多段DDA直线扫描转换算法

多段DDA直线扫描转换算法
多段DDA直线扫描转换算法

《算法的程序实现》教案

第3课算法的程序实现 一、教学设计思想: 本节课是程序设计上机的第一节课,本节课的目的是让学生了解程序设计的上机规范,掌握顺序结构程序设计的基本步骤,因此,本节课采取先介绍程序设计软件界面,然后再选择用一道最简单的加法程序来让学生达到以上的目的,之所以选择这个加法程序,第一是程序简单,学生可以撇开复杂问题,直接了解顺序结构程序设计的过程和步骤,第二,可以用借这个例题来更直观地掌握val()函数的用法。 本节课设计讲解,演示,加上学生练习相结合的方式进行,以期让学生掌握顺序结构程序设计的基本方法。 二、教学目标: (一)知识与技能 (1)初步掌握程序的顺序结构,了解程序设计的基本思想和方法。 (2)学会使用输出语句、赋值语句、输入语句来实现顺序结构 (3)初步体验并掌握程序调试和运行的方法,初步掌握顺序结构程序的设计方法 (二)过程与方法 (1)通过比较、观察、实践、分析程序,了解用VB编写程序的要点。 (2)通过模仿,讨论等方式体验设计顺序结构程序的过程。 (三)情感与价值观 体验程序解决实际问题的思想方法,激发学生学习程序设计的求知欲,形成积极主动地学习和使用信息技术、参与信息活动的态度,培养学生的创新、探索精神、与人共事的合作意识和实事求是的科学态度。 三、教学重点: 能根据程序顺序结构的执行流程、编写程序解决简单的问题。 四、教学难点: 根据问题要求写出正确的程序。 五、学情分析:

学生对程序的认识和编程的知识相当少,在学习的过程中,要注重学生编程思想的培养。要通过简单的例子让学生模仿、体验,提高学生学习的兴趣,开始老师和学生一起探讨学习降低难度,先从模仿入手,后让学生尝试编写。对于基本的一些控件,赋值语句、基本输入输出语句让学生感受功能,通过今后的多次学生让学生掌握用法。 六、教学过程: 1.作业订正 1.请画流程图描述解决问题的算法: (1) 输入一个矩形的长和宽的值,求该矩形的面积(P.9 例1)。 (2) 如图所示:大圆半径为R1,小圆半径为R2。 请计算出阴影部分的面积S ,并输出。 2.请根据常量、变量和表达式的概念,写出下列流程图的输出结果: (1)12 (2)8 6 Input x Input y S=x*y Print S Input R1 Input R2 S=3.14*R1*R1-3.14*R2*R2 Print S

DDA直线生成算法

实验报告 课程名称计算机图形学 实验名称DDA直线生成算法编程的实现实验类型验证型 实验地点计通学院304实验日期2010-03-29指导教师 专业 班级 学号 姓名 成绩 辽宁石油化工大学计算机与通信工程学院

实验报告说明 1、封面内容 (1)课程名称:实验所属的课程的名称。 (2)实验名称:要用最简练的语言反映实验的内容。要求与实验指导书中相一致。 (3)实验类型:说明是验证型实验、设计型实验、创新型实验还是综合型实验。 2、正文内容 实验报告的正文内容须包括以下内容: (1)实验目的:目的要明确,要抓住重点,符合实验指导书中的要求。 (2)实验内容:说明本实验的主要内容。 (3)实验原理:简要说明本实验项目所涉及的理论知识。 (4)实验环境:实验用的软硬件环境(配置)。 (5)实验方案:对于验证性型实验,写明依据何种原理、操作方法进行实验;对于设计型和综合型实验,写明依据何种原理、操作方法进行实验,并画出硬件组成图、软件流程图、设计思路和设计方法,再配以相应的文字说明;对于创新型实验,除符合设计型和综合型实验要求外,还应注明其创新点、特色。(6)实验步骤:写明实验的实施步骤,包括实验过程中的记录、数据。 (7)实验结果与分析:写明实验的最终结果,并对结果进行分析,做出结论。(8)实验中遇到的问题及解决方法:写明实验过程中遇到的问题及所采取的解决方法。 (9)实验总结(在封底上):写出对本次实验的心得体会、思考和建议。

实验原理:已知线段的起点坐标()11x y ,终点坐标()22x y ,直线的点斜 式方程为:y m x b =?+,斜率和截距分别为:2121y y m x x -= - , 11b y m x =-? 。沿x 的增量为x ?,沿y 的增量为y ?,即: 1x y m ?= ??,y m x ?=??。当1m ≤时,取x 为一个像素单位长,即x 每次增加一个像素,然后利用公式计算相应的y 值:1k k k y y y y m x -=+?=+??,相反1m >时,可以通过质量y ?来计算相应的x 值:1k k k x x x x m y -=+?=+??。 实验内容:新建一个Win32 Application 的典型“Hello World ”程序,工程 命名为:DDA 直线生成算法,打开DDA 直线生成算法.cpp 文件, 在里面加入代码: void DDA_line(HDC hdc) { double x,y,dx,dy,L,x1=100,x2=400,y1=100,y2=400; if(abs(x2-x1)>=abs(y2-y1)) L=abs(x2-x1); else L=abs(y2-y1); dx=(x2-x1)/L; dy=(y2-y1)/L; x=x1,y=y1; for(int k=1;k<=L;k++) { SetPixel(hdc,x,y,RGB(255,0,255)); x=x+dx; y=y+dy; Sleep(10); } } 实验结果:调用程序运行得出一下结果:

公历和农历转换算法详解

公历和农历转换算法详解 //C51写的公历转农历和星期 #define uchar unsigned char #define uint unsigned int #include /* 公历年对应的农历数据,每年三字节, 格式第一字节BIT7-4 位表示闰月月份,值为0 为无闰月,BIT3-0 对应农历第1-4 月的大小第二字节BIT7-0 对应农历第5-12 月大小,第三字节BIT7 表示农历第13 个月大小 月份对应的位为1 表示本农历月大(30 天),为0 表示小(29 天) 第三字节BIT6-5 表示春节的公历月份,BIT4-0 表示春节的公历日期 */ code uchar year_code[597] = { 0x04,0xAe,0x53, //1901 0 0x0A,0x57,0x48, //1902 3 0x55,0x26,0xBd, //1903 6 0x0d,0x26,0x50, //1904 9 0x0d,0x95,0x44, //1905 12 0x46,0xAA,0xB9, //1906 15 0x05,0x6A,0x4d, //1907 18 0x09,0xAd,0x42, //1908 21 0x24,0xAe,0xB6, //1909 0x04,0xAe,0x4A, //1910 0x6A,0x4d,0xBe, //1911 0x0A,0x4d,0x52, //1912 0x0d,0x25,0x46, //1913 0x5d,0x52,0xBA, //1914 0x0B,0x54,0x4e, //1915 0x0d,0x6A,0x43, //1916 0x29,0x6d,0x37, //1917 0x09,0x5B,0x4B, //1918 0x74,0x9B,0xC1, //1919 0x04,0x97,0x54, //1920 0x0A,0x4B,0x48, //1921 0x5B,0x25,0xBC, //1922 0x06,0xA5,0x50, //1923 0x06,0xd4,0x45, //1924 0x4A,0xdA,0xB8, //1925 0x02,0xB6,0x4d, //1926 0x09,0x57,0x42, //1927 0x24,0x97,0xB7, //1928

ER图2关系模型:九步转换算法

3.2.3 Mapping from ER Models to Relational Models ?Mapping Algorithm ?Example There is almost a one-to-one correspondence between the ER constructs and the relational ones. The two major distinctions are: 1.In a relational schema, relationships are represented implicitly through primary and foreign keys of participating entities. 2.In a relational schema, columns of relations cannot be multi-valued or composite. Composite attributes are replaced with their simple component ones, and multi-valued attributes are stored in a separate relation. 一.Mapping Algorithm We can translate an ER schema to a relational schema by following a nine-step algorithm based on the one given in Elmasri and Navathe 1994. The algorithm attempts to minimize the need for joins and NULL values when defining relations (Steps 2, 4, and 5). 1.For each strong entity E: o Create a new table. o Include as its columns, all the simple attributes and simple components of the composite attributes of E. o Identify the primary key and the alternate keys. Do not include any

折半查找算法及程序实现教案

折半查找算法及程序实现 一、教材分析 教学重点:以图示法方式,演示折半查找算法的基本思想。 教学难点:由折半查找算法的思想到程序代码编写的转换,尤其是其中关键性语句的编写是教学中的难点。 二、学情分析 学生应该已经掌握程序设计的基本思想,掌握赋值语句、选择语句、循环语句的基本用法和VB基本操作,这节课学生可能会遇到的最大问题是:如何归纳总结对分查找解决不同情况问题的一般规律,鉴于此,在教学中要积极引导学生采取分解动作、比较迁移等学习策略。 三、教学目标 知识与技能:理解对分查找的概念和特点,通过分步解析获取对分查找的解题结构,初步掌握对分查找算法的程序实现。 过程与方法:通过分析多种不同的可能情况,逐步归纳对分查找的基本思想和方法,确定解题步骤。 情感态度与价值观:通过实践体验科学解题的重要性,增强效率意识和全局观念,感受对分查找算法的魅力,养成始终坚持、不断积累才能获得成功的意志品质。 四、教学策略与手段 1、教学线索:游戏引领---提出对分查找原理--- 解析对分查找的算法特征---实践解决问题。 2、学习线索:分解问题---归纳问题---实践提升,在三个阶段的不断推进中明确对分查找算法,总结规律。 五、教学过程

1、新课导入 (1)热身:游戏(2分钟) 找同学上来找一本上千页电话册里面的一个名字。(课程导入我写的不是很详细,自己设计哦) (2)教师引导:所以我不希望只有他一个人体验这种方便,我们教室里还有一大帮人,其实这种什么不止用于查找电话铺,还可以运用到实际生活中,教室里有这么多人,坦白说,按学校的老方法一个人一个人的数,对所有老师来说都及其费力,那我们想想,是不是数数2368,这样好点对吗?。不要小看这种想法,他其实是非常棒的,他能把解决问题的时间缩短一半,因此我们提出了这种算法 2、新课: 首先我们一起来看一看折半查询算法中的“折半”的含义。 师:何为折半呢? 生:减半;打一半的折扣。 例如,我手里拿着一根绳子,现在我们来进行折半试验,首先拿住绳子的两个端点, 然后从中点的位置进行对折,这样绳子就缩短为原来长度一半,然后将一半的绳子继续执行与刚才相同的操作,使得绳子的长度逐渐的缩短,直到绳子长度短得不能再进行折半了。 师:那什么时候就不能再折半了呢? 生:即绳子的两个端点合二为一为止。 折半查找算法的思想与绳子折半的过程基本相同。下面我们先通过图示来看看折半查找算法究竟是什么? 教学步骤二:分解对分查找算法(5分钟)

计算机图形学 直线的生成算法的实现

实验二 直线的生成算法的实现 班级 08信计2班 学号 59 姓名 分数 一、实验目的和要求 1.理解直线生成的基本原理。 2.掌握几种常用的直线生成算法。 3.利用Visual C++实现直线生成的DDA 算法。 二、实验内容 1.了解直线的生成原理,尤其是Bresenham 画线法原理。 2.掌握几种基本的直线生成算法:DDA 画线法、Bresenham 画线法、中点画线法。 3.利用Visual C++实现直线生成的DDA 算法,在屏幕上任意生成一条直线。 三、实验步骤 1.直线的生成原理: (1)DDA 画线法也称数值微分法,是一种增量算法。是一种基于直线的微分方程来生成直线的方法。 (2)中点画线法原理 以下均假定所画直线的斜率[0,1]k ∈,如果在x 方向上的增量为1,则y 方向上的增量只能在01 之间。中点画线法的基本原理是:假设在x 坐标为p x 的各像素点中,与直线最近者已经确定为(,)p p P x y ,用小实心圆表示。那么,下一个与直线最近的像素只能是正右方的1(1,)p p P x y +,或右上方的2(1,1)p p P x y ++,用小空心圆表示。以M 为1P 和2P 的中点,则M 的坐标为(1,0.5)p p x y ++。又假设Q 是理想直线与垂直线1p x x =+的交点。显然,若M 在Q 的下方,则2P 离直线近,应取2P 为下一像素点;若M 在Q 的上方,则1P 离直线近,应取1P 为下一像素点。 (3)B resenham 画线法原理 直线的中点Bresenham 算法的原理:每次在主位移方向上走一步,另一个方向上走不走步取决于中点偏差判别式的值。 给定理想直线的起点坐标为P0(x0,y0),终点坐标为P1(x1,y1),则直线的隐函数方程为: 0b kx y y)F(x,=--= (3-1) 构造中点偏差判别式d 。 b x k y y x F y x F d i i i i M M -+-+=++==)1(5.0)5.0,1(),(

Dijkstra算法模型设计与实现

Dijkstra算法模型设计与实现 一、Dijkstra算法概述 Dijkstra算法是一种点对多点的集中式最短路径算法,即寻找网 络中其他所有节点到目的节点的最短路径。 Dijkstra算法通过对路径的长度进行迭代,从而计算出到达目的节点的最短路径。其基本思想是按照路径长度增加的顺序来寻找最短路径,显然有:到达目的节点v的最短路径中最短的肯定是节点的最近节点v所对应的单条链路,最短路径中下一个最短的肯定是节点v 的下一个最近的邻节点所对应的单条链路,或者是通过前面选定的节点的最短的由两条链路组成的的路径,依次类推。 二、Dijkstra算法描述 设每个节点i标定的到达目的节点1的最短路径长度估计为D i , 如果在迭代的过程中,D i 已变成一个确定的值,称节点i为永久标定的节点,这些永久标定的节点的集合用P表示。在算法的每一步中,在P以外的节点中,必定是选择与目的节点1最近的节点加入到集合P中。具体算法如下: 1. 初始化,即P=1{},D1=0,D j=d j1,j11。(若j,1 ()?A, 则d j1 =¥)。 2. 寻找下一个与目的节点最近的节点,即求使下式成立的i。置 。如果P包括了所有的节点,则算法结束。 D i =min j?P D j ,i?P

3. 更改标定值,即对所有的j?P,置D j =min i D j ,d ji +D i é?ù?,返 回第2步。 三、Dijkstra算法实现 根据Dijkstra算法描述编写程序进行实现,程序中采用邻接矩阵表示一个有向图,输入为该图的邻接矩阵以及目的节点,输出为图中各点的邻接关系,依照次邻接关系可得到到达目的节点的最短路径。 程序用C语言编写,GCC环境编译,具体代码见附录。 四、运行结果及分析 选择一具有7个节点的有向图进行实验,其各边权重及拓扑结构如下所示: 图1 实验用图 选取节点1为目的节点,运行程序: 1. 输入表示该图的邻接矩阵,不相邻的节点间链路权值用-1表示,代表无穷大; 2. 输入目的节点编号; 3. 得到输出结果,如下图所示。

算法到程序的转换

算法到程序的转换 用伪代码描述的算法是不能直接在机器上执行的,从算法的伪代码描述到算法的实现,所必须做的事情通常包括如下几个方面。 一常量、结构体、扩充数据类型的说明 比如# define TRUE 1 二添加库函数说明语句 比如# include 三局部变量的添加 比如int i,min; 四语句的转换 将类C中一些不符合C/C++语言的语法,如数据交换及一些为描述算法方便而扩充的其他语句转换成符合语法的语句。 比如a[j] a[j+1]; 转换为: x=a[j]; a[j]=a[j+1]; a[j+1]=x; 五辅助过程或者函数的添加 算法描述只涉及问题的求解部分,通常只对应一个或者多个函数或者过程,而不是完整的可运行的程序。所以除了上述4步之外还需要添加一些数据输入输出及调用函数等。 由此可见,算法描述和算法实现是有一定距离的,因为本课程的关注点主要在算法的描述上,而描述是看不到运行结果的,所以同学们容易感到迷茫。这个问题,我们可以通过验证性实践来强化认识。 下面是验证性实践的步骤: 1 预备知识的学习 验证性实验的目的是验证教材中的数据结构及其应用的算法,实验前有必要了解实验相关的背景,即相关知识点,明确本次实验的内容。 2 源程序阅读和分析 实验前,需要弄清楚下列问题。即: (1)程序结构和程序功能; (2)输入数据有什么?格式是什么? (3)输出是什么?输出数据的意义是什么? (4)设计验证实例为运行程序做准备。 3 调试和测试源程序 (1)编写源程序 (2)编译链接程序 (3)用设计好的实例验证程序 (4)对程序结果进行分析,通过分析运行结果和输入的合理性,理解算法思想与实现,判断算法逻辑上的正误。 4 补充和改进源程序 第一次实验的内容: 单链表验证程序结构。在主程序中实现菜单的选择,所选择的菜单项目包括: (1)创建链表; (2)在第i个位置插入元素;

(1)直线生成算法.doc

课程名称:计算机图形学指导教师:罗晓辉 上机实践名称:基本图形(直线)生成算法 年级:2008 姓名:孔广波 学号:312008********* 上机实践成绩: 上机实践日期:2011-4-10 实验一: 直线生成算法 上机实践报告 一、实验目的 理解直线生成的基本原理,掌握儿种常见的直线生成算法,利用Microsoft Visual C++6.0实现直线生成的DDA算法。 二、实验内容: 1)了解直线的生成原理。 2)掌握儿种基本的直线生成算法:DDA画线法、Bresenham画线法、中点画线法。 3)利用Microsoft Visual C++6.0实现直线生成的DDA算法,在屏幕上任意生成一条直线。 三、实验步骤: 1)预习教材关于直线的生成原理。 2)仿照教材关于直线生成的DDA算法,使用Microsoft Visual C++6.0实现该算法。 3)调试、编译、运行程序。 四、实验分析、源程序和结果: (1.1)中点算法分析: 中点画线算法原理示意图

直线斜率:k属于[0, 1] 线段的隐式方程:F(x,y) = ax + by + c = 0 ((x0 , y0), ( xl , yl )为两端点,式中a = yO - yl , b = xl - xO , c = xO * yl - xl * yO) 直线上方的点:F(x , y) > 0 直线下方的点:F ( x , y ) < 0 构造判别式:d = F(M) = F(Xp+l,Yp + 0.5) 由d>0, V0 可判定下一个象素,d 的初始值:d0 = F( X0 + 1 , Y0 + 0.5 ) = F( X0 , Y0 ) + a + 0.5b 因(X0, YO)在直线上,F(X0 , YO ) = 0,所以,dO = a + 0.5b (1.2)具体实现代码: void CGView::Line_DDA(long plxjong ply,long p2x,long p2y,CDC *pDC)〃画直线算法实现 ( int a,b,del 1 ,del2,d,x,y; b=p2x-plx; a=ply-p2y; d=2*a+b; dell=2*a; del2=2*(a+b); x=plx; y=piy; pDC->SetFixel(x,y,mJPenColor); while(xSetPixel(x,y-2,m_lPenColor); pDC->SetPixel(x,y-1 ,m_lPenColor); pDC->SetPixeI(x,y,m_lPenColor); pDC->SetPixel(x,y+1 ,m_IPenColor); pDC->SetPixel(x,y,m_lPenColor);

使用OpenGL编程实现Bresenham直线扫描转换算法

实验要求: 学习Visual C++ 6.0 集成编程环境的使用,OpenGL编程环境的设置,OpenGL语法及基本函数的使用等基础知识,并编程实现Bresenham直线扫描转换算法,得出相应的输出图形。 源程序: #include void k1() //0

glFlush(); } void k2() //k>1 { glClear(GL_COLOR_BUFFER_BIT); glColor3f(0.0,1.0,0.0); glBegin(GL_POINTS); GLint x1=0,y1=0,x2=200,y2=400; GLint x=x1,y=y1; GLint dx=x2-x1,dy=y2-y1,dT=2*(dx-dy),dS=2*dx; GLint d=2*dx-dy; glV ertex2i(x,y); while(y

浅谈网络流算法与几种模型转换

浅谈网络流算法与几种流模型 吴迪1314010425 摘要:最大流的算法,算法思想很简单,从零流开始不断增加流量,保持每次增加流量后都满足容量限制、斜对称性和流量平衡3个条件。只要残量网络中不存在增广路,流量就可以增大,可以证明他的逆命题也成立;如果残量网络中不存在增广路,则当前流就是最大流。这就是著名的增广路定理。s-t的最大流等于s-t的最小割,最大流最小割定理。网络流在计算机程序设计上有着重要的地位。 关键词:网络流Edmonds-Karp 最大流 dinic 最大流最小割网络流模型最小费用最大流 正文: 图论中的一种理论与方法,研究网络上的一类最优化问题。1955年,T.E.哈里斯在研究铁路最大通量时首先提出在一个给定的网络上寻求两点间最大运输量的问题。1956年,L.R. 福特和 D.R. 富尔克森等人给出了解决这类问题的算法,从而建立了网络流理论。所谓网络或容量网络指的是一个连通的赋权有向图 D= (V、E、C),其中V 是该图的顶点集,E是有向边(即弧)集,C是弧上的容量。此外顶点集中包括一个起点和一个终点。网络上的流就是由起点流向终点的可行流,这是定义在网络上的非负函数,它一方面受到容量的限制,另一方面除去起点和终点以外,在所有中途点要求保持流入量和流出量是平衡的。如果把下图看作一个公路网,顶点v1…v6表示6座城镇,每条边上的权数表示两城镇间的公路长度。现在要问:若从起点v1将物资运送到终点v6去,应选择那条路线才能使总运输距离最短?这样一类问题称为最短路问题。如果把上图看作一个输油管道网,v1 表示发送点,v6表示接收点,其他点表示中转站,各边的权数表示该段管道的最大输送量。现在要问怎样安排输油线路才能使从v1到v6的总运输量为最大。这样的问题称为最大流问题。 最大流理论是由福特和富尔克森于 1956 年创立的,他们指出最大流的流值等于最小割(截集)的容量这个重要的事实,并根据这一原理设计了用标号法求最大流的方法,后来又有人加以改进,使得求解最大流的方法更加丰富和完善。最大流问题的研究密切了图论和运筹学,特别是与线性规划的联系,开辟了图论应用的新途径。 先来看一个实例。 现在想将一些物资从S运抵T,必须经过一些中转站。连接中转站的是公路,每条公路都有最大运载量。如下: 每条弧代表一条公路,弧上的数表示该公路的最大运载量。最多能将多少货物从S运抵T? 这是一个典型的网络流模型。为了解答此题,我们先了解网络流的有关定义和概念。 若有向图G=(V,E)满足下列条件: 1、有且仅有一个顶点S,它的入度为零,即d-(S) = 0,这个顶点S便称为源点,或称为发点。 2、有且仅有一个顶点T,它的出度为零,即d+(T) = 0,这个顶点T便称为汇点,或称为收点。 3、每一条弧都有非负数,叫做该边的容量。边(vi, vj)的容量用cij表示。 则称之为网络流图,记为G = (V, E, C) 介绍完最大流问题后,下面介绍求解最大流的算法,算法思想很简单,从零流开始不断增加流量,保持每次增加流量后都满足容量限制、斜对称性和流量平衡3个条件。 三个基本的性质: 如果C代表每条边的容量F代表每条边的流量 一个显然的实事是F小于等于C 不然水管子就爆了 这就是网络流的第一条性质容量限制(Ca pacity Constraints):F ≤ C 再考虑节点任意一个节点流入量总是等于流出的量否则就会蓄水或者平白无故多出水 这是第二条性质流量守恒(Flow Conservation):Σ F = Σ F 当然源和汇不用满足流量守恒 最后一个不是很显然的性质是斜对称性(Skew Symmetry): F = - F 这其实是完善的网络流理论不可缺少的就好比中学物理里用正负数来定义一维的位移一样 百米起点到百米终点的位移是100m的话那么终点到起点的位移就是-100m同样的x向y流了F 的流y就向x流了-F的流 把图中的每条边上的容量于流量之差计算出,得到参量网络。 我们的算法基于这样一个事实:参量网络中任

计算机图形学显示变换算法具体程序实现

计算机图形学显示变换算法具体程序实现

数学与软件科学学院实验报告 学期:___2010 至_2011 第__一__ 学期 2010年12月21日课程名称:____计算机图形学 _____ 专业:__信息与计算科学_ 2007级_5_班实验编号: 07 实验项目_____显示变换__ 指导教师__庞朝阳_ 姓名:学号: 20070605 __ 实验成绩:_____ 实验目的: (1) 了解掌握显示变换的相关知识,知道什么是平行投影和透视投影; 实验内容: (1) 知道显示变换是什么; (2) 掌握平行投影变换; (3) 掌握透视投影变换; (4) 编写并执行简单的Prolog程序,并熟悉测试或调试的方法。 实验步骤: (1)显示变换 三维空间中的物体要在二维的屏幕显示出来,必须通过投影的方式把三维物体转换成二维的平面图形。投影的方式有平行投影,透视投影。 平行投影变换 (2)平行投影变换 平行投影可根据投影方向与投影面的夹角分为:正投影和斜投影。当投影方向与投影面垂直时,为正投影;否则为斜投影。 A.正投影 1.假设投影平面垂直于Z轴,且位于Z=Z0外,则在视坐标系中任意一点(X,Y,Z)的投影是过该点的投影线与投影平面的交点,如下图: Z 则空间点的坐标与投影坐标间关系为: x`=x , y`=y , z`=z

即 ` ` `1 x y z = 1000010000000001 Z . 1 x y z 2.若投影面与XY 平面重合,即Z0=0,则有: ```1 x y z = 1000010000000001 . 1 x y z 即平面投影的变换矩阵为: Mz (平)= 1000010000000001 同理可得: 在y0z 平面的投影变换矩阵为: Mx(平) = 0000010000000001 在x0z 平面的投影变换矩阵为: My(平) = 10000 00000100 000

OpenGL-实验2直线生成算法实现教学文案

实验2 直线生成算法实现 1.实验目的 理解基本图形元素光栅化的基本原理, 掌握一种基本图形元素光栅化算法, 利用0penGL 实现直线光栅化的DDA算法。 2.实验内容 (1)根据所给的直线光栅化的示范源程序, 在计算机上编译运行, 输出正确结果。 (2)指出示范程序采用的算法, 以此为基础将其改造为中点线算法或Bresenham算法,写 入实验报告。 (3)根据示范代码,将其改造为圆的光栅化算法,写入实验报告。 (4)了解和使用OpenGL的生成直线的命令,来验证程序运行结果。 3.实验原理 示范代码原理DDA算法。下面介绍OpenGL画线的一些基础知识和glutReshapeFunc()函数。 (1)数学上的直线没有宽度,但0penGL的直线则是有宽度的。同时, OpenGL的直线必须是有限长度,而不是像数学概念那样是无限的。可以认为, OpenGL的“直线”概念与数学上的“线段”接近,它可以由两个端点来确定。这里的线由一系列顶点顺次连接而成, 有闭合和不闭合两种。 前面的实验已经知道如何绘“点”,那么OpenGL是如何知道拿这些顶点来做什么呢? 是依次画出来,还是连成线? 或者构成一个多边形? 或是做其他事情? 为了解决这一问题, OpenGL要求:指定顶点的命令必须包含在glBegin函数之后, glEnd函数之前(否则指定的顶点将被忽略),并由glBegin来指明如何使用这些点。 例如: glBegin(GL P0INTS) , glVertex2f(0.0f, 0.0f); glVertex2f(0.5f, 0.0f); glEnd(); 则这两个点将分别被画出来。如果将GL_POINTS替换成GL_LINES,则两个点将被认为是直线的两个端点, OpenGL将会画出一条直线。还可以指定更多的顶点, 然后画出更复杂的图形。另一方面, glBegin支持的方式除了GL_POINTS和GL_LINES,还有GL LINE STRIP、GL LINE L0〇P、GL TRIANGLES、GL TRIANGLE STRIP、GL TRIANGLE_FAN等几何图元。 (2) 首次打开窗口、移动窗口和改变窗口大小时, 窗口系统都将发送一个事件, 以通知程序员。如果使用的是GLUT,通知将自动完成,并调用向glutReshapeFunc注册的函数。该函数必须完成下列工作: ①重新建立用作新渲染画布的矩形区域。 ②定义绘制物体时使用的坐标系。 如: void Reshape(int w, int h) { glViewport(0, 0, (GLsizei) w, (GLsizei) h);

多边形的有效边表填充算法-

实验三多边形的有效边表填充算法 一、实验目的与要求 1、理解多边形的扫描转换原理、方法; 2、掌握有效边表填充算法; 3、掌握链表的建立、添加结点、删除节点的基本方法; 3、掌握基于链表的排序操作。 二、实验内容 在实验二所实现工程的基础上,实现以下内容并把实现函数封装在类 CMyGL 中。 1、C++实现有效边表算法进行多边形扫描转换 2、利用1进行多边形扫描转换和区域填充的实现; 三、实验原理 请同学们根据教材及上课的PPT独立完成。 四、实验步骤(程序实现)。 1、建立并选择工程项目。打开VC6.0->菜单File 的New 项,在projects 属性页选择MFC AppWizard(exe)项,在Project name 中输入一个工程名,如“Sample”。单文档。 2、新建一个图形类。选择菜单Insert New class,Class type 选择“Generic Class”,Name 输入类名,如“CMyCG。 3、向新建的图形类中添加成员函数(实际就是加入实验要求实现的图形生成算法的实现代码)。在工作区中直接鼠标右键单击,选择“Add Member Function…”项,添加绘制圆的成员函数。 void PolygonFill(int number, CPoint *p, COLORREF color, CDC* pDC) 添加其他成员函数: CreatBucket(); CreatET(); AddEdge(); EdgeOrder(); 4、成员函数的实现。实现有效边表填充算法。这一部分需要同学们去实现。 参考实现: 多边形的有效边表填充算法的基本过程为: 1、定义多边形: 2、初始化桶 3、建立边表 4、多边形填充 1)对每一条扫描线,将该扫描线上的边结点插入到临时AET表中,HeadE. 2)对临时AET表排序,按照x递增的顺序存放。 3)根据AET表中边表结点的ymax抛弃扫描完的边结点,即ymax>=scanline 4)扫描AET表,填充扫描线和多边形相交的区间。

NFA转化为DFA的转换算法及实现

编译原理课程实践报告设计名称:NFA转化为DFA的转换算法及实现 二级学院:数学与计算机科学学院 专业:计算机科学与技术 班级:计科本091班 姓名: 学号: 指导老师: 日期: 2012年6月28日

摘要 有穷自动机分为确定的有穷自动机(DFA)和不确定的有穷自动机(NFA)两类。两者各有特点、作用于不同的地方,因此需要进行转化。NFA转化为DFA的理论在词法构造乃至整个编译器构造过程中起着至关重要的作用,同时它们被广泛应用于计算机科学的各个领域,它们与计算机其它学科之间也有着很密切的关系。 本文主要介绍基于编译器构造技术中的由NFA转化为DFA的算法设计和实现技术:主要包括NFA转化为与其等价的DFA所使用的子集构造算法以及把DFA化简的算法,实现词法分析,最后使用Visual C++语言加以实现。 NFA转化为与其等价的DFA需分两步进行:1、构造NFA的状态的子集的算法; 2、计算ε-closure。完成这些子模块的设计后,再通过某一中间模块的总控程序对其调用,最后再由主程序总调用,也就实现了NFA转化为其等价的DFA,接下来就是以分割法的思想为指导实现DFA的化简,最后并以实例加以说明。 关键词:有穷自动机;NFA ;DFA;转化;化简

目录 1 前言 (3) 1.1选题的依据和必要性 (3) 1.2课题意义 (3) 2 NFA转化为DFA的算法及实现 (4) 2.1基本定义 (4) 2.1.2 DFA的概念 (5) 2.1.3 NFA与DFA的矩阵表示 (5) 2.1.4 NFA向DFA的转换的思路 (6) 3 DFA的化简 (7) 3.1化简的理论基础 (7) 3.2化简的基本思想 (7) 3.3化简的代码实现 (8) 4 程序设计 (14) 4.1程序分析 (14) 4.1.1 流程图 (14) 4.1.2 子集构造法 (16) 4.2具体的转换过程 (18) 1 前言 1.1 选题的依据和必要性 由于很多计算机系统都配有多个高级语言的编译程序,对有些高级语言甚至配置了几个不同性质的编译程序。从功能上看,一个编译程序就是一个语言翻译程序。语言翻译程序把源语言书写的程序翻译成目标语言的等价程序。经过编译程序的设计可以大大提高学生的编程能力。 编译程序的工作过程通常是词法分析、语法分析、语义分析、代码生成、代码优化[1]。由于现在有很多词法分析程序工具都是基于有穷自动机的,而词法分析又是语法分析的基础[2],所以我们有必要进行有穷自动机的确定化和最小化。 1.2 课题意义 编译程序的这些过程的执行先后构成了编译程序的逻辑结构[3]。有穷自动机(也称有限自动机)作为一种识别装置,它能准确地识别正规集,即识别正规文

CG_实验2_基本图形元素(直线)生成算法的实现

实验二基本图形元素(直线)生成算法的实现 1.实验目的: 理解基本图形元素光栅化的基本原理,掌握一种基本图形元素光栅化算法,利用OpenGL实现直线光栅化的DDA算法。 2.实验内容: (1)根据所给的直线光栅化的示范源程序,在计算机上编译运行,输出正确结果; (2)指出示范程序采用的算法,以此为基础将其改造为中点线算法或Bresenham算法,写入实验报告; (3)根据示范代码,将其改造为圆的光栅化算法,写入实验报告; (4)了解和使用OpenGL的生成直线的命令,来验证程序运行结果。 3.实验原理: 示范代码原理参见教材直线光栅化一节中的DDA算法。下面介绍下OpenGL画线的一些基础知识和glutReshapeFunc()函数。

(1)数学上的直线没有宽度,但OpenGL的直线则是有宽度的。同时,OpenGL的直线必须是有限长度,而不是像数学概念那样是无限的。可以认为,OpenGL的“直线”概念与数学上的“线段”接近,它可以由两个端点来确定。这里的线由一系列顶点顺次连结而成,有闭合和不闭合两种。 前面的实验已经知道如何绘“点”,那么OpenGL是如何知道拿这些顶点来做什么呢?是一个一个的画出来,还是连成线?或者构成一个多边形?或是做其它事情呢?为了解决这一问题,OpenGL要求:指定顶点的命令必须包含在glBegin函数之后,glEnd函数之前(否则指定的顶点将被忽略),并由glBegin来指明如何使用这些点。 例如: glBegin(GL_POINTS); glVertex2f(0.0f, 0.0f); glVertex2f(0.5f, 0.0f); glEnd(); 则这两个点将分别被画出来。如果将GL_POINTS替换成GL_LINES,则两个点将被认为是直线的两个端点,OpenGL将会画出一条直线。还可以指定更多的顶点,然后画出更复杂的图形。另一方面,glBegin 支持的方式除了GL_POINTS和GL_LINES,还有GL_LINE_STRIP,GL_LINE_LOOP,GL_TRIANGLES,GL_TRIANGLE_STRIP,

直线和圆弧的生成算法

第3章直线和圆弧的生成算法 3.1直线图形的生成算法 数学上的直线是没有宽度、由无数个点构成的集合,显然,光栅显示器只能近地似显示直线。当我们对直线进行光栅化时,需要在显示器有限个像素中,确定最佳逼近该直线的一组像素,并且按扫描线顺序,对这些像素进行写 操作,这个过程称为用显示器绘制直线或直线的扫描转换。 由于在一个图形中,可能包含成千上万条直线,所以要求绘制算法应尽可能地快。本节我们介绍一个像素宽直线绘制的三个常用算法:数值微分法 (DDA、中点画线法和Bresenham算法。 3.1.1逐点比较法 3.1.2数值微分(DDA)法 设过端点P o(x o , y°)、R(X1 , y1)的直线段为L( P0 , R),则直线段L的斜率为—沁生要在显示器显示厶必须确定最佳逼近Z的掃素集合。我们从 L的起点P0的横坐标X o向L的终点R的横坐标X1步进,取步长=1(个像素),用L 的直线方程y=kx+b计算相应的y坐标,并取像素点(x,round( y))作为当前点的坐标。因为: y i+1 = kX i+1+b = k1X i +b+k x = y i+k x 所以,当x =1; y i+1 = y i+k。也就是说,当x每递增1,y递增k(即直线斜率)。根据这个原理,我们可以写出DDA( Digital Differential Analyzer) 画线算法程序。

DDA画线算法程序: void DDALi ne(int xO,i nt yO,i nt x1,i nt y1,i nt color) { int x ; float dx, dy, y, k ; dx = x1-x0 ;dy=y1-y0 ; k=dy/dx, ;y=yO; for (x=xO ;x< x1 ;x++) { drawpixel (x, i nt(y+0.5), color); y=y+k; } } 注意:我们这里用整型变量color表示像素的颜色和灰度。 举例:用DDA方法扫描转换连接两点P0( 0,0 )和P1( 5,2 )的直线段 图3.1.1直线段的扫描转换 注意:上述分析的算法仅适用于|k| <1的情形。在这种情况下,x每 增加1,y最多增加1。当|k| 1时,必须把x, y地位互换,y每增加1, x相应增加1/k。在这个算法中,y与k必须用浮点数表示,而且每一步都要对y 进行四舍五入后取整,这使得它不利于硬件实现。

图像处理和图像文件格式转换

实验二图像处理和图像文件格式转换图形图像作为一种视觉媒体,很久以前就已成为人类信息传输、思想表达的重要方式之一。计算机图形技术实际上是绘画技术与计算机技术相结合而形成的。在计算机出现以前,图像处理主要是依靠光学、照相、像片处理和视频信号处理等模拟的处理。随着多媒体计算机的产生与发展,数字图像代替了传统的模拟图像技术,形成了独立的“数字图像处理技术”。多媒体技术借助数字图像处理技术得到迅猛发展,同时又为数字图像处理技术的应用开拓了更为广阔的前景。 图像又有静态和动态之分,在此我们主要介绍静态图像处理。用于静态图像处理的软件有很多,常见的有Photoshop、PhotoStyler、PCPaintBrush、Corel Draw等等。其中Photoshop 以其直观的界面,全面的功能成为最流行的图像处理软件,是我们学习的首选软件。这里将以Photoshop5.5为例介绍Photoshop的使用。 Photoshop5.5的工作环境是: Windows95、Windos98或Windows NT PC486机型以上 16M以上内存 256色以上显示模式 扫描仪等 2.1实验目的和要求 1) 学会用选择工具等选取工具选取图像区域 2)了解蒙版、通道的功能及用法 3)学会运用图层选项制作立体效果 4)掌握制作艺术字的途径和方法 5)学会用滤镜制作特殊效果 6)了解如何存储图像并将其压缩为所需格式。 2.2预备知识 1.Photoshop5.5的窗口组成

图2.1 Photoshop5.5的窗口 Photoshop5.5的窗口由标题栏、菜单栏、工具箱、工作窗口、控制面板、状态栏等六部分组成,如图2.1所示。 工具箱中存放着各种编辑工具,使用方便。控制面板的主要作用是辅助工具栏,更改工具的设置。一些对图层、通道、历史纪录的操作也要在此完成。在菜单栏里的窗口选项中可以设置此栏中各项的显示与否,也可用鼠标拖动控制面板中的选项,按自己的习惯组合控制面板。状态栏则是用来显示当前图像的有关状态及一些简要说明和提示。 2.工具箱的使用 Photoshop的基本工具存放在工具箱中,一般置于Photoshop界面的左侧。当工具的图标右下角有一个小三角时,表示此工具图标中还隐藏了其他工具。用鼠标点中此图标不放,便可以打开隐藏的工具栏。点中隐藏的工具后,所选工具便会代替原先工具出现在工具栏里。当把鼠标停在某个工具上时,Photoshop会提示此工具的名称及快捷键。而在选定工具后可在右边的控制面板中的选项栏里修改工具的参数及设置(若屏幕上没有选项栏执行菜单【Window】\【Show Options】命令即可)。 工具的使用方法很灵活。这里先简单介绍几种重要工具的基本用法。 1)【选框】工具 【选框】工具是重要的选图工具,单击【选框】工具不放,会弹出如图所示的隐藏工具面板。选择工具共有上图所示五种工具,分别是【Rectangular Marquee Tool(M)】(矩形选框)工具,【Elliptical Marquee Tool(M)】(椭圆选框)工具,【Single Row Marquee Tool(M)】(单行选框)工具,【Single Column Marquee Tool(M)】(单列选框)工具,【Crop Tool(C)】(裁切)工具。【选框】工具用于在被编辑图像中选取一个工作区域。其中【Rectangular Marquee Tool(M)】(矩形选框)工具是用于选取一个任意矩形区域,【Elliptical Marquee Tool(M)】(椭圆选框)工具用于选取一个任意圆形或椭圆形区域,【Single Row Marquee Tool(M)】(单行选框)工具是用于选取图像中任一横行象素,【Single Column Marquee Tool(M)】(单列选框)工具用于选取图像中任一竖行象素,【Crop

相关文档
最新文档