图像边缘检测器的设计与实现

合集下载

基于C#的模板算子法数字图像边缘检测技术分析与实现

基于C#的模板算子法数字图像边缘检测技术分析与实现

5 10 ) 40 4
摘 要 :边缘检测是图像处理中的重要 内容,边缘是图像中灰度值不连续或突变的结果。边缘检测的方法有很 多,本文仅 就典型的模板 算子法进行分析 并对原 Sbl oe算子 、Pe i 算子边缘检 测方向模板进行扩展 ,然后 用 c ≠ r t wt ≠ 编程语 言实现这些算 法。 关键 词 :边缘检 测 ;模板 算子 ;算 法扩展 ;c≠ ≠
Absr c : g t cin i n i p ra at o m a e pr c s ig, g a aue e ge i n t c tn o o t to t a tEd e dee to s a m o tntp r f i g o e sn i ma e y v l d s o oni u us r mu ai n r s lsEdg ee to meho s ae m a ,hs o e ao nl n e p c fa t pc ltm plt t d f ra ayss a h rgna e ut. e d t cin t d r nyt i p r tro y i r s e to y ia e ae meho o n l i nd t e o ii l So e peao , e t o r tr e g ee t ie to o he tm p ae e pa in.nd C≠ r g a m ig lng g i h s b lo r trPrwit pea o d e d tci dr cin ft e lt x nso a }p o r m on n a ua e usng t e e ag i m s lort h .
计算机光盘软件与应用
软件设计开发
C m u e D S f w r n p l c t o s o p t r C o t a e a dA p ia in 2 1 年第 1 01 7期

基于Matlab的图像边缘检测算法的实现及应用汇总

基于Matlab的图像边缘检测算法的实现及应用汇总

目录摘要 (1)引言 (2)第一章绪论 (3)1.1 课程设计选题的背景及意义 (3)1.2 图像边缘检测的发展现状 (4)第二章边缘检测的基本原理 (5)2.1 基于一阶导数的边缘检测 (8)2.2 基于二阶导的边缘检测 (9)第三章边缘检测算子 (10)3.1 Canny算子 (10)3.2 Roberts梯度算子 (11)3.3 Prewitt算子 (12)3.4 Sobel算子 (13)3.5 Log算子 (14)第四章MATLAB简介 (15)4.1 基本功能 (15)4.2 应用领域 (16)第五章编程和调试 (17)5.1 edge函数 (17)5.2 边缘检测的编程实现 (17)第六章总结与体会 (20)参考文献 (21)摘要边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。

该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。

梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。

边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。

在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。

关键词:边缘检测;图像处理;MATLAB仿真引言边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。

许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。

但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。

早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。

边缘检测及拟合-概述说明以及解释

边缘检测及拟合-概述说明以及解释

边缘检测及拟合-概述说明以及解释1.引言1.1 概述边缘检测及拟合是图像处理和计算机视觉领域中重要的技术研究方向,旨在从图像中提取出物体或目标的边缘信息,并进一步对边缘进行拟合和分析。

通过边缘检测和拟合,可以实现诸如物体检测、轮廓提取、目标跟踪、三维重构等多种计算机视觉任务。

边缘是指图像中灰度或颜色变化剧烈的区域。

边缘检测的目标是在图像中准确地标记和定位出这些边缘。

边缘检测是计算机视觉中常用的技术,具有广泛的应用领域,例如机器人导航、图像识别、医学影像处理等。

通过边缘检测,我们可以对图像进行分割,从而将图像分成不同的区域,方便后续处理。

边缘拟合是对图像中的边缘进行曲线或直线拟合的过程。

通过对边缘进行拟合,可以得到更加平滑的边缘曲线或直线,从而更好地描述物体的形状和轮廓。

边缘拟合广泛应用于图像重建、形状分析、目标识别等领域,能够提高边缘的准确性和鲁棒性。

边缘检测和拟合是紧密相连的两个过程,相互影响并共同完成对图像边缘的提取和分析。

边缘检测是边缘拟合的基础,而边缘拟合可以通过拟合来修正和优化边缘检测的结果。

在实际应用中,边缘检测和拟合经常需要同时进行,相互补充来提高整体的效果和精度。

本文将对边缘检测和拟合的概念进行介绍,并总结常用的方法和应用领域。

同时还会重点探讨边缘检测与拟合的关系,包括相互影响、综合应用以及未来的研究方向。

通过深入研究边缘检测及拟合的原理和方法,我们可以更好地理解图像的结构和特征,为计算机视觉和图像处理领域的相关应用提供有力支持。

文章结构部分的内容可以如下所示:1.2 文章结构本文分为引言、正文和结论三部分。

- 引言部分介绍了边缘检测及拟合的相关概念和研究意义,并对文章的结构进行了概述。

- 正文部分包括了边缘检测和边缘拟合两个主要部分。

- 边缘检测部分主要介绍了边缘检测的概念、常用方法和应用领域。

- 边缘拟合部分主要介绍了边缘拟合的概念、拟合方法和实际应用。

- 边缘检测与拟合的关系部分探讨了二者之间的相互影响,以及如何综合应用边缘检测和拟合方法,并给出了拓展研究方向的建议。

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真目录第1章绪论 11.1 序言 11.2 数字图像边缘检测算法的意义 1第2章传统边缘检测方法及理论基础 2 2.1 数字图像边缘检测的现状与发展 22.2 MATLAB和图像处理工具箱的背景知识 32.3 数字图像边缘检测关于边缘的定义 42.4 基于一阶微分的边缘检测算子 42.5 基于二阶微分的边缘检测算子 7第3章编程和调试 103.1 edge函数 103.2 边缘检测的编程实现 11第4章总结 13第5章图像边缘检测应用领域 13附录参考文献 15第1章绪论§1.1 序言理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。

图像边缘是分析理解图像的基础,它是图像中最基本的特征。

在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。

图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。

图像边缘主要划分为阶跃状和屋脊状两种类型。

阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。

传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。

由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。

近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。

Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。

其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。

另外其相对简单的算法使得整个过程可以在较短的时间实现。

实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。

毕业设计论文-基于蚁群算法的图像边缘检测-附代码

毕业设计论文-基于蚁群算法的图像边缘检测-附代码

毕业设计论文-基于蚁群算法的图像边缘检测-附代码上海工程技术大学毕业设计(论文) 基于蚁群算法的图像边缘检测目录摘要 ...............................................................1 ABSTRACT .............................................................2 1 绪论 (3)1.1 研究背景 ...........................................................31.2 研究现状和发展方向 (4)6 1.3 研究目的和意义 .....................................................2 图像边缘检测概述 ..................................................... 7 2.1 边缘的定义及类型 ................................................... 8 2.2 常用的边缘检测方法 (10)2.3 其他边缘检测方法 .................................................. 15 2.3.1 基于小波变换的边缘检测 .......................................... 15 2.3.2 基于数学形态学的边缘检测 (16)17 2.4 传统边缘检测的不足 ................................................3 蚁群算法 ............................................................ 17 3.1蚁群算法的基本原理 (18)3.2 基于蚁群算法的图像边缘检测 ........................................21 4 实验结果及分析 ...................................................... 22 4.1 基于蚁群算法的图像边缘检测流程 .................................... 22 4.2 实验结果与性能分析 (26)4.2.1 参数对边缘检测的影响 ............................................ 294.2.2 与传统方法的比较 ................................................ 35 5 总结与展望 .......................................................... 37 参考文献 .............................................................. 39 附录 ................................................. 错误~未定义书签。

基于Sobel算子的数字图像边缘检测与FPGA实现

基于Sobel算子的数字图像边缘检测与FPGA实现

a d i t g a e n aFP n n e r t d i GA h p o i n p r a c i f l x S a t n3 XC3 5 5 X i S 0- PQ2 . e sm u a e e u ti d c t st a h r s n e GA 08Th i l t d r s l n i a e h t e p e e t d FP t c i h p XC3 5 - P S 0 5 Q2 8 c n r n a 3 M Hzs e d F n ly t e e p rm e t 0 a u t1 4 p e . i a l , h x e i n sd n o t n ma e o 0 4 X 1 2 i e s Th wa o e t e a i g f 1 2 0 4 p x l. e
级 . 大 大 增 加 了设 计 过 程 和 最 后 工 程 的 灵 活 性 。 这
S b l . 检 测 算 子 结 合 了边 缘 检 测 和 平滑 算 子 . 其 在 o e: 缘  ̄ 使 嘈杂 的环 境 下 有 良 好 的 检 测 能 力 。因此 本 文 选 择 S b l o e算子 应
一二 、 Biblioteka e边 缘 检 测 原 理 sbl
图 像 边 缘 是 图 像 的 基 本 特 征 之 一 , 包 含 对 人 类 视 觉 它
直 是 一 个 难 题 。虽 然 DSP 备 指 令 流 水 线 特 性 和 很 高 的 具
t he Edge D e ec i i t lI a nd is r alza i t ton ofD gia m ge a t e i ton by FPG A ec t hni que bas d e on be SO lope a o r tr

《基于FPGA的边缘检测系统设计》范文

《基于FPGA的边缘检测系统设计》范文

《基于FPGA的边缘检测系统设计》篇一一、引言随着人工智能和计算机视觉技术的快速发展,边缘检测作为图像处理中的关键技术,其应用场景越来越广泛。

为了满足实时性和高效性的需求,基于FPGA(现场可编程门阵列)的边缘检测系统设计成为了一个重要的研究方向。

本文将详细介绍基于FPGA的边缘检测系统设计,包括系统架构、算法实现、硬件设计及优化等方面。

二、系统架构设计1. 整体架构基于FPGA的边缘检测系统主要由图像采集模块、预处理模块、边缘检测模块、后处理模块和输出模块组成。

其中,图像采集模块负责获取待处理的图像数据;预处理模块对图像进行去噪、灰度化等操作;边缘检测模块是系统的核心部分,负责实现边缘检测算法;后处理模块对检测结果进行优化处理;输出模块将处理后的图像数据输出。

2. 边缘检测模块设计边缘检测模块是整个系统的关键部分,其性能直接影响到系统的整体效果。

在FPGA上实现边缘检测算法,需要充分考虑算法的并行性和硬件资源的利用率。

常见的边缘检测算法包括Sobel算子、Canny算子等。

在FPGA上实现这些算法,可以通过查找表、流水线等方式提高运算速度。

此外,还可以采用硬件加速技术,如利用FPGA的并行计算能力,实现多级联的边缘检测操作。

三、算法实现1. 预处理算法预处理算法主要包括去噪和灰度化。

去噪可以采用高斯滤波、中值滤波等方法,以消除图像中的噪声;灰度化则是将彩色图像转换为灰度图像,以减少计算量。

这些算法在FPGA上的实现,需要考虑到硬件资源的限制和运算速度的要求。

2. 边缘检测算法边缘检测算法是本系统的核心部分,其性能直接影响到系统的整体效果。

在FPGA上实现边缘检测算法,需要充分考虑到算法的并行性和硬件资源的利用率。

例如,Sobel算子可以通过查找表的方式实现,提高运算速度;Canny算子则需要实现双阈值、非极大值抑制等操作,这些操作在FPGA上可以通过流水线的方式实现,以提高运算效率。

四、硬件设计及优化1. FPGA选型及资源分配在选择FPGA芯片时,需要根据系统的需求和预算进行综合考虑。

图像边缘检测各种算子MATLAB实现以及实际应用

图像边缘检测各种算子MATLAB实现以及实际应用

《图像处理中的数学方法》实验报告学生姓名:***教师姓名:曾理学院:数学与统计学院专业:信息与计算科学学号:********联系方式:139****1645梯度和拉普拉斯算子在图像边缘检测中的应用一、数学方法边缘检测最通用的方法是检测灰度值的不连续性,这种不连续性用一阶和二阶导数来检测。

1.(1)一阶导数:一阶导数即为梯度,对于平面上的图像来说,我们只需用到二维函数的梯度,即:∇f=[g xg y]=[ðf ðxðfðy],该向量的幅值:∇f=mag(∇f)=[g x2+g y2]1/2= [(ðf/ðx)2+(ðf/ðy)2]1/2,为简化计算,省略上式平方根,得到近似值∇f≈g x2+g y2;或通过取绝对值来近似,得到:∇f≈|g x|+|g y|。

(2)二阶导数:二阶导数通常用拉普拉斯算子来计算,由二阶微分构成:∇2f(x,y)=ð2f(x,y)ðx2+ð2f(x,y)ðy22.边缘检测的基本思想:(1)寻找灰度的一阶导数的幅度大于某个指定阈值的位置;(2)寻找灰度的二阶导数有零交叉的位置。

3.几种方法简介(1)Sobel边缘检测器:以差分来代替一阶导数。

Sobel边缘检测器使用一个3×3邻域的行和列之间的离散差来计算梯度,其中,每行或每列的中心像素用2来加权,以提供平滑效果。

∇f=[g x2+g y2]1/2={[(z7+2z8+z9)−(z1+2z2+z3)]2+[(z3+2z6+z9)−(z1+2z4+z7)]2}1/2(2)Prewitt边缘检测器:使用下图所示模板来数字化地近似一阶导数。

与Sobel检测器相比,计算上简单一些,但产生的结果中噪声可能会稍微大一些。

g x=(z7+z8+z9)−(z1+z2+z3)g y=(z3+z6+z9)−(z1−z4−z7)(3)Roberts边缘检测器:使用下图所示模板来数字化地将一阶导数近似为相邻像素之间的差,它与前述检测器相比功能有限(非对称,且不能检测多种45°倍数的边缘)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章
图像边缘检测器的设计与分析
DATA0 D
Q
D
Q
D
Q
DATA1 D
Q
D
Q
D
Q
DATA2 D
Q
D
Q
D
Q
CLK Q2 Q1Q0 Q5 Q3 Q8Q7Q6
图12.8 像素刷新模块REFRESH的内部结构图
第12章
图像边缘检测器的设计与分析
4.滤波模块FILTER
对于Sobel算法的各个滤波器,H、V、DR、DL经 变换后可得到: H=(Q0+Q3+Q3+Q6) ? (Q2+Q5+Q5+Q8); V=(Q0+Q1+Q1+Q2) ? (Q6+Q7+Q7+Q8) DR=(Q1+Q0+Q0+Q3)?(Q5+Q8+Q8+Q7); DL=(Q1+Q2+Q2+Q5)? (Q3+Q6+Q6+Q7) 因此我们对于滤波模块FILTER的设计可采用两级
第12章
图像边缘检测器的设计与分析
Q0 Q3 Q6 Q2 Q5 Q8 Q0 Q1 Q2 Q6 Q7 Q8 Q1 Q0 Q3 Q5 Q8 Q7 Q1 Q2 Q5 Q3 Q6 Q7
第12章
图像边缘检测器的设计与分析
第12章 图像边缘检测器的设计与分析
12.1 系统设计要求 12.2 系统设计方案
12.3 主要LPM原理图和VHDL源程序
12.4 系统仿真/硬件验证
12.5 设计技巧分析
12.6 系统扩展思路
第12章
图像边缘检测器的设计与分析
12.1 系统设计要求
在嵌入式图形系统处理领域,图像处理的速度问 题一直是一个很难突破的设计瓶颈。一般情况下,控 制领域及数据处理领域几乎是单片机和数字信号处理 器的天下,但是在数据处理量大,实时性要求更为苛 刻的场合,传统的MCU根本无法适应实时大批量数据 处理场合,而DSP虽然具备指令流水线和很高的处理 速度,但是由于其本质仍然是依靠串行执行指令来完 成相应的图像处理算法的,所以其处理速度依然很受 限制。
V=(Q0+2Q1+Q2) ? (Q6+2Q7+Q8) DR=(Q1+2Q0+Q3) ? (Q5+2Q8+Q7); DL=(Q1+2Q2+Q5) ? (Q3+2Q6+Q7) Magnitude=Max(H, V, DR, DL)
第12章
图像边缘检测器的设计与分析
为了减少设计的复杂度,上面式子中的乘法运算 可以改写成加法运算: H=(Q0+Q3+Q3+Q6) ? (Q2+Q5+Q5+Q8); V=(Q0+Q1+Q1+Q2) ? (Q6+Q7+Q7+Q8) DR=(Q1+Q0+Q0+Q3)?(Q5+Q8+Q8+Q7);
图12.9 滤波模块FILTER的内部结构图
第12章
图像边缘检测器的设计与分析
对于上述滤波数据的处理,在不采用流水线的情 况下,像素从进入处理器到结果输出,需要经过两级 加法和一级减法的时延,但是使用流水线技术后(其本 质为对中间结果进行寄存),结果输出仅仅滞后三个时 钟频率,但是增加了数据吞吐量,同时也提高了时钟 频率。为提高加法运算的速度,本设计中的加法器采 用超前进位加法器。下面对其作一个简单的回顾:
DL=(Q1+Q2+Q2+Q5)? (Q3+Q6+Q6+Q7)
第12章
图像边缘检测器的设计与分析
12.2.3 总体设计方案 根据图像处理的知识及分析,我们可得到此边缘检
测处理器的工作流程如图12.4所示。首先,DSP将从图
像传感器中获取的灰度图(800×600)按照每三列划分为 一帧的原则进行帧窗口划分。帧窗口的图形数据又按照
像的边界处理。 MAGOUT:像素边界判别信号输出,MAGOUT
为1时,表示当前像素为边界像素,为0表示为非边界
像素。
ห้องสมุดไป่ตู้12章
图像边缘检测器的设计与分析
CCD
Driver
D8~D15
D0~D7 WR
INT0
DATA WR READY FLEX10K20 CLK T_D CS MAGOUT
TMS320C5402 CLKOUT Executor (Buffered Serial Port) BSP A14 A15
图像边缘检测器的设计与分析
Q0 Q1 Q2
Q3 [i , j ] Q5
Q6 Q7 Q8
图12.3 像素窗
第12章
图像边缘检测器的设计与分析
水平、垂直、左对角、右对角各图像方向上密度
幅度的变化可以用如下算子进行计算: H=(Q0+2Q3+Q6) ? (Q2+2Q5+Q8) V=(Q0+2Q1+Q2) ? (Q6+2Q7+Q8) DR=(Q1+2Q0+Q3) ? (Q5+2Q8+Q7)
检查出可以最终划分物体的特征。
第12章
图像边缘检测器的设计与分析
Sobel算法包括带4个3×3掩码的输入图像数据, 即Sobel算子,它设置权重来检测水平、垂直、左对角、 右对角各个不同方向上密度幅度的不同。这个过程通 常被称为过滤。下面我们来看一个3×3的像素窗口, 如图12.3所示。
第12章
界判别,并把处理结果返回到主处理器中。
第12章
图像边缘检测器的设计与分析
FPGA/CPLD 边缘检测协处理器
图像传感器 (CCD或CMOS)
像素获取
模式识别
速度计算
位置跟踪
DSP图像主处理器
图12.1 DSP+FPGA/CPLD图像处理系统的组成框图
第12章
图像边缘检测器的设计与分析
在本系统中,系统的设计指标为:数据吞吐量>10 Mb/s;动态响应时间<100 ms/frame。主处理器初步选 用德州公司的DSP芯片TMS320C5402,协处理器拟采 用ALTERA公司的FLEX10K20。图像处理系统的接口 关系如图12.2所示,其中FLEX10K20的接口说明如下: DATA:8位数据输入端口。 WR:写有效信号输入端口。 CLK:同步时钟输入端口。
PIXEL
D
Q
D
Q
D
Q
CLK D COUNTER3 Q Q Q D D
QA
QB
QC
图12.7 串入并出模块SIPO的内部结构图
第12章
图像边缘检测器的设计与分析
3.像素窗口刷新模块REFRESH 像素刷新窗口的主要功能是接收串入并出模块的3
个并行像素,把窗口中原有的第二列像素推入第三列,
第一列推入第二列,新到的并行像素填入第一列。其 本质为一个移位寄存器。其内部结构如图12.8所示。
每三行划分为一个像素处理窗口的原则逐一进行处理。
第12章
图像边缘检测器的设计与分析

水平滤波器 存储器 缓 冲 像素处 理窗口 垂直滤波器 左斜角滤波器 右斜角滤波器 输出处 理模块
图12.4 图像处理流程示意图

第12章
图像边缘检测器的设计与分析
根据以上设计思路,我们可把整个系统的实现划 分为四个大的模块,其总体结构如图12.5所示。其中:
SUM(I)=A(I) XOR B(I) XOR C(I?1) C(I)=(A(I) AND B(I) ) OR (A(I) XOR B(I) AND C(I?1) 令 P(I)=A(I) XOR B(I); G(I)= A(I) AND B(I)
第12章
图像边缘检测器的设计与分析
其中P(I)、G(I)均与进位信号无关,则SUM(I)与C(I) 可表达为
并行流水方案,其内部结构如图12.9所示。
第12章
图像边缘检测器的设计与分析
CLKQA(Q0) QB(Q3) QC(Q6) QD(Q2) QE(Q5) QF(Q8) + D0 Q0 + D0 Q0 - FILTER(H_FILTER) Q1 + D1 Q1 + D2 Q2 + D1 + D3 Q3
第12章
图像边缘检测器的设计与分析
图12.1是一个DSP+FPGA/CPLD的图像处理系统的 总体框图,其中图像传感器CCD的主要功能是获取外界 图像的各个像素点灰度值;图像主处理器采用数字信号 处理器DSP,主要负责对图像传感器传送的灰度信息进 行存储,并负责调用协处理器进行边界像素判别,找出 我们感兴趣的目标对象,从而得到该对象的运动信息, 以便控制执行装置进行位置跟踪;边缘检测协处理器为 FPGA/CPLD,主要完成主处理器传送过来的像素的边
图12.2 图像处理系统接口关系图
第12章
图像边缘检测器的设计与分析
12.2 系统设计方案
12.2.1 算法选择 图像处理经常用于在连续图像中跟踪移动物体。 它从传感器接收图像的连续流,根据输入图像的数据 选择跟踪物体。初始图像不断被加强,然后进行分割, 以定位物体或找出感兴趣的区域。定位物体或区域后,
拟选用FIFO,堆栈空时向主机发出准备好信号,主机
检测到它的数据传输请求时,传送一帧数据,由于 FIFO的大小与一帧图像的大小是一致的,所以接收完
毕后,堆栈满,Sobel处理器启动边缘检测进程,处理
完一帧数据后,堆栈重新变为空,为下一帧数据处理 作准备。其内部结构如图12.6所示。
第12章
图像边缘检测器的设计与分析
相关文档
最新文档