锐角三角函数(二).doc

合集下载

锐角三角函数(第2课时)(课件)九年级数学下册(北师大版)

锐角三角函数(第2课时)(课件)九年级数学下册(北师大版)

c
sin
A
=
∠A的对边
斜边
斜边
a =c
b
A
c
cos
A
=
∠A的邻边
斜边
=
b c
斜边
b邻 A 边
谢谢~
B1 A1
B2 A1
B1 A1
B2 A1
B1
(3)如果改变B2在梯子A1B1上的位置呢?
由此你可得出什么结论?
B2
(4)如果改变梯子A1B1的倾斜角的大小呢?
由此你可得出什么结论?
C1 C2
A1
探究新知
(1)Rt△B1A1C1 ∽ Rt△B2A1C2.
(2)相等
∵ Rt△B1A1C1 ∽ Rt△B2A1C2,
=
a c
tan A a a c sin A b c b cos A
若∠A+∠B=90°;一个 锐角的正弦等于它余角的余 弦,sinA=cosB;一个锐角的 余弦等于它余角的正弦;
cosA=sinB.
探究新知
锐角三角函数之间的关系:
(1)同一个角:①商的关系:tanA= sin A ;②平方
关系:sin2A+cos2A=1.
A
B
斜边
∠A的对边
┌ ∠A的邻边 C
结论:在Rt△ABC中,如果锐角A确定,那么∠A的对边与 斜边的比, ∠A的邻边与斜边的比也随之确定.
探究新知
核心知识点一: 正弦、余弦的定义
想一想:如图.
(1)直角三角形A1B1C1和直角三角形A1B2C2有什么关系?
(2)A1C1 和 A1C2 有什么关系? B1C1 和 B2C2 呢?
探究新知
• 定义中应该注意的几个问题: 1.sinA,cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构 造直角三角形). 2.sinA,cosA是一个完整的符号,分别表示∠A的正弦,余弦 (习惯省去 “∠”号). 3.sinA,cosA 是一个比值,是直角边与斜边之比.注意比的顺序

北师大版数学九年级下册1.1 锐角三角函数(第2课时)教案

北师大版数学九年级下册1.1  锐角三角函数(第2课时)教案

1.1 锐角三角函数第2课时教学目标1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义.教学重难点【教学重点】1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算. 【教学难点】用函数的观点理解正弦、余弦和正切.学习方法探索——交流法.教学过程一、正弦、余弦及三角函数的定义 想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系?(2) 211122BA C A BA C A 和有什么关系? 2112BA BC BA BC 和呢? (3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论? 请讨论后回答.二、由图讨论梯子的倾斜程度与sinA 和cosA 的关系:三、例题:例1、如图,在Rt △ABC 中,∠B=90°,AC =200.sinA =0.6,求BC 的长.例2、做一做:如图,在Rt △ABC 中,∠C=90°,cosA =1312,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.四、随堂练习:1、在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.2、在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积.3、在△ABC 中.∠C=90°,若tanA=21,则sinA= .4、已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC 2=AB ·BD.(用正弦、余弦函数的定义证明)五、课后练习:1、在Rt △ABC 中,∠ C=90°,tanA=34,则sinB=_______,tanB=______.DB ACBA C2、在Rt △ABC 中,∠C=90°,AB=41,sinA=941,则AC=______,BC=_______. 3、在△ABC 中,AB=AC=10,sinC=45,则BC=_____. 4、在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( )A.sinA=34 B.cosA=35 C.tanA=34 D.cosB=355、如图,在△ABC 中,∠C=90°,sinA=35,则BCAC等于( )A.34B.43C.35D.456、Rt △ABC 中,∠C=90°,已知cosA=35,那么tanA 等于( )A.43B.34C.45D.547、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是A .135 B .1312 C .125 D .5128、已知甲、乙两坡的坡角分别为α、β, 若甲坡比乙坡更徒些, 则下列结论正确的是( )A.tan α<tan βB.sin α<sin β;C.cos α<cos βD.cos α>cos β9、如图,在Rt △ABC 中,CD 是斜边AB 上的高,则下列线段的比中不等于sinA 的是( ) A.CD AC B.DB CB C.CB AB D.CDCB10、某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是( )mA.100sin βB.100sin βC.100cos β D. 100cos β11、如图,分别求∠α,∠β的正弦,余弦,和正切.12、在△ABC 中,AB=5,BC=13,AD 是BC 边上的高,AD=4.求:CD,sinC.13、在Rt △ABC 中,∠BCA=90°,CD 是中线,BC=8,CD=5.求sin ∠ACD,cos ∠ACD 和tan ∠ACD.14、在Rt△ABC中,∠C=90°,sinA和cosB有什么关系?15、如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=45.求:s△ABD:s△BCD§1.2 30°、45°、60°角的三角函数值学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.学习重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.学习难点:进一步体会三角函数的意义.学习方法:自主探索法学习过程:BDAC一、问题引入[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.二、新课[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?[问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流.[问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?结论:(1)sin30°+cos45°; (2)sin260°+cos260°-tan45°.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)三、随堂练习 1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°; (3) 22sin45°+sin60°-2cos45°; ⑷13230sin 1+-︒;⑸(2+1)-1+2sin30°-8; ⑹(1+2)0-|1-sin30°|1+(21)-1;⑺sin60°+︒-60tan 11; ⑻2-3-(0032+π)0-cos60°-211-.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m ,扶梯的长度是多少?3.如图为住宅区内的两幢楼,它们的高AB =CD=30 m ,两楼问的距离AC=24 m ,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m ,2≈1.41,3≈1.73)四、课后练习:1、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;2、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;3、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( ) (A )600(B )900(C )1200(D )1505、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( ) (A )cm 41 (B )cm 21 (C )cm 43 (D )cm 236、在ABC ∆中,︒=∠90C ,若A B ∠=∠2,则tanA 等于( ). (A )3 (B )33(C )23 (D )217、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ). (A )21 (B )22(C )23 (D )1 8、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元9、计算:⑴、︒+︒60cos 60sin 22 ⑵、︒︒-︒30cos 30sin 260sin⑶、︒-︒45cos 30sin 2⑷、3245cos 2-+︒︒15020米30米⑸、045cos 360sin 2+ ⑹、 130sin 560cos 30-⑺、︒30sin 22·︒+︒60cos 30tan tan60° ⑻、︒-︒30tan 45sin 2210、请设计一种方案计算tan15°的值。

初中数学:锐角三角函数(2)

初中数学:锐角三角函数(2)

5
求:△ABC的周长.
B

C
A
课内练习
3.如图, ∠ACB=90°CD⊥AB.
() () ()
sin B .
( ) ( ) ( )A
C
┌ DB
4.在上图中,若BD=6,CD=12.求cosA的值.
课内练习
5.如图,分别根据图(1)和图
B
B
(2)求∠A的三个三角函数
3
43
值.
6.在Rt△ABC中,∠C=90°,

➢锐角A的正弦,余弦,正切都叫做∠A的三角函数.
想一想
结论:梯子的倾斜程度与sinA和cosA有关: sinA越大,梯子越陡;cosA越小,梯子越陡.
如图,梯子的倾 斜程度与sinA和
cosA有关吗?
例题解析
例1 如图:在Rt△ABC中,∠B=900,AC=200,sinA=0.6
求:BC的长.
后项 4.sinA,cosA,tanA的大小只与∠A的大小有关,而与直角
三角形的边长无关. 5.角相等,则其三角函数值相等;两锐角的三角函数值
相等,则这两个锐角相等.
初中数学
锐角三角函数(2)
1. 理解锐角三角函数正弦、余弦的意义. 2. 能够运用SinA、CosA表示直角三角形中两 边的比. 3.能利用直角三角形中的边角关系(锐角三角 函数)进行计算.
复习回顾
➢直角三角形中边与角的关系:锐角的三角函 数——正切函数
➢在直角三角形中,若一个锐角的对边与邻边的比 值是一个定值,那么这个角的值也随之确定.
C
200

A
B
例题解析
例2.如图:在Rt△ABC中,∠C=900, AC =10, 求:AB, sinB.

24.3.1锐角三角函数2

24.3.1锐角三角函数2
2 cos A 3 0.5 cos A

4 cos A 5 sin A cos A 4 5 tan A 2 cos A 3 sin A cos A 2 3 tan A
3 7
4 5 0.5 1.5 3 原式 2 3 0.5 3.5 7
1.sinA与cosA有何关系? tanA与cotA的关系?
2.tanA与sinA、cosA之间的关系: cotA与sinA、cosA之间的关系: 商的关系
作者:李先贵(平昌县信义小学)
4
探索一:sinA与cosA的平方和关系
证明
∵∠C=900
a b c
2 2
2
a sin A , c
华东师大版九年级(上册)
第二课时
执教人:李先贵
作者:李先贵(平昌县信义小学) 1
锐角三角函数是如何定义的?
sinA = cosA = tanA = cotA =
A的对边 斜边
A的邻边 斜边
A的对边 A的邻边
A的邻边 A的对边
锐角A的正弦、余弦、和正切、余切统称∠A的三角函数
作者:李先贵(平昌县信义小学)
cotA与sinA、cosA间商的关系
cot A
1 tan A
sin A cos A . cos A sin A
cos A . sin A
a sin A , cos A b , tan A a , b c c sin A a b a c a cos A c c c b b
tan A cot A
B
cot A b . a
c a

tan A cot A 1.

第9讲 锐角三角函数

第9讲 锐角三角函数

第9讲锐角三角函数知识点1 锐角三角函数1.如图在△ABC中,∠C是直角,锐角A的正弦(sin),余弦(cos)和正切(tan)叫做角A的锐角三角函数.2.特殊角的三角函数值3.锐角三角函数值的变化规律当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小;当0°<α<90°时,tanα随α的增大而增大.【典例】例1在△ABC 中,∠C =90°,如果AC =8,BC =6,那么∠A 的正弦值为( ) A .35B .45C .34D .43例2在Rt △ABC 中,∠C =90°,∠A =α,BC =2,那么AC 的长为( ) A .2sin α B .2cos αC .2tan αD .2cot α例3计算:tan 260°−2sin30°4cos 245°+cot30°.【随堂练习】1.已知在Rt △ABC 中,∠C =90°,AB =3,BC =2,那么tan B 的值等于( ) A .23B .√53C .√52D .2.已知在Rt △ABC 中,∠C =90°,∠B =α,AC =2,那么AB 的长等于( ) A .2sinαB .2sin αC .2cosαD .2cos α3.计算:2sin45°+2sin60°﹣tan60°•tan45°.4.计算:tan 245°cot30°−2cos45°−2sin60°.知识点2 解直角三角形1.定义:在直角三角形中,由已知元素求未知元素的过程,就是解直角三角形.2.基础知识在Rt △ABC 中,∠A ∠B ∠C 所对的边分别是a ,b ,c. (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A ∠+B ∠=C ∠=90(3)边角之间的关系:sin A =a c cos A =b c tan A =ab sin B =bc cos B =ac tan B =ba(4)面积公式:S=12ab=12ch (h 为斜边上的高) 3. 解直角三角形的基本类型及其解法【典例】例1如图,在△ABC 中,BD ⊥AC ,AB =4,AC =3,∠A =30°.(1)求AD 的长. (2)求sin C 的值.例2如图,在△ABC 中,AB =AC =5,BC =8.若∠BPC =12∠BAC ,求sin ∠BPC .例3如图,在△ABC 中,cos B =√22,sin C =35,AC =10,求△ABC 的面积.【随堂练习】1.如图,在△ABC 中,tan C =35,点D 在边BC 上,AB =AD ,CD =2BD =4,求sin B 的值.2.在Rt △ABC 中,∠C =90°,BC =12,AC =4√3,解这个直角三角形.3.如图,在△ABC 中,已知∠C =90°,sin A =,点D 为边AC 上一点,若∠BDC =45°,DC =6,求AD 的长.(结果保留根号)知识点3 解直角三角形的应用——坡度、坡角问题1.坡角:坡面与水平面的夹角,用字母α表示.2.坡度(坡比):坡面的铅直高度h 和水平宽度l 的比,用字母i 表示,则i=ℎl =tan α.【典例】例1如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD ,BE ⊥AD ,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移 m 时,才能确保山体不滑坡.(取:i h l=hlαtan50°≈1.2)例2如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB 的坡角α=45°,坡长AB=6米,背水坡CD的坡度i=1:,求背水坡的坡长CD为多少米.例3 如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为6√2米(结果保留根号).【随堂练习】1.如图,某河堤迎水坡AB的坡比i=tan∠CAB=1:√3,堤高BC=5m,则坡面AB的长是()A.5 m B.10m C.5√3m D.8 m2.小明一家去某著名风景区旅游,准备先从山脚A走台阶步行到B,再换乘缆车到山顶C.从A到B的路线可看作是坡角为30°的斜坡AB,长度为1000米;从B到C的缆车路线可看作是线段BC,长度为2400米,其与水平线的夹角为48°,求山顶C到地面AD的距离CE 的长.(参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)3.农用温棚的上半部分如图所示,迎阳坡AD 的坡度i =1:1.8,背阳坡AC 坡度i =1:0.5,棚宽CD =11.5米,要铅直竖立两根立柱AB 、EF ,其中BF =AB .求AB 、EF 的长.知识点4 解直角三角形的应用——仰角俯角问题1.仰角和俯角 在进行测量时,从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.【典例】例1如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为50米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米)仰角水平线视线视线俯角(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,=1.41, 1.73)例2某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,河旁有一座小山,山高BC=80m,点C、A与河岸E、F在同一水平线上,从山顶B 处测得河岸E和对岸F的俯角分别为∠DBE=45°,∠DBF=31°.若在此处建桥,求河宽EF的长.(结果精确到1m)[参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60]例3如图,永州市德雅、高峰学校老师们联合组织九年级学生外出开展数学活动,路经白石山公园时,发现工人们正在建5G信号柱,于是老师们就带领学生们对信号柱进行测量.已知信号柱直立在地面上,在太阳光的照射下,信号柱影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得信号柱顶端A的仰角为30°,在C处测得信号柱顶端A的仰角为45°,斜坡与地面成60°角,CD=8米,求信号柱AB的长度.(结果保留根号)【随堂练习】1.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】2.某地有一座大桥(图1),某初中数学兴趣小组想测量该大桥的外拱塔的最高点D距离桥面的高度CD,他们在桥面上选取了一个测量点A测得点D的仰角为26.6°,然后他们沿AC方向移动40m到达测量点B(即AB=40m),在B点测得点D的仰角为37°,如图2所示.求外拱塔的最高点D距离桥面的高度CD.【参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50】3.校内数学兴趣小组组织了一次测量探究活动.如图,大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=12米,AE =24米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:,≈1.73,sin53°≈,(1)求点B距水平地面AE的高度;(2)求广告牌CD的高度.知识点5 解直角三角形的应用——方向角问题1. 方位角:从某点的指北方向按顺时针转到目标方向的水平角.目标方向线PA,PB,PC的方位角分别是40°,135°,225°.2.方向角:指北或指南方向线与目标方向所成的小于90°的角.如下图所示,目标方向线OA,OB,OC分别表示北偏东60°,南偏东30°,北偏西70°.特别地,若目标方向线与指北或指南的方向线成45°的角,目标方向线OD与正南方向成45°角,通常称为西南方向.【典例】例1如图,灯塔B在灯塔A的正东方向,且AB=75km.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.(1)求∠ACB的度数;(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.例2 某公园中有条东西走向的小河,河宽固定,小河南岸边上有一块石墩A,北岸边上有一棵大树P,小杨利用它们测量小河的宽度,于是,他去了河边,如图.他从河的南岸石墩A处测得大树P在其北偏东30°方向,然后他沿正东方向步行80米到达点B处,此时测得大树P在其北偏西60°方向.请根据以上所测得的数据,计算小河的宽度.(结果保留根号)例3 一艘货船以30海里/小时的速度向正北航行,在A处看见灯塔C在船的北偏东30°,20分钟后货船至B处,看见灯塔C在船的北偏东60°,已知灯塔C周围7.1海里以内有暗礁,问这艘船继续航行是否能绕过暗礁?(提供数据:√2≈1.414,√3≈1.732)【随堂练习】1.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A .100mB .100√2mC .100√3mD .200√33m2.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A .200tan70°米B .200tan70°米C .200sin 70°米D .200sin70°米3.如图,MN 是公园劳动湖边一段东西走向的笔直湖岸,A ,B 是岸边两建筑物,一小艇在点C 处,与MN 的距离CE =60米,小艇向北偏西30°方向行驶100米到达点D ,此时,小艇上的人测量A 在小艇的南偏西60°方向,B 在南偏西30°方向,求A 、B 两建筑物之间的距离.综合运用1.在Rt△ABC中,∠C=90°,BC=5,sin B=1213,则AC的长是()A.25B.12C.5D.13 2.计算:(1)2sin30°一3tan45°•sin45°+4cos60°;(2)sin45°cos30°−tan60°+cos45°•sin60°.3.如图,某建筑AB与山坡CD的剖面在同一平面内,在距此建筑AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度i=1:0.75,山坡坡底C点到坡顶D点的距离CD=50m,在坡顶D点处测得建筑楼顶A点的仰角为30°,求此建筑AB的高度.(结果用无理数表示)4.设Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,若b=6,c=10,求sin A、cos A和tan A.5.如图所示,某水库大坝的横断面是四边形ABCD,AD∥BC,坝顶宽AD=2.5米,坝高AE=DF=4米,背水坡AB的坡度是1:1,迎水坡CD的坡度是1:1.5,求坝底宽BC.6.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2,使用时为了散热,她在底板下面垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=36cm,O'C⊥AC于点C,O′C=18cm.(1)求∠CAO′的度数.(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入热架后,要使显示屏O′B′与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?7.近日,市委、市政府公布了第七批重庆市爱国主义教育基地名单,重庆市育才中学创办的陶行知纪念馆位列其中,如图,为了测量陶行知纪念馆AB的高度,小李在点C处放置了高度为1.5米的测角仪CD,测得纪念馆顶端A点的仰角∠ADE=51°,然后他沿着坡度i=1:2.4的斜坡CF走了6.5米到达点F,再沿水平方向走4米就到达了纪念馆底端点B.(结果精确到0.1,参考数据:sin51°≈0.78,cos51°≈0.63,tan51°≈1.23)(1)求点D到纪念馆AB的水平距离;(2)求纪念馆AB的高度约为多少米?8.如图,小岛C和D都在码头O的正北方向上,它们之间距离为6.4km,一艘渔船自西向东匀速航行,行驶到位于码头O的正西方向A处时,测得∠CAO=26.5°,渔船速度为28km/h,经过0.2h,渔船行驶到了B处,测得∠DBO=49°.(1)直接写出:在小岛C看点A俯角大小是;点B在小岛D什么方位?;(2)求渔船在B处时距离码头O有多远?(结果精确到0.1km)(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin49°≈0.75,cos49≈0.66,tan49°≈1.15)。

锐角三角函数 (2)

锐角三角函数 (2)

28.1 锐角三角函数(2)主备:简红一.课时学习目标:1、掌握余弦、正切的含义,会在直角三角形中求出某个锐角的余弦和正切值。

2、能用函数的观点理解余弦和正切。

重点和难点重点:三角函数定义的理解。

难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。

二.课前预习导学:带着下列问题独立预习.交流研讨课本第77—78页内容:1. 在Rt△ABC中,∠ACB=90°,当∠A确定时,它的邻边与斜边的比值是锐角A的邻边与斜边的比叫做∠A的,记作。

即cosA==。

2. 在Rt△ABC中,∠ACB=90°,当∠A确定时,它的对边与邻边的比值是锐角A的对边与邻边的比叫做∠A的,记作。

即tanA==。

三.预习检测1、在Rt△ABC中,∠C=90°,AC=1,AB=3,则cosA=________,tanB=______。

2.在中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有()A.B.C.D.3. 在中,∠C=90°,如果那么的值为()A.B.C.D.四. 课堂学习研讨:第一,小组内交流你的预习收获,并说出你的困惑。

第二,分组汇报预习收获及困惑。

第三,本节内容深入研讨,并整理。

探索新知:一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比. 对边与邻边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C` =90o,∠A=∠A‘那么与有什么关系?结论:1.在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的邻边与斜边的比也是一个固定值。

2.在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与邻边的比也是一个固定值。

五.课内训练巩固:1.在Rt△ABC中,∠C=90°,BC=6,AC=8,则sinA=_____,cosA=_____,tanA=_____。

2.在Rt△ABC中,∠B=90°,AC=2BC,则sinC=____,cosA=_____,tanA=_____。

《锐角三角函数》PPT课件 (公开课获奖)2022年浙教版 (2)

《锐角三角函数》PPT课件 (公开课获奖)2022年浙教版 (2)

2021年甲学校的初一新生招生中招了500名,乙学 校的初一新生招生中招了600名,随着方案生育的开 展 ,现在甲学校的初一新生招生中招了300名,乙学 校的初一新生招生中招了360名 ,哪种学校学生的 年平均下降率较大?
分析:甲校初一学生年平均下降额为 (500 -300)÷2 =100(元)
乙校学生年平均下降额为 (600 -360)÷2 =120(元)
sinA = 3 5
B• CD⊥AB ,求锐角∠DCB的余弦
D
C
A
• 一辆汽车从高架桥引桥的入口到高架桥路
面总从共行数驶学了到大约实30际m的,回距离归,假情设景该段引
桥的坡角约为15° ,请问高架桥的路面离地 大约多少米 ?
回归情景 ,解决问题
归纳小结 ,反思提高

锐角三角函数
A
归纳小结 ,反思提高
生活普遍存在,有一定的模式
假设平均增长(或降低)百分率为x,增长 (或降低)前的是a,增长(或降低)n次后 的量是b,那么它们的数量关系可表示
a(1为x)n b
其中增长取 +,降低取-
一路下来 ,我们结识了很多新知识 ,也 有了很多的新想法 .你能谈谈自己的收获 吗 ?说一说 ,让大家一起来分享 .
BC
AC
BC
si nα= AB cosα= AB tanα= A C
B
锐角α的正弦、余弦、正切 统称为∠α的三角函数
α
AC
新知探究 ,明确定义
• 如图 ,在Rt⊿ABC中 ,∠C =Rt∠
si nA= BC AB
co sA= A C AB
t a n A=BABCC
∠A的对边 sinA= 斜边 c o s A=∠A 的邻边

锐角三角函数(第2课时)教案 2022—2023学年人教版数学九年级下册

锐角三角函数(第2课时)教案  2022—2023学年人教版数学九年级下册

28.1 锐角三角函数第2课时一、教学目标【知识与技能】1.通过类比正弦函数,理解余弦函数、正切函数的定义,进而得到锐角三角函数的概念;2.能灵活运用锐角三角函数进行相关运算.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】理解余弦、正切概念,知道当直角三角形的锐角固定时,它的邻边与斜边的比值、直角边之比是固定值.【教学难点】熟练运用锐角三角函数的概念进行有关计算.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2)如图,在Rt△ABC中,∠C=90°.当∠A确定时,∠A的对边与斜边的比就确定,此时,其他边之间的比是否也确定呢?(二)探索新知知识点一余弦的定义如图,△ABC和△DEF都是直角三角形,其中∠A=∠D,∠C=∠F=90°,则AC DF=成立吗?为什么?(出示课件4)AB DE学生思考后,师生共同解答:(出示课件5)∵∠A=∠D,∠C=∠F=90°,∴∠B=∠E.从而sinB=sinE,因此AC DF=.AB DE教师归纳:(出示课件6)在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关.如下图所示,在直角三角形中,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=.A b c∠=的邻边斜边教师强调:从上述探究和证明过程,可以得到互余两角的三角函数之间的关系:对于任意锐角α,有cos α=sin(90°-α),或sin α=cos(90°-α).(出示课件7)出示课件8,教师对照正弦、余弦的定义,对两个概念注意事项加以强调:1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形).2.sinA 、cosA 是一个比值(数值).3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关.出示课件9,学生独立思考后口答,教师订正.知识点二 正切的定义如图,△ABC 和△DEF 都是直角三角形,其中∠A=∠D ,∠C=∠F=90°,则BC EF AC DF=成立吗?为什么?(出示课件10)学生自主证明,一生板演,教师巡视,并用多媒体展示. 证明:∵∠C=∠F=90°,∠A=∠D ,∴Rt △ABC ∽Rt △DEF. ∴BC AC EF DF =, 即BC EF AC DF=. 教师问:当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?(出示课件11)学生独立思考后,师生共同总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(出示课件12)如图:在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA.即tanA=a .A A b∠=∠的对边的邻边出示课件14,教师问:如果两个角互余,那么这两个角的正切值有什么关系?学生答:互为倒数.教师问:锐角A 的正切值可以等于1吗?为什么?可以大于1吗?学生答:锐角A 的正切值可以等于1;当a=b 时;可以大于1,当a >b 时.出示课件15,学生独立思考后口答,教师订正.知识点三 锐角三角函数的定义出示课件16:锐角A 的正弦、余弦、和正切统称∠A 的锐角三角函数.考点1 已知直角三角形两边求锐角三角函数的值.例 如图,△ABC 中,∠C=90°,AB=10,BC=6,求sinA ,cosA ,tanA 的值.(出示课件17)学生思考后,师生共同解答.解:由勾股定理,得2222=106AC AB BC --, 因此,63sin ==105BC A AB =, 84cos 105AC A AB ,===63tan ==.84BC A AC = 师生共同总结:已知直角三角形中的两条边求锐角三角函数值的一般思路是:当所涉及的边是已知时,直接利用定义求锐角三角函数值;当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的长度,然后根据定义求锐角三角函数值.(出示课件18)出示课件19,学生独立思考后口答,教师订正.考点2 已知一边及一锐角三角函数值求函数值.例 如图,在Rt △ABC 中,∠C=90°,BC=6,3sin 5A =,求cosA,tanB 的值.学生独立思考后,师生共同解答.解:∵在Rt △ABC 中,sin BC A AB=, ∴5610sin 3BC AB A =⨯==. 又22221068AC AB BC =-=-=, ∴4cos 5AC A AB ==,4tan .3AC B BC == 教师强调:在直角三角形中,如果已知一边长及一个锐角的某个三角函数值,即可求出其它的所有锐角三角函数值.出示课件21,学生独立思考后一生板演,教师订正.(三) 课堂练习(出示课件22-28)练习课件22-28相应题目,约用时15分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

31.1锐角三角函数(二)
教学目标
1、 知识目标:(1) 了解三角函数的概念,学会在直角三角形中进行一些简单的计算。

(2)知道特殊角30°、45°、60°的三角函数值并会应用进行简单计算
2、 能力目标:能运用三角函数解决与直角三角形有关的简单问题,培养分析问题和解决问
题的能力,发展应用意识。

3、 情感目标:培养学生学习数学的兴趣,培养学生热爱数学、热爱生活的情感。

教学重点:锐角三角函数的概念、特殊角三角函数值及其简单的计算 教学难点:三角函数概念的形成 节前预习:
1、如图,在RtAABC 中,ZC=9O° ,斜边是 __________ , ZA 的对边是
邻边是—,ZB 的对边是 _________ ,邻边是 __________ 。

2、在RtAABC 中,ZC=90° ,我们把锐角A 的 __________ 与 ___ 的比叫做ZA 的正切,
记作 _______ 3、已知在 RtAABC 中,ZC=90°
(1) 若ZA=30° ,贝lj tan30° = ________ (2) 若ZA 二45° ,则 tan45° = ________ (3) 若ZA 二60° ,则 tan60° = ________
4、 在RtAABC 中,ZC=90° ,我们把锐角A 的 __________ 与 ___ 的比叫做ZA 的正弦,
记作 ___________ o
5、 在RtAABC 中,ZC=90° ,我们把锐角A 的邻边与斜边的比叫做ZA 的 ______________ ,
记作 ___________ 。

6、 我们把锐角A 的正弦、余弦、正切都叫做ZA 的 __________o
7、 在 RtAABC 中,ZC=90° , AC=4, BC=3, AB=5,则 sinA 二 ____________ , cosA= ______
tanA= ______
教学过程 一、 情境导入:
通过前面的学习我们知道,在直角三角形中,只要锐角A 确定, 它的对边和邻边的比是一个确定的值,那么它的对边和斜边的比是 否也是一个确定的值呢?它的邻边和斜边的比呢? 二、 合作探究:
1、任意给定一个锐角ZBAC,在AB 边上取点B|, B 2
过点B], B?作AC 的垂线,垂足分别为C], C 2 0
让学生在画图操作 过程
中,体验只要锐 角确定,那么这个锐 B 角的对边与邻边的
提出问题,激发学生 兴趣
比,对边与斜边的 比,邻边与斜边的 比,都是一个确定的 值。

(1)B1CI 与AB1的比值和B 2 C 2与AB 2的比值相等吗? (2) AC 】与AB|的比值和AC?与AB 2的比值相等吗?
结论:在直角三角形中,当锐角A 确定时,它的对边和斜边的比 以及邻边
和斜边的比都是一个 ________________ 的值。

正弦概念:我们把锐角A 的 _____ 边与 _____ 边的比叫做ZA 的正弦,
i 己作 sinA, 即 sinA= _________ 。

余弦概念:把锐角A 的 ______ 边与 _____ 边的比叫做ZA 的余弦,
3、在 RtAABC 中,ZC=90° ,
AC=5,
BC=12,
求 sin A, cosA 的值。

4、求下列各式的值:
(1) 2 sin30° +3 tan30° -tan45° ; (2) sin 2 45° +tan60° sin60°。

三、巩固练习
1、在 RtAABC 中,ZC=90° ,则 sinB 为 (
)
30°
45°
60°
sin a
cos a
tan a
先由学生独立写出 特
殊角的三角函数 值的求解过程,然后 小组交流方法和结 果,最后填表。

sin 2 45°
表示(sin45° ) 2
记作 cosA,即 cosA= _____________ o
三角函数:锐角A 的 ______ 、_和 _______ ,都叫做ZA 的三角函数。

2、填表:
AC AC AB BC
A.
C.
D.——
AB
BC
AC
AB
2、在 RtAABC 中, ZC=90° , AB=15,
1
sin A=—,
3
则BC 的值是(
)
A 45
B 5
C 1
D 丄
5 45
3、在 RtAABC 中, 若 ZC=90° , AC=1, BC=2,则下列结论正
确的是( )
A. sin B= ---- 2
1
B. cos B=—
C. tanB=2
D. cos B=—
5
5
2
4、若ZA 、ZB 均为锐角,且sinA 冷,cosB=l,则()
A. ZA=ZB=60°
B. ZA=ZB=30°
C. ZA 二 60' 5
, ZB= 30° D. ZA 二30° , ZB= 60°
5、AABC 中, ZC = 90°, tan A
则sinfi 的值是(
3 )
A N /10
,2厂3
,3N /|0
A. -------
B. — C ・—
D.
10
3 4
10
6、 在 RtAABC 屮,ZC=90° , ZA 二 60° , AB=10,则 AC 二—
sin B= ______ o 7、 在 RtAABC 中,ZC=90° , 2BC=AC,则 tanA 二 _____________ ,
sinA= ________ o 8、 在 RtAABC 中,ZC=90° , AC=3, BCM,则 cosA 二 __________ ,
tanB= _________ o
4
9、 RtAABC rf, ZC=90° , cosA=- , AB=15,贝ij AC= 。

5
10、 _____________________________________________ 计算:Uin60° +2sin45° -2cos30° = 。

四、挑战自我:
如图,在由边长为1的小正方形组成的网格中,AABC 的三 个顶点均在格点上, 请按要求完成下列各题:
⑴画AD/7BC (D 为格点),连接⑵
(2) _________________ 线段〃的长为 ______ , /C 的长为 ;
(3) 请你在△ACD 的三个内角中任选一个锐角,若你所选的锐角 是 _______
,则它所对应的正弦函数值是 __________________ : ⑷若F 为%中点,尸为肋中点.贝ij tanZCAE 的值是 _____________ ,四 边形屁乙尸的形状为 __________ ,面积为 ______________ -
C。

相关文档
最新文档