.2、要求二 (3) 1.3、要求三 (3) 2、项目开发的环境 (3) 3、边缘检测的系统分析 (4) 3.1、系统模块分析 (4) 3.2、系统的关键问题以及解决方法 (4) 4、系统设计 (5) 4.1程序的流程图以及说明 (5) 4、2程序的主要功能模块 (7) 4.2.1 水平梯度算子模块 (7) 4.2.2 垂直梯度算子模块 (8) 4.2.3 水平垂直梯度算子模块 (8) 4.2.4 罗伯茨算法模块 (9) 4.2.5 Sobel模块 (10) 4.2.6 Prewitt模块 (11) 4.2.7 拉普拉斯边缘检测模块 (11) 4.2.8 基于Kirsch算子的快速边缘检测模块 (11) 4.2.9 Robinson算法模块 (12) 4.2.10 高斯LOG模块 (13) 4.2.11 梯度幅值自适应 (14) 5.实验结果与分析 (14) 5.1 实验结果和分析 (15) 5.2 项目的创新之处 (19) 5.3 存在问题及改进设想 (19) 6.心得体会 (20) 6.1 系统开发的体会 (20) 6.2 对本门课程的改进意见或建议 (20)

1 项目要求 1.1 对以下方法编程实现: (1)水平梯度算子; (2)垂直梯度算子; (3)水平垂直梯度算子; (4)罗伯茨梯度算子; (5)拉普拉斯算子; (6)柯西算子; (7)Prewitt算子; (8)Sobel算子; (9)拓展:其他的边缘检测算法 1.2 界面整合为菜单形式,在程序的主界面上显示每种方法的处理时间(利用C语言的 时间函数,计算出处理时间)。 1.3 有好的PPT和电子文档。 2 项目开发的环境 硬件部分:PC机 软件部分:CVI5.0、IMAQ vision(Imaq_CVI.fp、Imaq_CVI.h、Imaq_CVI.lib) 使用语言:C语言

数字图像处理实验报告_图像边缘检测和特征提取

华南师范大学实验报告 一、实验目的 1、.掌握边缘检测的Matlab实现方法 2、了解Matlab区域操作函数的使用方法 3、了解图像分析和理解的基本方法 4、了解纹理特征提取的matlab实现方法 二、实验平台 计算机和Matlab软件环境 三、实验内容 1、图像边缘检测 2、图像纹理特征提取 四、实验原理 1、图像边缘检测 图像理解是图像处理的一个重要分支,它研究的是为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。 由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷积的方法。 导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。 一阶导数 f x ? ? 与 f y ? ? 是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率, 而方向α上的灰度变化率可以用下面式子计算:

相关文档
最新文档