福建省厦门市2012届高三上学期期末质量检查数学(文)试题(扫描版)

合集下载

2012厦门1月份质检文数(word)

2012厦门1月份质检文数(word)

福建省厦门市2012 届高三上学期末质量检查数学(文)试题(word版)本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,分值150分,考试时间120分钟。

参考公式:柱体的体积公式:V =Sh ,其中S 为底面面积,h 为高第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将正确的选项填入答题卡相应位置。

1.已知全集U ={-1,0,1,2,3,4},集合A ={-1,1,2,4},B ={-1,0,2},则B∩(CUA)等于A. {0}B. {0,3}C. {-1,0,-2}D.φ2.已知双曲线方程为14422=-y x ,则此双曲线的右焦点坐标为A.(1,0)B. (5,0)C. (7,0)D. (7,0)3.若x 、y ∈R ,则“x =y”是“y x =”的A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知直线m 、n 和平面α、β,若α⊥β,α∩β=m ,n ⊂α,要使n ⊥β,则应增加的条件是A. m ∥nB. n ⊥mC. n ∥αD. n ⊥α5.已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于A.-2B. -31C.-1D.-326.已知体积为3的正三棱柱(底面是正三角形且侧棱垂直底面)的三视图如图所示,则此三棱柱的高为A.31B.32C.1D. 347.抛物线y2=mx 的焦点为F ,点P (2 , 22)在此抛物线上,M 为线段PF 的中点,则点M 到该抛物线准线的距离为A.1B.23C.2D. 258.若实数x ,y 满足不等式组,,0022,0⎪⎩⎪⎨⎧≥≥-+≥+-y y x y x ,则:z =2x + y 的最小值为A.-2B.1C.4D. 293=1=0=,∠AOP =6π,若,t +=,则实数t 等于 A.31 B.33C.3D.310.对任意x 、y ∈R ,恒有sinx +cosy =2sin(42π+-y x )cos(42π--y x ),则sin 245cos 2413ππ等于 A.423+ B.423- C.421+ D. 421- 11.函数y =(3-x2)ex 的单调递增区是A.(-∞,0)B. (0,+∞)C. (-∞,-3)和(1,+∞)D. (-3,1)12.已知函数f(x)=Asin(ϕπ+x 6)(A>0,0<ϕ<2π)的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(2, A),点R 的坐标为(2,0)。

福建省厦门市高三数学上学期期末质检模拟试题 理 新人教A版

福建省厦门市高三数学上学期期末质检模拟试题 理 新人教A版

2012届厦门市高三上期末质量检查数学模拟试题(理)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、座号、准考证号、考试科目分别填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.4.本场考试禁止使用计算器.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知全集R U =,集合⎭⎬⎫⎩⎨⎧<=<≤-=-412|},02|1x x B x x A {,则)()(A B A C R =⋂ A.),1[)2,(+∞-⋃--∞ B.),1(]2,(+∞-⋃--∞ C.),(+∞-∞ D.),2(+∞- 2.函数32()ln2x f x x=-的零点一定位于区间( A ) A .(1,2) B .(2,3) C .()3,4 D .()4,54.已知命题P: 34cos sin ,=+∈∃x x R x 使 ,命题q:21--x x <0的解集是{|12}x x <<,下列结论:①命题“p q ∧”是真命题; ②命题“p q ∧⌝”是假命题;③命题“p q ⌝∨”是真命题; ④命题“p q ⌝∨⌝”是假命题其中正确的是( D )(A)②③ (B)①②④ (C)①③④ (D)①②③④5.如图,函数()y f x =的图象在点(5,(5))P f 处的切线方程是8y x =-+,则(5)(5)f f '+=( C )(A)12(B) 1 (C)2 (D)06.以双曲线22163x y -=的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( B )(A) ()1322=+-y x(B)()3322=+-y x(C) ()3322=+-yx (D)22(3)9x y -+=7.一个几何体的三视图如图所示,则这个几何体的表面积等于( A )A .72B .66C .60D .308.设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是( C )A.βαβα⊥⊥,//,b aB.βαβα//,,⊥⊥b aC. βαβα//,,⊥⊂b aD.βαβα⊥⊂,//,b a9.若点O 和点F 分别为椭圆x 2/4 +y 2/3 =1的中心和左焦点,点P 为椭圆上点的任意一点,则的最大值为( C )A.2B.3C.6D.810.对于函数()f x ,若存在区间[,]M a b =(其中a b <),使得{|(),},y y f x x M M =∈=则称区间M 为函数()f x 的一个“稳定区间”。

2012年福建省高三质检文科数学试卷及答案

2012年福建省高三质检文科数学试卷及答案

2012年福建省普通高中毕业班质量检查文 科 数 学本试卷分第1卷(选择题)和第Ⅱ卷(非选择题).本试卷共5页.满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.1A 25A .45B . 45- C . 35D . 35-3.若0.320.32,0.3,log 2a b c ===,则,.a b c 的大小顺序是A . a b c <<B . c a b <<C . c b a <<D . b c a <<4.在空间中,下列命题正确的是A . 平行于同一平面的两条直线平行B . 垂直于同一平面的两条直线平行C . 平行于同一直线的两个平面平行D . 垂直于同一平面的两个平面平行5.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为x x 甲乙,,则下列判断正确的是6A7A89C . )62sin()(π+=x x fD . x x f 2sin )(=10.已知)2,0(),0,2(B A -, 点M 是圆2220x y x +-=上的动点,则点M 到直线AB 的最大距离是 A .1- B . C 1+ D .11. 一只蚂蚁从正方体1111ABC D A B C D -的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点1C 位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是12f 13141516③*M P ⋂=∅.其中正确的结论是 .(写出所有正确结论的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 的公差为2-,且134,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1(*)(12)n n b n n a =∈-N ,求数列{}n b 的前n 项和n S .18. (本小题满分12分)在直角梯形ABCD 中,AD //BC ,1,AB AD ==,AB BC CD BD ⊥⊥,如图(1).把ABD ∆沿BD 翻1912分)阅读下面材料:根据两角和与差的正弦公式,有(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:cos cos 2sinsin22A B A B A B +--=-;(Ⅱ)若A B C ∆的三个内角,,A B C 满足2cos 2cos 22sin A B C -=,试判断A B C ∆的形状. (提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论) 20. (本小题满分12分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:(21222012年福建省普通高中毕业班质量检查 文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法1712 ((Ⅱ)由(Ⅰ)可得(12)(1)1n n b n a n n n n ===--++,……………………………8分所以12n n S b b b =++⋅⋅⋅+11111(1)()()2231n n =-+-+⋅⋅⋅+-+1111n n n =-=++. ……………12分18.本小题主要考查直线与直线、直线与平面的位置关系、棱锥体积公式等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想.满分12分. 解:(Ⅰ)∵平面A BD BCD '⊥平面,A BD BCD BD '⋂=平面平面,C D BD ⊥ ∴CD A BD '⊥平面, ……………………………2分 又∵AB A BD '⊂平面,∴C D A B '⊥. ……………………………4分解法一:(Ⅰ)因为cos()cos cos sin sin αβαβαβ+=-, ① c o s ()c o sc o ss i n αβαβαβ-=+, ②………………………2分①-② 得cos()cos()2sin sin αβαβαβ+--=-. ③……………3分令,A B αβαβ+=-=有,22A B A Bαβ+-==,代入③得cos cos 2sinsin22A B A B A B +--=-. …………………6分(Ⅱ)由二倍角公式,2cos 2cos 22sin A B C -=可化为22212s i n 12s i n 2s i nA B C --+=,……………………………8分20(75,100)内的两天记为12,B B .所以5天任取2天的情况有:12A A ,13A A ,11A B ,12A B ,23A A ,21A B ,22A B ,31A B ,32A B 共10种. ……………………4分 其中符合条件的有:11A B ,12A B ,21A B ,22A B ,31A B ,32A B 共6种. …………6分所以所求的概率63105P ==. ……………………8分(Ⅱ)去年该居民区PM2.5年平均浓度为:12.50.2537.50.562.50.1587.50.140⨯+⨯+⨯+⨯=(微克/立方米).……………………………………………10分因为4035>,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环21F 由①,②得222216166y y ⎛⎫+--= ⎪⎝⎭,所以4222222560y y -+=. ③ 因为2(22)42565400∆=--⨯=-<.所以方程③无解,从而A B C ∆不可能是直角三角形.…………………12分解法二:(Ⅰ)同解法一(Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,由0FA FB FC ++=,得1233x x x ++=,1230y y y ++=.……………………………6分 由条件的对称性,欲证A B C ∆不是直角三角形,只需证明90A ∠≠ .(1)当A B x ⊥轴时,12x x =,12y y =-,从而3132x x =-,30y =,数形结合思想、考查化归与转化思想.满分12分.解法一:(Ⅰ)因为2()ln f x x a x =+,所以'()2a f x x x=+,函数()f x 的图象在点(1,(1))P f 处的切线斜率'(1)2k f a ==+. 由210a +=得:8a =. …………………4分(Ⅱ)由(Ⅰ)知,2()8ln f x x x =+,令()()2F x f x x =-228ln x x x =-+. 因为(1)10F =-<,(2)8ln 20F =>,所以()0F x =在(0,)+∞至少有一个根.又因为8'()22260F x x x =-+≥=>,所以()F x 在(0,)+∞上递增,所以函数()F x 在(0,)+∞上有且只有一个零点,即方程()2f x x =有且只有一(,)x t ∈+∞时,'()0h x >.故()h x 在4(,)t t 上单调递减,在(,)t +∞上单调递增. 又()0h t =,所以当4(,)x t t ∈时,()0h x >;当(,)x t ∈+∞时,()0h x >, 即曲线在点(,())A t f t 附近的左、右两部分都位于曲线在该点处切线的同侧. ………………… 13分(3)当4t t<,即02t <<时, (0,)x t ∈时,'()0h x >;4(,)x t t ∈时,'()0h x <;4(,)x t∈+∞时,'()0h x >. 故()h x 在(0,)t 上单调递增,在4(,)t t上单调递减.所以()h x 在()0,+∞上递增.又()0h t =,所以当(0,2)x ∈时,()0h x <;当(2,)x ∈+∞时,()0h x >, 即存在唯一点(2,48ln 2)A +,使得曲线在点A 附近的左、右两部分分别 位于曲线在该点处切线的两侧. ………………… 14分。

福建省厦门市2012届高三上学期期末质量检查试题(语文)WORD版

福建省厦门市2012届高三上学期期末质量检查试题(语文)WORD版

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

福建省厦门市2012届高三上学期期末质量检查语文试题本试卷分五大题,共8 页。

满分150 分,考试时间150 分钟。

注意事项:1.考生请将自己的姓名、准考证号及所有答案填写在答题卡上。

2.答题要求,请见答题卡上的“注意事项”。

一、古代诗文阅读(27 分)(一)默写常见的名句名篇(6 分)1.补写出下列名句名篇中的空缺部分。

(6分)(l),唯昭质其犹未亏。

(屈原《离骚》)(2)猥以微贱,当侍东宫,。

(李密《陈情表》)(3),谁家新燕啄春泥。

(白居易《钱塘湖春行》)(4)此情可待成追忆?。

(李商隐《锦瑟》)(5),侣鱼虾而友糜鹿。

(苏轼《赤壁赋》)(6)千古江山,。

(辛弃疾《永遇乐·京口北固亭怀古》)(二)文言文阅读(15分)阅读下面的文言文,完成2-5 题。

晋文公重耳,晋献公之子也。

献公二十二年,献公使宦者履鞮趣杀重耳。

重耳逾.垣,宦者逐斩其衣袪。

重耳遂奔狄。

居狄五岁而晋献公卒,已而晋迎其弟夷吾立之,是为惠公。

惠公七年,畏重耳,乃使宦者履鞮与壮士欲杀重耳。

重耳闻之,乃谋赵衰等曰:“始吾奔狄,非以为可用与,以近易通,故且休足。

休足久矣,固愿徙之大国。

夫齐桓公好善,志在霸王,收恤诸侯。

今闻管仲、隰朋死,此亦欲得贤佐,盍往乎?”于是遂行。

过五鹿,饥而从野人乞食。

[VIP专享](word版)福建省厦门市2012届高三适应性考试题数学理(2012厦门5月质检)

[VIP专享](word版)福建省厦门市2012届高三适应性考试题数学理(2012厦门5月质检)

二、填空题:本大题共 5 小题,每小题 4 分,共 20 分.
第Ⅱ卷(非选择题共 100 分)
C.esin =l D.ecos =1
B.sin = ecos
条件是
A.esin = cos
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2
A.1+3i

福建省届高三质量检查试题数学文(word版).pdf

福建省届高三质量检查试题数学文(word版).pdf

2012年福建省普通高中毕业班质量检查 文 科 数 学 本试卷分第1卷(选择题)和第Ⅱ卷(非选择题).本试卷共5页.满分150分.考试时间120分钟.注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上. 2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效. 3.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚. 4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.参考公式: 样本数据x1,x2, …,xn的标准差 锥体体积公式 s=V=Sh 其中为样本平均数其中S为底面面积,h为高 柱体体积公式 球的表面积、体积公式 V=Sh , 其中S为底面面积,h为高其中R为球的半径选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.的共轭复数的对应点所在的象限是 A.第一象限B.第二象限C.第三象限D.第四象限 2.若是第四象限角,且,则等于 A. B. C. D. 3.若,则的大小顺序是 A. B. C. D. 4.在空间中,下列命题正确的是 A. 平行于同一平面的两条直线平行 B. 垂直于同一平面的两条直线平行 C. 平行于同一直线的两个平面平行 D. 垂直于同一平面的两个平面平行 5.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为,则下列判断正确的是 A.;甲比乙成绩稳定 B.;乙比甲成绩稳定 C.;甲比乙成绩稳定 D.;乙比甲成绩稳定 6.已知函数则的值是 A.10 B. C.-2 D. -5 7.已知,,若,则实数的取值范围是 A. B. C. D. 8.如图给出的是计算的值的程序框图,其中判断框内应填入的是 A. B. C. D.. 9.函数().若将函数向右平移个单位,得到的解析式为 A. B. C. D. , 点是圆上的动点,则点M到直线AB的最大距离是 A. B. C. D. 11. 一只蚂蚁从正方体的顶点处出发,经正方体的表面,按最短路线爬行到达顶点位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是 A. ①② B.①③ C. ②④ D.③④ 12. 设函数及其导函数都是定义在R上的函数,则“ ”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置. 13.已知向量,,若,则_____________. 14.若双曲线方程为,则其离心率等于_______________. 15.若变量满足约束条件则的最大值为,记.设非空实数集合,满足. 给出以下结论: ①; ②; ③. 其中正确的结论是 .(写出所有正确结论的序号) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 等差数列公差为,且成等比. ()求数列的通项公式()设,求数列的前项和.ABCD中,AD((BC,,,如图(1).把沿翻折,使得平面,如图(2). (Ⅰ)求证:; (Ⅱ)求三棱锥的体积; (Ⅲ)在线段上是否存在点N,使得?若存在,请求出的值;若不存在,请说明理由. 19. (本小题满分12分) 阅读下面材料: 根据两角和与差的正弦公式,有 ------① ------② 由①+② 得------③ 令 有 代入③得 . (Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明: ; (Ⅱ)若的三个内角满足,试判断的形状. (提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论) 20. (本小题满分12分) 2012年3月2日,国家环保部发布新修订的环境空气质量标准》居民区PM2.5年平均浓度不得超过35微克/立方米,PM2.5平均浓度不得超过5微克/立方米PM2.5PM2.5浓度微克/立方米PM2.5浓度微克/立方米PM2.5浓度微克/立方米PM2.5年平均浓度.到点的距离等于它到直线的距离,记点的轨迹为曲线. (Ⅰ)求曲线的方程; (Ⅱ)若点,,是上的不同三点,且满足.证明: 不可能为直角三角形. 22. (本小题满分14分) 已知函数的图象在点处的切线斜率为. (Ⅰ)求实数的值; (Ⅱ)判断方程根的个数,证明你的结论; (Ⅲ)探究:是否存在这样的点,使得曲线在该点附近的左、右的两部分分别位于曲线在该点处切线的两侧?若存在,求出点A的坐标;若不存在,说明理由. 2011年福建省普通高中毕业班质量检查文科数学试题参考解答及评分标准 说明: 一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则. 二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分. 一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分. 13.14. 15. 16. 三、解答题:本大题共6小题,共74分i解答应写出文字说明,证明过程或演算步骤. (Ⅰ)解:由已知得,又成等数列,, 解得,所以(Ⅱ)由(Ⅰ)可得,……………………………8分 所以 . ……………12分 18.本小题主要考查直线与直线、直线与平面的位置关系、棱锥体积公式等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想.满分12分. 解:(Ⅰ)∵平面,, ∴, ……………………………2分 又∵,∴. ……………………………4分 (Ⅱ)如图(1)在. . 在. ∴. ……………………………6分 如图(2),在,过点做于,∴. , ……………………………7分 ∴. ……………………………8分 (Ⅲ)在线段上存在点N,使得,理由如下: 如图(2)在中,, ∴, ………………………………………9分 过点E做交于点N,则, ∵, ……………………………10分 又,,, 又,∴. ∴在线段上存在点N,使得,此时.…………………12分 19.本小题主要考查三角公式、二倍角公式、三角函数的等等基础知识,考查运算求解能力考查.满分12分. , ① , ②………………………2分 ①-② 得. ③……………3分 令有, 代入③得. …………………6分 (Ⅱ)由二倍角公式,可化为 ,……………………………8分 即.……………………………………………9分 设的三个内角A,B,C所对的边分别为, 由正弦定理可得.…………………………………………11分 根据勾股定理的逆定理知为直角三角形.…………………………12分 解法二:(Ⅰ)同解法一. (Ⅱ)利用(Ⅰ)中的结论和二倍角公式, 可化为 ,………………………8分 因为A,B,C为的内角,所以, 所以. 又因为,所以, 所以. 从而.……………………………………………10分 又因为,所以,即. 所以为直角三角形. ……………………………………………12分 20.本小题主要考查频率分布表、古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分1分.PM2.5的24小时平均浓度,PM2.5的24小时平均浓度.,,,,,,,,共10种.,,,,,共6种..PM2.5年平均浓度(微克/立方米.,所以去年该居民区PM2.5年平均浓度环境空气质量标准.到点的距离与到直线的距离相等, 所以点的轨迹是以为焦点,为准线的抛物线,其方程为.………4分 (Ⅱ)假设是直角三角形,不失一般性,设, ,,,则由, ,, 所以.…………………………6分 因为,,, 所以.……………………………8分 又因为,所以,, 所以. ① 又, 所以,即. ②………10分 由①,②得,所以. ③ 因为. 所以方程③无解,从而不可能是直角三角形.…………………12分 解法二:(Ⅰ)同解法一 (Ⅱ)设,,,由, 得,.……………………………6分 由条件的对称性,欲证不是直角三角形,只需证明. 当轴时,,,从而,, 即点的坐标为. 由于点在上,所以,即, 此时,,,则.…………8分 当与轴不垂直时, 设直线的方程为:,代入, 整理得:,则. 若,则直线的斜率为,同理可得:. 由,得,,. 由,可得. 从而, 整理得:,即,① . 所以方程①无解,从而.……………………………11分 综合,, 不可能是直角三角形.………………………12分 22. 本题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,函数与方程思想、数形结合思想、考查化归与转化思想.满分12分.解法一:(Ⅰ)因为,所以, 函数的图象在点处的切线斜率. 由得:. …………………4分 (Ⅱ)由(Ⅰ)知,,令. 因为,,所以在至少有一个 根. 又因为,所以在上递增, 所以函数在上有且只有一个零点,即方程有且只有一 个实根. ………………… 7分 (Ⅲ)证明如下: 由,,可求得曲线在点处的切 线方程为, 即. ………………… 8分 记 , 则. ………………… 11分 (1)当,即时,对一切成立, 所以在上递增. 又,所以当时,当时, 即存在点,使得曲线在点A附近的左、右两部分分别位于曲线 在该点处切线的两侧. ………………… 12分 (2)当,即时, 时,;时,; 时,. 故在上单调递减,在上单调递增. 又,所以当时,;当时,, 即曲线在点附近的左、右两部分都位于曲线在该点处切线的 同侧. ………………… 13分 (3)当,即时, 时,;时,;时,. 故在上单调递增,在上单调递减. 又,所以当时,;当时,, 即曲线在点附近的左、右两部分都位于曲线在该点处切线的同侧. 综上,存在唯一点使得曲线在点附近的左、右两部分分别 位于曲线在该点处切线的两侧. ………………… 14分 解法二:(Ⅰ)(Ⅱ)同解法一; (Ⅲ)证明如下: 由,,可求得曲线在点处的切 线方程为, 即. ……………… 8分 记 , 则. ………………… 11分 若存在这样的点,使得曲线在该点附近的左、右两部分都 位于曲线在该点处切线的两侧,则问题等价于t不是极值点, 由二次函数的性质知,当且仅当,即时, t不是极值点,即. 所以在上递增. 又,所以当时,;当时,, 即存在唯一点,使得曲线在点附近的左、右两部分分别 位于曲线在该点处切线的两侧. ………………… 14分 高考学习网( 您身边的高考专家 欢迎广大教师踊跃来稿,稿酬丰厚。

福建省厦门市高三数学上学期期末质量检查试题 文.doc

福建省厦门市 届高三上学期末质量检查数学(文)试题(word 版)本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,分值150分,考试时间1。

参考公式:柱体的体积公式:V =Sh ,其中S 为底面面积,h 为高 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将正确的选项填入答题卡相应位置。

1.已知全集U ={-1,0,1,2,3,4},集合A ={-1,1,2,4},B ={-1,0,2},则B ∩(CUA)等于A. {0}B. {0,3}C. {-1,0,-2}D.φ2.已知双曲线方程为14422=-y x ,则此双曲线的右焦点坐标为A.(1,0)B. (5,0)C. (7,0)D. (7,0) 3.若x 、y ∈R ,则“x =y ”是“yx =”的A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知直线m 、n 和平面α、β,若α⊥β,α∩β=m ,n ⊂α,要使n ⊥β,则应增加的条件是A. m∥nB. n ⊥mC. n∥αD. n ⊥α5.已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于A.-2B. -31C.-1D.-326.已知体积为3的正三棱柱(底面是正三角形且侧棱垂直底面)的三视图如图所示,则此三棱柱的高为A.31B.32C.1D. 347.抛物线y2=mx 的焦点为F ,点P (2 , 22)在此抛物线上,M 为线段PF 的中点,则点M 到该抛物线准线的距离为A.1B.23C.2D. 258.若实数x ,y 满足不等式组,,0022,0⎪⎩⎪⎨⎧≥≥-+≥+-y y x y x ,则:z =2x + y 的最小值为A.-2B.1C.4D. 293=1=0=,∠AOP =6π,若,OB OA t OP +=,则实数t 等于A.31B.33C.3D.310.对任意x 、y ∈R ,恒有sinx +cosy =2sin(42π+-y x )cos(42π--y x ),则sin 245cos2413ππ等于 A.423+ B.423- C. 421+ D. 421-11.函数y =(3-x2)ex 的单调递增区是A.(-∞,0)B. (0,+∞)C. (-∞,-3)和(1,+∞)D. (-3,1)12.已知函数f(x)=Asin(ϕπ+x 6)(A>0,0<ϕ<2π)的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(2, A),点R 的坐标为(2,0)。

福建省厦门市高三上学期期末质检检测数学文试题 Word版含解析

厦门市2014-2015学年第一学期高三年级质量检测数学文【试卷综述】本试卷试题主要注重基本知识、基本能力、基本方法等当面的考察,覆盖面广,注重数学思想方法的简单应用,试题有新意,符合课改和教改方向,能有效地测评学生,有利于学生自我评价,有利于指导学生的学习,既重视双基能力培养,侧重学生自主探究能力,分析问题和解决问题的能力,突出应用,同时对观察与猜想、阅读与思考等方面的考查。

【题文】一、选择题:本大题10小题,每小题5分,共50分,在每小题所给的四个答案中有且只有一个答案是正确的.【题文】1.已知集合{}0,1,2A =,集合{}x |x 20B =-<,则A B ⋂= A. {}0,1 B. {}0,2 C. {}1,2 D. {}0,1,2 【知识点】集合运算. A1【答案】【解析】A 解析:因为B={x|x<2},所以A ∩B={}0,1,故选A. 【思路点拨】化简已知集合即可.【题文】2.向量()()1,,2,4a m b ==-,若a b λ=(λ为实数),则m 的值为 A.2 B. -2 C.12 D. 12- 【知识点】向量相等的坐标运算;向量共线. F1 F2【答案】【解析】B 解析:由a b λ=得:(1,m )=λ(2,-4)=(2λ,-4λ)2124m m λλ=⎧⇒⇒=-⎨-=⎩,故选B.【思路点拨】根据向量相等的坐标运算,得关于,m λ的过程中求解.【题文】3.函数()f x 是定义在R 上的奇函数,当时0x >时,()21f x x =+则()1f -等于A. 1B. -1C. 2D. -2 【知识点】奇函数的性质. B4【答案】【解析】D 解析:f(-1)= -f(1)= -2,故选D. 【思路点拨】由奇函数的定义得结论. 【题文】4.若()3,,sin 25παππα⎛⎫∈-= ⎪⎝⎭,则tan α=A. 43-, B. 43 C. 34- D. 34【知识点】诱导公式;同角三角函数关系. C2【答案】【解析】C 解析:由()3sin 5πα-=得,3sin 5α=,又,2παπ⎛⎫∈ ⎪⎝⎭,所以4cos 5α==-,所以tan α=sin 3cos 4αα=-,故选C.【思路点拨】利用诱导公式,同角三角函数关系式求解.【题文】5.若关于x,y 的不等式组0010x x y kx y ≤⎧⎪+≥⎨⎪-+≥⎩,表示的平面区域是直角三角形区域,则正数k 的值为A 1B 2C 3D 4 【知识点】线性规划问题. E5【答案】【解析】A 解析:当过定点(0,1)的直线10kx y -+=与直线x=0或x+y=0垂直时,关于x,y 的不等式组0010x x y kx y ≤⎧⎪+≥⎨⎪-+≥⎩,表示的平面区域是直角三角形区域,此时k=0或k=1,由于k 为正数,所以k 的值为1,故选A.【思路点拨】画出简图,分析直线10kx y -+=与直线x=0,x+y=0的位置关系得结论. 【题文】6.如图,在棱长为1的正方体1111ABCD A BC D -中,E 是棱BC 上的一点,则三棱锥111D B C E -的体积等于A.13B.C. D. 16 【知识点】锥体的体积求法. G1【答案】【解析】D 解析:111111*********113326D B CE E B C D B C D V V S CC --∆==⋅=⨯⨯⨯=, 故选D.【思路点拨】由等体积转化法求解.【题文】7.过双曲线22:149x y C -=的左焦点作倾斜角为6π的直线l ,则直线l 与双曲线C 的交点情况是A.没有交点 B 只有一个交点 C 两个交点都在左支上 D 两个交点分别在左、右支上 【知识点】直线与双曲线的位置关系. H8【答案】【解析】D 解析:直线l 方程为y x =,代入22:149x y C -=整理得:2231500x +-=,(24231500∆=+⨯⨯>,所以线l 与双曲线C 有两个交点,由韦达定理得两个交点横坐标符号不同,故选D.【思路点拨】把直线方程代入双曲线方程,由判别式和韦达定理确定结论.【题文】8.已知m R ∈,“函数21x y m =+-有零点”是“函数log m y x =在()0,+∞上为减函数”的A .充分不必要条件 B.必要不充分条件 C.充要条件 D. 即不充分与不必要条件 【知识点】函数的零点;函数的单调性;充分条件;必要条件. B9 B3 A2【答案】【解析】B 解析:由函数21x y m =+-有零点,得m<1. 函数log m y x =在()0,+∞上为减函数,得0<m<1.所以函数21x y m =+-有零点”是“函数log m y x =在()0,+∞上为减函数”的必要不充分条件.故选B.【思路点拨】利用集合间的关系判定充分性、必要性.【题文】9.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于A.B. C. D.【知识点】几何体的三视图的应用. G2【答案】【解析】C 解析:由三视图可知此几何体的直观图如下:所以其最长的棱长DB= C.【思路点拨】由几何体的三视图得此几何体的直观图及相关数据,从而该多面体最长的棱长. 【题文】10.已知函数f(x)的导函数()f x ¢的图像如图所示,f(-1)=f(2)=3,令g(x)=(x-1)f(x), 则不等式g(x)≥3x-3的解集是A.[-1,1]∪)2,é+?êëB. (,11,2-?UC. (),12,-?+?U D. 1,2轾-犏臌【知识点】导函数值的符号与函数单调性的关系. B12【答案】【解析】A 解析:由导函数的图像可知函数f(x)在(,1ù-?úû上单调递减,在)1,é+?êë上单调递增.又不等式为(1)(()3)0x f x --?,即()12()32x x f x f ìï³ï蕹íï?ïïî,或 ()()11131x x f x f ìï£ï?#íï?-ïïî,综上得不等式g(x)≥3x-3的解集是[-1,1]∪)2,é+?êë.故选A.【思路点拨】由导函数的图像得原函数的单调性,再由已知函数值得原函数图像的大致形状, 由此分类讨论的所求不等式的解集.【题文】二、填空题:本大题共6小题,每小题4分,共24分. 【题文】11.抛物线24y x =的准线方程是 . 【知识点】抛物线的几何性质. H7【答案】【解析】x= -1 解析:由抛物线的方程得:p=2,所以其准线方程为:12px =-=-【思路点拨】由抛物线的定义得结论. 【题文】12.将函数f(x)=cos x 的图像向右平移6p个单位,得到函数y=g(x)的图像,则2g p 骣÷ç÷=ç÷ç÷桫. 【知识点】平移变换;函数值的意义. C4【答案】【解析】12 解析:根据题意得:()cos 6g x x p 骣÷ç÷=-ç÷ç÷桫,所以2g p 骣÷ç÷=ç÷ç÷桫1cos 32p =. 【思路点拨】利用平移口诀得函数g(x)的解析式,从而求得2g p骣÷ç÷ç÷ç÷桫的值.【题文】13.函数()411y x x x =+>-的最小值是 . 【知识点】基本不等式求最值. E6 B3【答案】【解析】5 解析:∵x>1,∴x-1>0,∴()1112131y x x =-++?=-,当且仅当x=2时等号成立,所以()411y x x x =+>-的最小值是3. 【思路点拨】利用基本不等式法求函数的最小值. 【题文】14.数列{}n a 中,1111,2nn na a a a +-==,则该数列的前22项和等于 . 【知识点】周期数列前n 项和求法. D4 【答案】【解析】11 解析:∵1111,2nn na a a a +-==,∴23411,2,2a a a =-==L , ∴数列{}n a 是以三为周期的周期数列,所以()22123131771122S a a a a =+++=?=. 【思路点拨】逐一求出数列的前几项,得此数列是以三为周期的周期数列,从而求得该数列的前22项和.【题文】15.如图,正方形ABCD 中,AB=2,DE=EC ,若F 是线段BC 上的一个动点,则AE AF ×u u u r u u u r的最大值是 .【知识点】向量的数量积; F3【答案】【解析】6 解析:要使AE AF ×u u u r u u u r最大,只需A F uuu r 最大,EA F Ð最小.由图易知,当F 与C 重合时,满足条件,而此时△EAC中,1AE AC EC ===,所以cos2221EA C+-?=AE AF×u u u ru u u r最大值是:cos 6AE AC EAC鬃?=uuu r uuu r .【思路点拨】通过图形分析得AE AF ×u u u r u u u r取得最大值的条件,然后计算此最大值.【题文】16.点P(x,y)在直线y=kx+2上,记T=|x|+|y|,若使T 取得最小值的点P 有无数个, 则实数k 的取值是 .【知识点】直线的斜截式方程;直线与圆. H1 H4【答案】【解析】1或-1 解析:直线y=kx+2恒过定点(0,2),∵T x y =+?当且仅当x y =时取等号,可得:只有当1k =?时,使T 取得最小值的点P 有无数个. 故1k =?.【思路点拨】注意到直线恒过定点(0,2),画图观察斜率k 取不同值的情况下,T 取最小值的点P 的个数,不难发现,仅在1k =?时,点P 的个数有无数个. 【题文】三、解答题:本大题共6小题,共76分. 【题文】17.(12分)数列{}n a 中,141,8a a =-=. (1)若数列{}n a 为等比数列,求7a 得值; (2) 若数列{}n a 为等差数列,其前n 项和n S ,已知6n n S a =+,求n 的值. 【知识点】等差数列;等比数列. D2 D3 【答案】【解析】(1)-64;(2)4.解析:(1)∵数列{}n a 为等比数列,∴2417a a a =?,得247164a a a ==-.(2)设数列{}n a 的公差为d ,由413138a a d d =+?+=,解得d=3∴1(1)34n a a n d n =+-=-,2352n n nS -=∵2356,3462n n n nS a n -=+\-+,化简得231140n n --=解得143n n ==-或,∵n ∈*N , ∴n=4 【思路点拨】(1)根据等比数列的性质求解;(2)根据等差数列的通项公式及前n 项和公式求解.【题文】18.(12分)已知圆M :22(2)16,x y -+=椭圆C :22221(0)x y a b a b+=>>的右焦点是圆M 的圆心,其离心率为23. (1)求椭圆C 的方程;(2)斜率为k 的直线l 过椭圆C 的左顶点,若直线l 与圆M 相交,求k 得取值范围.【知识点】直线、圆、椭圆的基本性质;直线与圆的位置关系. H3 H5 H4【答案】【解析】(1)22195x y +=;(2)4433k -<<. 解析:(1)由题意得:圆心M(2,0),r=4, ∴c=2 又23c a =,∴a=3,由222b a c =-,得25b =, ∴椭圆方程为22195x y += (2)∵直线l 过椭圆左顶点A (-3,0),∴l 的方程为:y=k(x+3),即kx-y+3k=0 ∵l 与圆M 相交,∴圆心M 到直线l 的距离d<r4<∴()()2221651619kk k <+?,∴4433k -<< 【思路点拨】(1)由已知得关于a,b,c 的方程组求解;(2)设出直线的点斜式方程,由圆心到直线的距离小于半径得关于k 的不等式,解得k 范围即可. 【题文】19.(12分)已知函数f(x)=sin 2x+22cos 1x -. (1)求函数f(x)的最小正周期和单调递增区间;(2)已知△ABC 三边a,b,c 所对的角分别为A,B,C ,若()22A f b ==,且△ABC 的面积为1,求a 得值.【知识点】三角恒等变换;三角函数图像与性质;解三角形. C7 C8 【答案】【解析】(1) 函数f(x)的最小正周期p ,单调递增区间为:[3,]()88k k k Z p pp p -+?;(2 解析:∵2()sin 22cos 1sin 2cos2f x x x x x =+-=+)4x p +,∴最小正周期22T pp == 令222,242k x k k Z ppp p p -???,解得3,88k xk k Z p pp p -#+? ∴函数f(x)的单调递增区间为:[3,]()88k k k Z p pp p -+?(2)由(1)得:())2244AAf A p p 骣÷ç÷=?=+=ç÷ç÷桫∴ 在△ABC 中,42A p p +=,∴4A p=又∵11sin sin 1224A BC S bc A c p==?V ,∴c=2由余弦定理得,222222cosA 22cos24a b c bc p=+-=+-∴【思路点拨】(1)利用二倍角公式,两角和与差的三角函数公式,将函数化为:f(x)=)4x p+,从而求得其最小正周期和单调递增区间;(2)由(1)的结论及三角形面积得4A p=、c=2,再由余弦定理求得a 值. 【题文】20.(12分)如图平面ABCD⊥平面BCE,四边形ABCD为矩形,BC=CE,点F为CE中点.(1)证明:AE∥平面BDF;(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PM⊥BE? 若存在,确定点P 的位置,并加以证明;若不存在,请说明理由.【知识点】空间点,线,面位置关系;线面平行及线面垂直的证明. G4 G5【答案】【解析】(1)证明:见解析;(2)当P为AE中点时,有PM⊥BE,证明:见解析. 解析:(1)连接AC交BD于O,连接OF.在△ACE中,∵四边形ABCD 是矩形,∴O为AC中点,又F为EC中点,∴OF∥AE,又OFÌ平面BDF,AEË平面BDF,∴AE∥平面BDF.(2)当P为AE中点时,有PM⊥BE,以下给予证明.取BE中点H,连接DP,PH,CH,∵P为AE中点,H为BE中点,∴PH∥AB,又AB∥CD,∴PH∥CD,∴P、H、C、D四点共面.∵平面ABCD⊥平面BCE,且平面ABCD I平面BCE=BC,CD⊥BC∴CD⊥平面BCE,又BEÌ平面BCE ,∴CD⊥BE,∵BC=CE,且H为BE中点,∴CH⊥BE∵CH I CD=C,∴BE⊥平面DPHC,又PMÌ平面DPHC,∴BH⊥PM,即PM⊥BE.【思路点拨】(1)取BD 中点O,证明OF ∥AE 即可;(2)要使PM ⊥BE ,只需BE ⊥平面DCP , 取BE 中点H ,连接CH ,因为BC=CE ,所以BE ⊥CH ,有BE ⊥平面BCH ,则平面BCH 于线段AE 的交点为点P ,易得P 为线段AE 中点.【题文】21.(14分)某地汽车最大保有量为60万辆,为确保城市交通便捷畅通,汽车实际保有量x (单位:万辆)应小于60万辆,以便留出适当的空置量. 已知汽车的年增长量y (单位:万辆)和实际保有量x 与空置率的乘积成正比,比例系数k (k>0). (空置量=最大保有量-实际保有量,空置率=空置量最大保有量)(1)写出y 关于x 的函数关系;(2)求汽车年增长量的最大值;(3)当汽车年增长量达到最大值时,求k 的取值范围.【知识点】函数基础知识;不等式基础知识. B1 D1 【答案】【解析】(1) ()()26006060ky x x x =-+<<;(2) 15k 万辆;(3)()0,2. 解析:(1)根据题意得,空置率6060x-,从而()260606060x ky k x x x 骣-÷ç÷=?-+ç÷ç÷桫, 即y 关于x 的函数关系式为:()()26006060ky x x x =-+<< (2)∵()()2260309006060k k y x x x 轾=-+=--+犏犏臌,()0,60x Î ∴x=30时,max 15y k =,∴当实际保有量为30万辆时,汽车年增长量的最大值为15k 万辆. (3)根据实际意义:实际保有量x 与年增长量y 的和小于最大保有量60, ∴ 0<x+y<60,∴当汽车的年增长量取得最大值时,0<30+15k<60, 解得-2<k<2,∵k>0,∴0<k<2, 即k 的取值范围为()0,2.【思路点拨】(1)空置率6060x-,从而()260606060x ky k x x x 骣-÷ç÷=?-+ç÷ç÷桫, 即y 关于x 的函数关系式为:()()26006060ky x x x =-+<<;(2)由(1)得()23090060k y x 轾=--+犏犏臌,所以当实际保有量为30万辆时,汽车年增长量的最大值为15k 万辆;(3)由(2)的结论及已知得关于k 的不等式求解. 【题文】22.(14分)已知函数f(x) 32=x (,)bx cx b c R -+?,其图像记为曲线C. (1) 若f(x)在x=1处取得极值-1,求b,c 的值;(2) 若f(x)有三个不同的零点,分别为123,,x x x ,且3210x x x >>=过点O 11(,())x f x 作曲线C 的切线,切点为()00,()A x f x (点A 异于点O ) ①证明:2302x x x +=;②若三个零点均属于区间)0,2éêë,求00()f x x 的取值范围.【知识点】函数的零点;导数的几何意义;导数的应用;线性规划. B9 B11 B12 E5 【答案】【解析】(1)b=1,c= -1;(2)①证明:见解析,② (-1,0). 解析:(1) 2()32f x x bx c ¢=-+,由题意,有()()132011111f b c b c f b c ììï¢ï=-+==ïïÞ眄镲=-=-+=-镲îïî,经检验此时,f(x)在x=1处取极小值, 因此,b=1,c= -1.(2)①证明:切线斜率k=()200032f x x bx c ¢=-+, 则切线方程为:()()20000(32)y f x x bx c x x -=-+-,化简得:2320000(32)x 2x y x bx c bx =-+-+ 由于切线过原点O ,所以:3202x 0bx -+=, 因为点A 异于点O ,所以02bx =, 又()32f x x bx cx =-+有三个不同零点,分别为0,23,x x ,则23,x x 为方程20x bx c -+=的两个不同的根,由韦达定理得:23x x b +=因此,2302x x x +=②由①知,23,x x 为方程20x bx c -+=的两个不同的根,令()2g x x bx c =-+,由23,x x ∈(0,2),知:函数g(x)图像与x 轴在(0,2)范围内有两个不同交点,所以20402042(0)00(2)0420b c b b g c g b c ììïïD >ïï<ïïïïïïïï<<镲<<Þ眄镲镲>>镲镲镲>-+>镲ïïîî这个不等式组对应的点(b,c)形成的平面区域如图阴影部分所示:又()2002442b f f xc b x b 骣÷ç÷ç÷ç÷-桫==,令目标函数24z c b =-,则244b z c =+, 于是问题转化为求抛物线244b zc =+的图像在y 轴上截距的取值范围, 结合图像,截距分别在曲线段OM ,N (2,0)处取上、下界, 则z ∈(-4,0),因此,()()001,0f x x ?.【思路点拨】(1)由f(x)在x=1处取得极值-1得关于b,c 的方程组求解;(2)①由导数的几何意义及直线方程的点斜式得以A 为切点的切线方程,由此切线过原点证得结论. ②由①及二次方程的实根分布理论的关于b,c 的不等式组,再利用线性规划思想求00()f x x 的取值范围.【典例剖析】本题第三问的求解是较典型的解法,采用了线性规划的解题思想,把求00()f x x 的取值范围问题,转化为了求纵截距范围问题.。

(word版)福建省厦门市2012届高三适应性考试题数学理(2012厦门5月质检)-推荐下载

2
三、解答题:本大题共 6 小题,共 80 分.解答应写出必要文字说明、证明过程或演算步 骤.
16.(本小题满分 13 分) 为适应 2012 年 3 月 23 日公安部交通管理局印发的《加强机动车驾驶人管理指导意见》,
某驾校将小型汽车驾照考试科目二的培训测试调整为:从 10 个备选测试项目中随机抽取 4 个,只有选中的 4 个项目均测试合格,科目二的培训才算通过.已知甲对 10 个测试项目测 试合格的概率均为 0.8;乙对其中 8 个测试项目完全有合格把握,而对另 2 个测试项目却 根本不会.
PACB 的面积等于
A.
2
3
B. 3
5.等差数列{ an }中, an an1 4n(n N*) ,则其公差 d 等于
A.2
B.4
6.某校 3 名艺术生报考三所院校,其中甲、乙两名学生填报不同院校,则填报结果共有
A.18 种
B.19 种
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

福建省厦门市2012年3月高三质量检查数学试题(文科)(word)

2012年厦门市高中毕业班质量检查数学(文科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.本卷满分150分,考试时间120分钟. 参考公式:方差2222121()()()n s x x x x x x n ⎡⎤=-+-++-⎣⎦L第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|(1)(2)0}A x x x =+-<,集合{|0}B x x =<,则A B =IA .{|12}x x -<<B .{|1x x <}C .{|20}x x -<<D .{|10}x x -<< 2.已知样本3,,2,1x 的平均数为2 ,则样本方差是A .31 B .22 C .21 D .41 3.执行右边的程序框图,输出的结果是18,则①处应填入的条件是 A .K >2 B .K >3 C .K >4 D .K >54.已知锐角α满足3sin 5α=,则sin(2)πα+= A .1225- B .2425- C..1225D .24255.若x R ∈,则“12x -≤≤”是“1x <”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.设0,0x y >>,4xy =,则22x y s y x=+的最小值为 A .1 B .2 C .4 D .87.已知,αβ是两个不同平面,,m n 是两条不同直线,则以下命题正确的是A .若//,m n n α⊂,则//m αB .若,m m αβ⊥⊂,则αβ⊥C .若,m n αβ⊥⊥,m n ⊥,则//αβD .若//m α,n αβ⋂=,则//m n8.在平面区域00x y x y ⎧≥⎪≥⎨⎪+≤⎩内随机取一点,则所取的点恰好落在圆221x y +=内的概率是A .2πB .4πC .8π D .16π9.已知函数()y f x =在R 上满足(1)(1)f x f x +=-,且在[)1,+∞上单调递增,则下列结论正确的是 A .(0)(1)(3)f f f >> B .(0)(3)(1)f f f >>C .(3)(1)(0)f f f >>D .(3)(0)(1)f f f >>10.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,3B π=,且sin :sin 3:1A C=,则:b c 的值为A B .2C D .711.设P 是椭圆2214x y +=上任意一点,A 是椭圆的左顶点,F 1,F 2分别是椭圆的左焦点和右焦点,则12PA PF PA PF ⋅+⋅uu r uuu r uu r uuu r的最大值为A .8B .12C .16D .20 12.如图,直角梯形ABCD 中,//AB DC ,90=∠DAB ,3,3,1===AD AB DC ,点E 在边BC 上,且AC , AE ,AB 成等比数列.若CE EB λ=uu r uu r,则λ=A .3153+ B .31523+ CD 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题卡的相应位置.13.设1z i =+(i 是虚数单位),则复数21z +在复平面上对应点的坐标为 . 14.已知1()cos f x x =,且1()()n n f x f x +'=(*)n N ∈,则2012()f x =.15.已知双曲线2221(0)9x y a a -=>的渐近线与圆9)5(22=+-y x 相切,则a 的值为 . 16.如果函数()y f x =在定义域D 的子区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a-=-,则称0x 是函数()y f x =在[,]a b 上的一个“均值点”.例如,0是2y x =在[]1,1-上的一个“均值点”.已知函数4()1f x x mx =-++在区间[]2,1-上存在均值点,则实数m 的取值范围是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.把解答过程填写在答题卡的相应位置. 17.(本小题满分12分)已知等比数列{}n a 中,公比1q >,1a 与3a 的等差中项为52,1a 与3a 的等比中项为2. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2log n n b a =,求数列{}n b 的前n 项和n S .18.(本小题满分12分)将函数sin y x =图象上的所有点向右平移6π个单位长度,得到曲线1C ,再把曲线1C 上所有点的横坐标缩短为原来的12(纵坐标不变),得到函数()y f x =的图象. (Ⅰ)写出函数()y f x =的解析式,并求()f x 的周期;(Ⅱ)若函数()()cos2g x f x x =+,求()g x 在[]0,π上的单调递增区间.19.(本小题满分12分)在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:(Ⅰ)计算,x y 的值;(Ⅱ)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率; (Ⅲ)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.参考数据与公式:22()()()()()n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++.20.(本小题满分12分)已知椭圆2222:1(0)y x C a b a b +=>> 的两焦点与短轴的一个端点连结构成等腰直角三角形,直线l :0x y b --=是抛物线24x y =的一条切线.(Ⅰ)求椭圆C 的方程;(Ⅱ)直线l 交椭圆C 于,A B 两点,若点P 满足0OP OA OB ++=u u u r u u r u u u r r(O 为坐标原点),判断点P 是否在椭圆C 上,并说明理由.21.(本小题满分12分)某人请一家装公司为其新购住房进行装修设计,房主计划在墙面及天花板处涂每平方米20元的水泥漆,地面铺设每平方米100元的木地板.家装公司给出了某一房间的三视图如图一,直观图如图二(单位:米).(Ⅰ)问该房间涂水泥漆及铺木地板共需材料费多少元? (Ⅱ)如图二,点E 在棱11A D 上,且10.3D E =,M 为11PQ 的中点.房主希望在墙面11AADD 上确定一条过点1D 的装饰线1D N (N 在棱1AA 上),并要求装饰线与平面EDPM 垂直.请你帮助装修公司确定1A N 的长,并给出理由.22.(本小题满分14分)已知函数1()()ln f x a x b x x=--(,a b R ∈),2()g x x =. (Ⅰ)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (Ⅱ)在(Ⅰ)的条件下,求证:()()2ln 2g x f x >-; (Ⅲ)若2b =,试探究函数()f x 与()g x 的图象在其公共点处是否存在公切线,若存在,研究a 值的个数;若不存在,请说明理由.. ABP Q D A 1 B 1Q 1P 1D 1E NM 图二2012年厦门市高中毕业班质量检查数学(文科)参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分60分.1. D2. C3. A4.B5. B6. C7.B8.B9.D 10. C 11. C 12. A 二、填空题:本题考查基础知识和基本运算. 每小题4分,满分16分. 13. (1,2) 14. sin x 15. 4 16. (5,4)-三、解答题:本题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.本题考查等差数列、等比数列基础知识,考查运算求解能力,考查函数与方程思想方法.满分12分. 解:(Ⅰ)依题意得131354a a a a +=⎧⎨⋅=⎩,又1q >, -----------------------------------------------------------2分∴1314a a =⎧⎨=⎩ ,∴2314a q a ==,即2q = ----------------------------------------------------4分∴ 11122n n n a --=⨯= ------------------------------------------------------ 6分 (Ⅱ)122log log 21nn n b a n -===-, -----------------------------------------------------------8分 ∴1(1)1n n b b n n +-=--=(为常数),所以,{}n b 是以0为首项,1为公差的等差数列,∴21()(01)222n n n b b n n n n S ++--===. ----------------------------------------------------12分 18.本题考查三角函数图象及其性质等基础知识,考查推理论证能力、运算求解能力,考查方程与函数、数形结合等数学思想方法.满分12分. 解:(Ⅰ)由已知,曲线C 1对应的函数解析式为 sin()6y x π=--------------------------------1分曲线C 2对应的函数解析式为()sin(2)6f x x π=- --------------------------3分∴()f x 的周期22T ππ== -------------------------------------------------------------4分 (Ⅱ)由已知及(Ⅰ)()()cos 2g x f x x =+sin(2)cos 26x x π=-+sin 2coscos 2sincos 266x x x ππ=-+12cos 22x x =+sin(2)6x π=+ -----------------------------7分要使()g x 单调递增,只须222,262k x k k Z πππππ-+≤+≤+∈,即:,36k x k k Z ππππ-+≤≤+∈, ----------------------------------------------------------9分又∵[0,]x π∈,∴满足条件的x 的取值范围是06x π≤≤或23x ππ≤≤, ∴所求单调递增区间为[0,]6π和2[,]3ππ.------------------------------------------------------------12分 19.本题考查概率、统计等基础知识,考查数据处理能力、推理论证能力、运算求解能力及应用意识,考查特殊与一般、化归与转化等数学思想方法.满分12分. 解:(Ⅰ)设从高一年级男生中抽出m 人,则45500500400m =+,25m =, ∴ 21820,52025=-==-=y x -----------------------------------------------------2分(Ⅱ)表二中非优秀学生共5人,记测评等级为合格的3人为c b a ,,,尚待改进的2人为A,B ,则从这5人中任选2人的所有可能结果为:(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a b a c b c A B a A a B b A b B c A c B ,共10种.-------------4分设事件C 表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C 的结果为:(,),(,),(,),(,),(,),(,)a A a B b A b B c A c B 共6种. ----------------------------6分∴53106)(==C P , 故所求概率为53. ---------------------------------------------------7分 (Ⅲ)-------------------------------------------9分∵10.90.1-=,2( 2.706)0.10P K ≥=,而706.2125.189202515305154520251530)1015515(452222<==⨯⨯⨯⨯⨯=⨯⨯⨯⨯-⨯=K , ---------------11分 答:没有90%的把握认为“测评结果优秀与性别有关”. -----------------------------------12分20.本题考查直线、抛物线、椭圆及平面向量等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想及化归与转化思想.满分12分.解:(Ⅰ)(法一)由220:4404x y b y x x b x y--=⎧-+=⎨=⎩消去得∵ 直线y x b x y 42=-=与抛物线相切,∴24160b ∆=-=,∴1b =,---------------------3分∵椭圆)0(1:2222>>=+b a bx a y C 的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴22==b a -------------------------------------------------------------------------------5分故所求椭圆方程为2212y x +=. --------------------------------------------------------------------6分 (法二)直线L:0=+-b x y 是抛物线y x 42=的一条切线.故切线斜率为1k =,又,112k y x === 求得切点坐标为(2,1),又点(2,1)在直线L:0=+-b x y 上, 代入求得1b =, --------------------------------------------------------------------------3分∵椭圆)0(1:2222>>=+b a bx a y C 的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴22==b a --------------------------------------------------------------------------------5分故所求椭圆方程为2212y x +=. --------------------------------------------------------------------6分 (Ⅱ)由⎪⎩⎪⎨⎧=+-=12122x y x y 得30122=--x x ,解得31,121-==x x ,---------------------------------------8分∴14(1,0),(,)33A B --,设(,)P x y ,∵0OA OB OP ++=u u r u u u r u u u r r,∴141,0(0,0)33OA OB OP x y ⎛⎫++=-+-+= ⎪⎝⎭uu r uu u r uu u r ,--------------------------------------------------10分解得:34,32=-=y x , ∴24(,)33P -,把点24(,)33P -代入椭圆方程2212y x +=左边, 得221424()()12333+-=≠, ∴点P 不在椭圆C 上 ---------------------------------------12分 21.本题考查空间线面位置关系、三视图、多面体表面积计算等基础知识,考查空间想象能力、逻辑思维能力、推理论证能力、运算求解能力及应用意识,考查数形结合、化归与转化等数学思想方法.满分12分. 解:(Ⅰ)墙及天花板的表面积114343 3.2313 3.43(440.60.8)62.562S =⨯+⨯+⨯+⨯+⨯+⨯-⨯⨯=(2m ),-----2分∴水泥漆的费用为62.56201251.2⨯=(元), -----------------------------------3分又地面的面积为21440.60.815.762S =⨯-⨯⨯=(2m ),∴木地板的费用为15.761001576⨯=(元), --------------------------------------------------4分∴该房间涂水泥漆及铺木地板共需材料费1251.215762827.2+=元.-------------------5分 (Ⅱ)∵DP ⊥平面11A ADD ,又1D N ⊂平面11A ADD ∴1DP D N ⊥,要使装饰线1D N ⊥平面EDPM ,须且只须1D N DE ⊥,-----------------------------------9分设1A N x =,由1D N DE ⊥知,111D A N DD E ∆∆:,∴11111D E A ND D A D =,又11110.3,3,4DE D D A D ===,∴10.4A N =, -------------------------------------------------11分∴当10.4A N =米时,装饰线1D N 与平面EDPM 垂直.-----------------------------------12分22.本题考查函数与导数基础知识及其应用,考查运算求解能力、推理论证能力,考查函数与方程思想、分类与整合思想、数形结合思想、特殊与一般思想及化归与转化思想.满分14分. 解:(Ⅰ)1a =Q ,1()ln f x x b x x=--, ∴22211()1b x bx f x x x x -+'=+-=, ----------------------------------------------2分依题意得 (1)20f b '=-=,∴2b =. ------------------------------------------3分 (Ⅱ)由(Ⅰ)得1()2ln f x x x x=--,定义域为(0,)+∞,要证()()2ln 2g x f x >-,只须证212ln 2ln 20x x x x-+++>, 设21()2ln 2ln 2,(0)F x x x x x x=-+++>, --------------------------------4分 则32222212212(1)(21)()21x x x x x F x x x x x x --++-'=--+==,令()0F x '=,得12x =, ------------------------------------------------------6分列表得∴12x =时,()F x 取极小值也是最小值,且min 17()()024F x F ==>, ∴()0F x >,∴()()2ln 2g x f x >-. ----------------------------------------------8分 (Ⅲ)假设函数()f x 与()g x 的图象在其公共点00(,)x y 处存在公切线,∵2b =,∴1()()2ln f x a x x x=--,∵222()ax x a f x x -+'=,()2g x x '=,由00()()f x g x ''=得,20002022ax x ax x -+=, 即32000220x ax x a -+-=,∴2000(1)(2)02a x x a x +-=⇒=,---------------------9分∵()f x 的定义域为(0,)+∞,当0a ≤时,0(0,)2ax =∉+∞,∴函数()f x 与()g x 的图象在其公共点处不存在公切线;---10分当0a >时,令 ()()22a a f g =,∵221()()2ln()2ln()222222a a a a f a a a =--=--,21()24a g a =,∴22112ln()2224a a a --=,即28ln()(0)82a aa -=>,-----------------------------------11分 下面研究满足此等式的a 值的个数:(方法一)由28ln()82a a -=得 28l n 88l n 20(0)a a a -+-=>, 设函数2()8ln 88ln 2,(0)h x x x x =-+->,2882()2x h x x x x-'=-=,令()0h x '=得2x =,当(0,2)x ∈时,()0,()h x h x '>递增; 当(2,)x ∈+∞时,()0,()h x h x '<递减;所以,max ()(2)8ln 2488ln 240h x h ==-+-=>,又0x →时,()h x →-∞, 242x ==时,2(2)8ln 280h =-<,所以,函数()h x 的图象与x 轴有且仅有两个交点,即符合题意的a 值有且仅有两个. 综上,当0a ≤时,函数()f x 与()g x 的图象在其公共点处不存在公切线;当0a >时,函数()f x 与()g x 的图象在其公共点处存在公切线,且符合题意的a 值有且仅有两个.---------------------------------------14分(方法二)设2a t =,则2a t =,且0t >,方程28ln()82a a -=化为21ln 12t t =-,分别画出ln y t =和2112y t =-的图象,因为1t =时,211ln 0,1022t t =-=-<,由函数图象性质可得ln y t =和2112y t =-图象有且只有两个公共点(且均符合0t >),所以方程28ln()82a a-=有且只有两个解. 综上,当0a ≤时,函数()f x 与()g x 的图象在其公共点处不存在公切线;当0a >时,函数()f x 与()g x 的图象在其公共点处存在公切线,且符合题意的a 值有且仅有两个.------------------------------------------14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档