夹套式焦炉上升管荒煤气余热回收工艺技术的改进与完善

合集下载

焦炉荒煤气余热回收技术应用分析

焦炉荒煤气余热回收技术应用分析

第6期 收稿日期:2018-02-02作者简介:姜 崴(1973—),山东乳山人,本科,高级工程师,1997年毕业于太原理工大学精细化工专业,目前从事工艺设计方面的工作。

焦炉荒煤气余热回收技术应用分析姜 崴(山西国控环球工程有限公司,山西太原 030024)摘要:焦炉荒煤气含有大量的焦炉热量。

纵观传统焦化工艺,处于集气管内的焦炉荒煤气需要利用喷氨水的手段将其冷却降温,这种做法既会损耗多量的电能,还会导致荒煤气热量的浪费。

本文将结合焦炉荒煤气的特点,分析和探讨焦炉荒煤气余热回收技术。

关键词:荒煤气;余热回收;应用分析中图分类号:TQ083.4;TQ520.8 文献标识码:A 文章编号:1008-021X(2018)06-0109-01 我国焦炭产量在世界范围内处于前列,然而整体科技水平不高,许多焦化企业面临着亏损。

我国焦炭大部分被用来炼铁。

焦炉荒煤气携带着大量的热量,不合理利用的话会造成巨大的损耗。

鉴于这一现实情况,焦化企业要积极调整工艺结构,优化和完善焦炉荒煤气余热回收技术。

1 焦炉荒煤气以及煤焦油结焦的特征荒煤气内含有多种成分,不仅含有净煤气,还含有硫化氢、煤焦油、水分等成分。

硫化氢作为荒煤气中的成分之一,在干燥状态下不会对金属造成腐蚀和破坏。

然而,当焦化企业利用换热器回收荒煤气时,由于换热器壁面与荒煤气之间的温度差异,会导致水蒸气凝结或煤焦油凝结,使得可融入水的硫化氢在水蒸气或煤焦油之中溶解,进而对换热器的金属壁面造成严重的腐蚀破坏,对设备的安全使用造成威胁,可能导致严重的安全隐患。

煤焦油内含有多种成分,根据沸点的高低可分为沥青、蒽油、洗油等成分。

实践证明,煤焦油的凝结温度为450℃,凝结之后的煤焦油会顺着换热器的避免往下流动,当流动到换热器的底部时,凝结后的煤焦油在炭化室的高温辐射下得到再一次分解,其中煤焦油中的固体成分将在换热器表面附着,导致积碳现象。

当换热器避免的温度远远低于煤焦油的温度时,煤焦油会迅速冷凝成为结焦,这些现象都是制约焦炉荒煤气余热回收技术发展的难题,攻克焦炉上升管换热器运行问题有助于促进荒煤气余热回收技术的发展。

荒煤气带出热的回收和利用技术

荒煤气带出热的回收和利用技术

焦炉输出热量的充分利用
高效回收利用在炼焦过程中产生的余热资源是资 高效回收利用在炼焦过程中产生的余热资源是资 源节约、环境友好的绿色焦化厂节能的主要方向和潜 源节约、环境友好的绿色焦化厂节能的主要方向和潜 力所在, 效率的主要途径之一。 力所在,也是提高 效率的主要途径之一。通过对炼 焦过程输入端和输出端能量流分析得出: 焦过程输入端和输出端能量流分析得出: □出炉红焦显热约占焦炉输出热的37%——CDQ 出炉红焦显热约占焦炉输出热的37% 焦炉输出热 CDQ
日本煤炭能源中心(简称JCOAL) 日本煤炭能源中心(简称JCOAL)在焦炉旁安装 JCOAL 一个COG重整装置, 1200~1250℃高温下对COG进 一个COG重整装置,在1200~1250℃高温下对COG进 COG重整装置 高温下 行重整,生成合成气。目前已在日本三井矿山焦化 行重整,生成合成气。 厂的焦炉间台进行了一孔炭化室无催化转化技术实 厂的焦炉间台进行了一孔炭化室无催化转化技术实 验,正在建设三孔炭化室试验装置。 正在建设三孔炭化室试验装置。
上 升 管
热管换热器
750℃ 锅炉给水
用锅炉回收荒煤气热量
750℃荒煤气 750℃荒煤气
xMPa

300~ 300~500℃ 荒煤气去净化车间
上 升 管
锅炉给水
用半导体温差发电回收荒煤气热量
荒煤气去净化车间 温 差 发 电 机 发 电 模 块 热 发电
焦 炉
过去用水套管回收荒煤气热量
上升管 荒煤气去净化车间 冷水 水夹 套式 上升管
1.1 回收焦炉荒煤气带出热 出热占焦炉总热量36% 出热占焦炉总热量36%。 36 为了冷却高温的荒煤气必须喷洒大量70℃~ 为了冷却高温的荒煤气必须喷洒大量70℃~75℃ 70℃ 循环氨水, 循环氨水,高温荒煤气因循环氨水的大量蒸发而被冷 却至82℃~85℃,再经初冷器冷却至22℃~35℃, 却至82℃~85℃,再经初冷器冷却至22℃~35℃,荒 82℃ 22℃ 煤气带出热量被白白浪费。 煤气带出热量被白白浪费。 煤气在集气管冷却时所放出的热量中约有75~ 煤气在集气管冷却时所放出的热量中约有75~80 75 用于蒸发氨水、10~15%使氨水升温, %用于蒸发氨水、10~15%使氨水升温,而集气管的 散热损失约占10% 散热损失约占10%。 10

焦炉用上升管换热器余热回收中试研究

焦炉用上升管换热器余热回收中试研究

焦炉用上升管换热器余热回收中试
研究
焦炉是一个重要的钢铁生产设备,它能够将粗铁矿石通过高温反应转化为高品质的铁合金。

这是一个极为能源密集型的过程,需要大量燃料来维持高温反应。

然而,同时也会产生大量的余热,如果这些余热不能被恰当地回收利用,将会浪费大量能源并加重环境负担。

为了解决这个问题,研究人员开始探索焦炉上升管换热器的余热回收利用。

研究表明,焦炉上升管换热器的余热可用于供热、热水和发电等领域。

但是,在实际应用中,由于技术难度和成本等问题,这种方法并未得到广泛的应用。

为了进一步探究这种余热回收利用的可行性,一些研究人员进行了中试研究。

他们设计了一套焦炉上升管换热器的余热回收系统,并对其进行了实际操作和数据分析。

通过对系统的操作和数据分析,研究人员得到了以下结论:
1.焦炉上升管换热器的余热回收利用方案具有可行性。

2.通过数据分析,系统的回收效率表现良好,可达到预期的回收效果。

3.中试结果表明,系统的成本和运营费用较高。

将来需要进一步降低成本和费用才能推广应用。

以上结论表明,焦炉上升管换热器的余热回收利用方案是可行的,但仍需要进一步改进和优化。

随着技术的发展和成本的下降,这种方案将会得到更广泛的应用。

总之,通过中试研究,我们发现焦炉上升管换热器的余热回收利用方案具有广阔的发展前景。

未来,更多的研究人员将会继续探索和完善这种系统的技术,在推广应用上取得更好的成果。

钢铁厂炼焦炉上升管余热回收技术发展及应用

钢铁厂炼焦炉上升管余热回收技术发展及应用

钢铁厂炼焦炉上升管余热回收技术发展及应用摘要传统荒煤气冷却工艺造成大量显热流失浪费,同时消耗淡水资源带来环境压力。

在技术人员的多年努力下,上升管余热回收技术及装置已日臻成熟并得到了推广应用,创造了良好的经济和环保效益。

一、钢铁联合企业炼焦工序余热资源长流程钢铁生产工艺,高炉炼铁工序中作为还原剂的主要原料是焦炭。

用于还原铁矿石中的铁元素,生产出的生铁供给后续炼钢车间炼钢。

高炉内的化学方程式为:Fe0+C=Fe+CO。

钢铁联合企业一般自备炼焦炉系统生产焦炭满足生产需求。

焦炭由炼焦煤在炼焦炉碳化室中,隔绝空气高温干馏去除有机质、挥发分生成。

炼焦生产过程中有三种余热资源产生:红焦显热、烟道废气显热、荒煤气显热。

各自在焦炉总体热量消耗中所占比例分别为:37%、17%、36%本文讨论荒煤气显热的回收----上升管余热回收技术:二、炼焦炉上升管余热(荒煤气显热)回收的必要性红焦炭带出的显热及烟道废气显热,通过采用成熟可靠的干熄焦发电装置和烟道余热锅炉已实现有效回收利用。

但荒煤气的显热由于种种因素一直没有好的办法来回收。

传统工艺为便于后工序的煤气净化与处理,普遍的做法是:先在桥管和集气管喷洒循环氨水与荒煤气直接接触,靠循环氨水大量气化,使荒煤气急剧降温至80~85℃;降温后荒煤气在初冷器中再用冷却水间接冷却至常温。

所得到的效果是:荒煤气被冷却,其中所夹带的粉尘被清洗除去,绝大部分焦油蒸汽冷凝、萘凝华(并溶于焦油)而被脱除,为煤气的输送、深度净化和化学产品回收创造了较好的条件。

上述过程对荒煤气的冷却和初步净化而言是高效的,但在热力学上却是不完善的。

第一、该回收的能量未回收。

荒煤气在桥管和集气管内急剧降温─增湿过程是高度不可逆过程,其物理显热损失达90%以上.第二、冷却水耗量大。

荒煤气从650~850℃降温至常温所放出的热量绝大部分是在初冷器中靠冷却水移除的(以两段循环水一段深冷水的横管初冷器为例,冷却水总比用量约43t/km3)。

焦化厂上升管余热回收利用技术研究

焦化厂上升管余热回收利用技术研究

焦化厂上升管余热回收利用技术研究
刘文凯
【期刊名称】《能源科技》
【年(卷),期】2024(22)3
【摘要】传统焦炉生产工艺荒煤气余热没有加以利用,造成能源浪费。

针对120万t/a焦化项目5.5 m捣固焦炉的结构特点,提出了一种“上升管余热回收利用”的改造方案,安装余热回收设备重新回收余热用于生产低压饱及蒸汽及过热蒸汽,并利用蒸汽完全替代粗苯管式炉。

研究结果表明:改造方案可以节省大量煤气,减少冷却水消耗,同时解决了燃烧排放问题和明火燃烧的安全隐患。

用蒸汽替代粗苯管式炉后,不再向空气直接排放氮氧化物和粉尘颗粒物,既是节能项目,又是安全环保项目,可为同类焦化行业提供参考。

【总页数】5页(P68-71)
【作者】刘文凯
【作者单位】国家能源集团煤焦化公司巴彦淖尔水务公司
【正文语种】中文
【中图分类】TQ520.5
【相关文献】
1.上升管余热利用技术在新钢焦化厂的应用
2.焦化厂粗煤气上升管余热利用实验研究
3.上升管余热回收技术在新钢焦化厂的应用前景
4.浅谈广西钢铁焦化厂上升管余热回收利用
因版权原因,仅展示原文概要,查看原文内容请购买。

焦炉上升管余热回收利用系统的应用及运行效果

焦炉上升管余热回收利用系统的应用及运行效果

焦炉上升管余热回收利用系统的应用及运行效果【摘要】焦炉上升管余热回收利用系统是一项重要的能源回收技术,可以有效地提高能源利用效率和降低生产成本。

本文介绍了焦炉上升管余热回收利用系统的工艺原理、系统组成、运行效果评价、应用案例和节能效果分析。

通过对该系统运行效果的评价和应用案例的分析,可以看出该技术在工业生产中具有重要的应用价值。

节能效果分析显示,焦炉上升管余热回收利用系统能够显著减少能源消耗并降低碳排放。

总结了该系统的重要性并展望了未来的发展前景。

焦炉上升管余热回收利用系统的不断完善和推广应用将为工业生产带来更多的节能效益,对于推动可持续发展具有重要意义。

【关键词】焦炉,上升管,余热回收利用系统,应用,运行效果,工艺原理,系统组成,评价,应用案例,节能效果分析,重要性,未来发展前景,总结1. 引言1.1 焦炉上升管余热回收利用系统的应用及运行效果焦炉上升管余热回收利用系统被广泛应用于焦化行业,其运行效果备受关注。

通过对余热的回收利用,可以有效提高能源利用效率,减少能源消耗,降低生产成本,实现节能减排的目标。

焦炉上升管余热回收利用系统还能改善环境质量,减少对大气环境的污染,符合可持续发展的要求。

在实际应用中,焦炉上升管余热回收利用系统能够有效提高热能的利用率,延长设备的使用寿命,提高生产效率。

通过科学设计和优化操作,系统可以实现较高的热效率,达到节能减排的效果。

系统运行稳定可靠,保障了工业生产的正常进行,为企业创造了经济效益和环境效益。

焦炉上升管余热回收利用系统在实际应用中取得了显著效果,有利于提高工业生产的可持续发展水平,实现经济效益和环境效益的双赢。

未来,随着技术的不断进步和应用经验的积累,焦炉上升管余热回收利用系统的应用前景将更加广阔,为推动工业节能减排、实现可持续发展作出更大贡献。

2. 正文2.1 工艺原理焦炉上升管余热回收利用系统的工艺原理主要是通过将焦炉排放的高温废热经过余热回收系统进行回收利用。

科技成果——焦炉荒煤气显热回收利用技术

科技成果——焦炉荒煤气显热回收利用技术

科技成果——焦炉荒煤气显热回收利用技术适用范围钢铁、焦化行业焦炉荒煤气余热回收行业现状据统计,在我区钢铁和焦化行业,从焦炉炭化室出来的650℃-800℃荒煤气带出的余热约占焦炉热量损失的36%,相当于39kgce/吨焦。

目前,传统的焦炉荒煤气冷却工艺采用喷洒大量70℃-75℃的循环氨水冷却高温荒煤气,荒煤气温度降低后,进入煤气初冷器,再由循环水和低温冷却水进一步降低温度到21℃左右,而高温荒煤气带出的余热无法利用。

该工艺流程不仅浪费了大量的荒煤气余热,而且消耗大量氨水,浪费大量的水资源和电力。

成果简介1、技术原理通过上升管换热器结构设计,采用纳米导热材料起导热作用,并防止荒煤气腐蚀和焦油附着,采用耐高温耐腐蚀合金材料最大限度地适应了荒煤气运行的恶劣工况。

特殊的几何态构体结构,合理地将换热和稳定运行有机结合,将焦炉荒煤气利用上升管换热器和除盐水进行热交换,产生饱和蒸汽,将荒煤气的部分显热回收利用,实现节能。

2、关键技术(1)换热器防漏水技术采用纳米导热层、耐磨耐腐耐高温合金层、金属导热层(无缝钢管)的三层保护结构材料,与荒煤气接触部分无任何焊缝,保证换热水不会漏入上升管内部,确保工艺安全。

换热器换热结构采用自行研发的几何态换热结构形式,将水封闭在三层以外的密闭空间进行换热。

(2)换热器防堵塞技术在结焦过程中,特别是存在大量荒煤气的阶段,可实现荒煤气出口温度与进水流量的全自动控制调节,将荒煤气出口温度控制在450℃以上。

同时,上升管换热器的内壁采用耐高温进口纳米导热材料,耐热温度为1800℃,经过500℃高温后内表面形成均匀光滑而又坚固的釉面,不易造成焦油凝结,即使结焦也不易附着,便于清除。

3、工艺流程除盐水经过除氧后通过给水泵送入汽包,汽包底部的强制循环水泵将一定压力的除氧水送入上升管换热器,在上升管换热器内的除氧水经换热后,返回汽包,在汽包内进行汽液分离,饱和蒸汽根据用户需求条件,通过管道供给用户。

焦炉上升管余热回收技术

焦炉上升管余热回收技术

Ke y wo r d s s e n s i b l e h e a t o f r a w g a s h e a t —r e c o v e r i n g s a t u r a t e d s t e a m
焦炭 生产 过 程 中 ,配合 煤 在 焦炉 中被 隔绝 空
前焦化 工艺 是依靠 喷洒低 压氨水对荒煤气进行 冷却降温 ,造成 了荒煤气大 量显热 的 白白浪 费。 文章介 绍一 种较为 有效和可靠的上升管余 热 回收工艺 装置 ,可较好 地回收荒 煤气 显热生 产低
压饱 和 蒸 汽 ,节 约 能 源 。 关键 词 荒煤气显热 余 热 回收 饱 和蒸 汽
气加热 于 馏 ,生 成 焦 炭 的 同 时 产 生 大 量 的 荒 煤
1 项 目简 介
1 . 1 工 艺 流程
气 。6 5 0~ 7 5 0  ̄ ( 2 焦炉 荒 煤 气 带 出 热 ( 中温 余 热 )
占焦 炉支 出热 的 3 6 %。
该焦 炉 荒煤气 水 套 管余 热 利用技 术设 计 有汽
Te c h no l o g y o f c o ke o v e n r i s i n g t ub e he a t— — r e c o v e r i n g
Zh a n g h ua i d o n g Xu b a o x i a n An z h a nl a i
后经过补水泵送人缓冲水槽 ,再经给水泵送到汽
包 ,之后 通 过 强制循 环 泵进 入 5 、6号焦 炉 9 0组 上升 管换 热装 置 。通过 换 热装 置利 用焦 炉荒 煤 气 显 热加 热循 环水 ,由上 升 管换 热后 产生 的汽水 混 合物 返 回汽 包进 行 汽水 分离 ,蒸汽直 接 并 人焦 化 现有 低压 蒸 汽 管 网 ,冷 凝 液则 通过 热水 循环 泵 返
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

夹套式焦炉上升管荒煤气余热回收工艺技术的改进与完善
发表时间:2019-08-27T11:37:26.887Z 来源:《工程管理前沿》2019年第12期作者:左国辉韩雷雷[导读] 阐述了焦炉荒煤气余热回收运行过程中的常见问题及难点。

河北汉尧环保工程有限公司河北石家庄 050031 摘要:本文阐述了焦炉荒煤气余热回收运行过程中的常见问题及难点,通过对工艺装置进行技术改进和完善,有效解决易腐蚀、易析碳
结、换热效率低、水利分布不均、冒黑烟等问题,实现了装置安全、稳定、高效运行,效益明显,对同类项目实施具有一定的参考和借鉴意义。

关键词:余热回收荒煤气上升管
概述
2018年9月底,由我公司设计、实施、调试的宣钢5#、6#焦炉荒煤气显热回收利用改造工程正式完工投运,实现了产生0.5~0.8公斤饱和蒸汽12t/h以上的良好节能效果。

经过历时10个月的生产跟踪和调试改进,掌握和完善了一系列施工和调试过程中的技术提升和工艺优化,在安全生产、环境保护、节能效果等方面得到进一步保障,为今后同类项目设计实施提供了技术积累和经验借鉴。

实施方案及组成
焦化厂2×50孔6米焦炉年产焦炭100万吨,建于2008年,从炭化室经上升管逸出的750℃~850℃荒煤气通过喷洒大量70℃~75℃循环氨水将高温荒煤气冷却至82℃~85℃,再经初冷器冷却到22℃~35℃,荒煤气带出的热量被白白浪费。

针对这一现状,公司通对焦炉及荒煤气参数进行计算,设计一套由补水泵、缓冲水箱、加药装置、给水泵、汽包、强制循环泵、上升管换热器、调节阀组、管网及相关附属设施构成余热回收系统。

整个方案从设计到施工到投运计划总工期5个月,在保证不影响焦化正常生产的情况下进行节能改造。

工艺流程
工艺过程是除盐水通过补水泵进入缓冲水箱,再经给水泵至汽包。

然后水从汽包通过下降管经强制循环泵至上升管换热器,吸热后的汽水混合物再经上升管至汽包,经汽水分离后,饱和蒸汽供入蒸汽管网,未汽化的水重新进入下一个循环。

换热器另一侧从炭化室逸出的750℃~850℃荒煤气经过本换热装置温度降至450℃~500℃后,经桥管、集气管进入化产车间。

工艺流程图如下:
运行期间出现的问题和解决方案
(1)当停电或强制循环泵停运后,二次恢复供水过程中,在管道末端上升管换热器易出现过热干烧和气阻现象。

分析:末端换热器从给水角度讲位置处于最远端,水克服管道阻力损失,因此末端换热器进口压力Pn进低于其它换热器进口压力;从汽水混合物角度讲位置也是处于最远端,汽水混合物要流回汽包也要克服沿途管道阻力损失,因此末端换热器出口压力Pn出要高于其它换热器出口压力;这样就造成末端换热器介质流动性很差,在流动状态被破坏之后易形成气阻,造成设备过热干烧。

解决方法:①.短时间出现过热和气阻现象,可以短期提高强制循环泵出力,使系统建立新的平衡;②.长时间出现过热和气阻现象,需先对过热换热器进行蒸汽冷却,在提高强制循环泵出力,建立新平衡;③.总之系统庞大,重在优化单体设备的自动化和调控水平。

效果:不良现象消除,系统运行稳定,总产气量指标有所提升。

(2)近汽包端个别上升管底部有结焦现象,开盖有冒黑烟现象。

分析:①.近端换热器水量过大,取热过多,造成上升管直管段荒煤气温降过大,出现析碳结焦现象,进而开盖有黑烟冒出。

②.各企业操作过程控制碳化室顶部温度不一,总体780±20℃,再加上单孔碳化室结焦过程荒煤气温度类似正弦曲线波动,结焦末期开盖本身荒煤气正处于温度偏低阶段。

解决办法:①.轻微现象可以通过及时清理换热器内壁和短时间开盖焚烧处理。

②.严重现象需控制近端换热器进水量,控制出汽口蒸汽的饱和度。

③.经过调整摸索和精确计算对近端换热器进口增加节流孔板精准控制单体设备进水量,同时强制内循环系统增加精确插入式流量测量装置,精准调节内系统循环流量。

设计改进及施工优化
经过整个项目从设计到实施到调试到运营全流程跟踪和试验,并结合实际实施效果和生产数据对比得出如下结论:
1.设计方面优化提升
①.采用树状网络布管技术(见下图), 通过强制循环泵变频、大流量高扬程、分段的管网布局、节流调节等手段保证每个上升管换热器的进水相对均匀,保证整个系统各单体设备水量均匀。

相关文档
最新文档