必修一函数的性质及答案

合集下载

高中数学必修一函数性质详解及知识点总结及题型详解

高中数学必修一函数性质详解及知识点总结及题型详解

经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。

高一数学必修一函数概念表示及函数性质练习题(含答案)

高一数学必修一函数概念表示及函数性质练习题(含答案)

1.已知R 是实数集,21xx ⎧⎫M =<⎨⎬⎩⎭,{y y N ==,则R N M =ð( ) A .()1,2 B .[]0,2 C .∅ D .[]1,22已知集合A={x |01<--ax ax },且A 3A 2∉∈,,则实数a 的取值范围是 ____3.函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6],则m 的取值范围是( )A .[0,4]B .[2,4]C .[2,6]D .[4,6] 4.设函数g(x)=x 2-2(x ∈R),f(x)=则f(x)的值域是( )A. ∪(1,+∞)B. [0,+∞)C.D. ∪(2,+∞)5.定义在),0(+∞上的函数满足对任意的))(,0(,2121x x x x ≠+∞∈,有.则满足<的x 取值范围是( )6.已知上恒成立,则实数a 的取值范围是( ) A. B.C.D.7.函数在(-1,+∞)上单调递增,则的取值范围是A .B .C .D .8.已知函数f (x )={2x 1x 01x 0+≥,,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________. 9.若函数y =2ax 1zx 2ax 3++的定义域为R ,则实数a 的取值范围是________.10.已知函数f (x )=x 2-6x +8,x ∈[1,a],并且f (x )的最小值为f (a ),则实数a 的取值区间是________.11.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为1x =,给出下列结论:①0abc >;②24b a c =;③420a b c ++>;④30a c +>,其中正确的结论是 .(写出正确命题的序号)()f x 2121()(()())0x x f x f x -->(21)f x -1()3f 25---=a x x y a 3-=a 3<a 3-≥a 3-≤a12.已知1x f x x ⎛⎫=⎪+⎝⎭,则(1)f -= . 13.已知()221f x ax ax =++在[]2,3-上的最大值为6,则()f x 的最小值为_________.14已知[]1,0∈x ,则函数x x y --=12的值域是 ____15.已知2()f x ax bx =+是定义在[1,3]a a -上的偶函数,那么a b +=( )16.已知函数()()222f x mx m mx =+++为偶函数,求实数m 的值= . 17.若函数f (x )=(2k -3)x 2+(k -2)x +3是偶函数,则f (x )的递增区间是____________. 18.定义在R 上的奇函数()f x ,当0x >时,()22xf x x =-,则()(0)1f f +-= .19. 函数()f x 是R 上的偶函数,且在[0,)+∞上单调递增,则下列各式成立的是( ) A .)1()0()2(f f f >>- B .)0()1()2(f f f >->- C .)2()0()1(->>f f f D .)0()2()1(f f f >->20.已知函数()f x 是定义在区间[-2,2]上的偶函数,当[0,2]x ∈时,()f x 是减函数,如果不等式(1)()f m f m -<成立,则实数m 的取值范围( ) A.1[1,)2- B. 1,2 C. (,0)-∞ D.(,1)-∞21.(5分)(2011•湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g(x )=e x,则g (x )=( )A.e x﹣e ﹣xB.(e x+e ﹣x) C.(e ﹣x﹣e x) D.(e x﹣e ﹣x)22.已知函数1()f x x x=-. (1)判断函数()f x 的奇偶性,并加以证明;(2)用定义证明函数()f x 在区间[1,+∞)上为增函数; (3)若函数()f x 在区间[2,]a 上的最大值与最小值之和不小于1122a a-,求a 的取值范围.23.已知c bx x x f ++=22)(,不等式0)(<x f 的解集是)5,0(, (1)求)(x f 的解析式;(2)若对于任意]1,1[-∈x ,不等式2)(≤+t x f 恒成立,求t 的取值范围.24.已知函数()x f 为定义域为R ,对任意实数y x ,,均有)()()(y f x f y x f +=+,且0>x 时,0)(>x f(1)证明)(x f 在R 上是增函数(2)判断)(x f 奇偶性,并证明(3)若2)1(-=-f 求不等式4)4(2<-+a a f 的解集25.函数2()21f x x ax =-+在闭区间[]1,1-上的最小值记为()g a .(1)求()g a 的解析式; (2)求()g a 的最大值.26.已知函数22()1x f x ax x =++为偶函数. (1)求a 的值;(2)用定义法证明函数()f x 在区间[0,)+∞上是增函数; (3)解关于x 的不等式(21)(1)f x f x -<+.参考答案1.D 【解析】试题分析:因0|{<=x x M 或}1|{},2≥=>x x N x ,故}20|{≤≤=x x M C R ,}21|{≤≤=x x M C N R ,故应选D.考点:集合的交集补集运算. 2.B 【解析】试题分析:函数()f x 是R 上的偶函数,所以()()22f f -=, ()()11f f -=,因为函数()f x 是[)0,+∞上增函数,则()()()210f f f >>,即()()()210f f f ->->.故B 正确. 考点:1函数的奇偶性;2函数的单调性. 3.A 【解析】试题分析:根据题意知,函数在[)0,2-上单调递增,在[]2,0上单调递减.首先满足⎩⎨⎧≤≤-≤-≤-22212m m ,可得21≤≤-m .根据函数是偶函数可知:)()(m f m f -=,所以分两种情况:当20≤≤m 时,根据不等式(1)()f m f m -<成立,有12-21m m m m <-≤≤-<-或,解得102m ≤<;当20m -≤<时,根据不等式(1)()f m f m -<成立,有12 -21m m m m -<-≤≤-<或,解得10m -≤<;综上可得112m -≤<. 考点:偶函数性质. 4.D 【解析】试题分析:根据已知中定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,根据奇函数和偶函数的性质,我们易得到关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,解方程组即可得到g (x )的解析式. 解:∵f (x )为定义在R 上的偶函数 ∴f (﹣x )=f (x )又∵g (x )为定义在R 上的奇函数g (﹣x )=﹣g (x ) 由f (x )+g (x )=e x,∴f (﹣x )+g (﹣x )=f (x )﹣g (x )=e ﹣x, ∴g (x )=(e x﹣e ﹣x) 故选D点评:本题考查的知识点是函数解析式的求法﹣﹣方程组法,及函数奇偶性的性质,其中根据函数奇偶性的定义构造出关于关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,是解答本题的关键. 5.B【解析】函数f (x )=x 2﹣4x ﹣6的图象是开口朝上,且以直线x=2为对称轴的抛物线 故f (0)=f (4)=﹣6,f (2)=﹣10∵函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6], 故2≤m≤4即m 的取值范围是[2,4] 故选B 6.B 【解析】试题分析:由题意,如下图:设1122(,),(,)A x yB x y ,联立21y x b y x =+⎧⎪⎨=⎪⎩得2210x bx +-=,则||AB==,O点到直线AB的距离d=,∴1()2S f b===.∵()()f b f b-=,∴()f b为偶函数.当0x>时,()4bf b=,易知()f b单调递增.故选B.考点:1.函数奇偶性;2.三角形面积应用.7.A【解析】试题分析:因为2121()(()())0x x f x f x-->,所以函数()f x在),0(+∞上单调增. 由(21)f x-<1()3f得:.3221,31120<<<-<xx考点:利用函数单调性解不等式8.C【解析】,,所以,所以,选C.9.D【解析】令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.故函数f(x)=当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数≤f(x)≤f(-1),即≤f(x)≤0.故函数f(x)的值域是∪(2,+∞).选D.10.B 【解析】 作出函数在区间上的图象,以及的图象,由图象可知当直线在阴影部分区域时,条件恒成立,如图,点,,所以,即实数a 的取值范围是,选B.11.B 【解析】试题分析:由2()f x ax bx =+是定义在[1,3]a a -上的偶函数,得a a 31-=-,解得:41=a .再由()()x f x f =-,得()bx ax bx x a +=--22,即0=bx ,∴0=b .则41041=+=+b a .故选:B .考点:函数的奇偶性. 12.D 【解析】试题分析:由于函数52x y x a -=--在()1,-+∞上单调递增,可得当1x >-时,()()()()22253'022x a x a y x a x a -----==≥----,可得3021a a -≥⎧⎨+≤-⎩,解得3a ≤-,故选D. 考点:1、反比例函数的图象与性质;2、利用导数研究函数的单调性. 13.()12,1-- 【解析】试题分析:由题意可得()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,即⎩⎨⎧<<-+-<<--112121x x ,解得()12,1--∈x ,故答案为()12,1--.考点:不等式的解法.【方法点睛】本题考查分段函数的单调性,利用单调性解不等式,考查利用所学知识分析问题解决问题的能力,属于基础题.由题意可得 ()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故21x -必需在0=x 的右侧,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,由此解出x 即可,借助于分段函数的图象会变的更加直观. 14.[)3,0 【解析】试题分析:因为函数3212+++=ax ax ax y 的定义域为R ,所以0322≠++ax ax 恒成立.若0=a ,则不等式等价为03≠,所以此时成立.若0≠a ,要使0322≠++ax ax 恒成立,则有0<∆,即03442<⨯-=∆a a ,解得30<<a .综上30<≤a ,即实数a 的取值范围是[)3,0.故答案为:[)3,0.考点:函数的定义域及其求法. 15.0或2- 【解析】试题分析:当0=m 时,()2=x f 为偶函数,满足题意;当0≠m 时,由于函数()()222+++=mx m mx x f 为偶函数,故对称轴为022=+-=mm x ,即2-=m ,故答案为0或2-.考点:函数的奇偶性.【方法点晴】本题考查函数奇偶性的应用.若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切x 都有()()x f x f =-成立.其图象关于轴对称.()()222+++=mx m mx x f 是偶函数,对于二次项系数中含有参数的一元二次函数一定要分为二次项系数为0和二次项系数不为0两种情况,图象关于y 轴对称⇒对称轴为y 轴⇒实数m 的值.16.(]31,【解析】试题分析:函数()()[]a x x x x x f ,1,138622∈--=+-=,并且函数()x f 的最小值为()a f ,又∵函数()x f 在区间(]31,上单调递减,∴31≤<a ,故答案为:(]31,.考点:(1)二次函数的性质;(2)函数的最值及其几何意义. 17.①④ 【解析】试题分析:由图象知0a >,0c <,=12ba-,即20a b +=,所以0b <,所以0abc >,故①正确;因为二次函数图象与x 轴有两个交点,所以240b ac ∆=->,即24b ac >,故②错;因为原点O 与对称轴的对应点为(20),,所以2x =时,0y <,即420a b c ++<,故③错;因为当1x =-时,0y >,所以0a b c -+>,把2b a =-代入得30a c +>,故④正确,故填①④.考点:二次函数图象与系数的关系.【技巧点睛】利用图象判断解析式中,,a b c 的正负及它们之间的关系:(1)开口方向判断a 的正负;(2) 与y 轴交点位置判断c 的正负;(3) 对称轴位置判断b 的正负 (左同右异);(4) 与x 轴交点个数判断24b ac -的正负;(5) 图象上特殊点的位置判断一些函数值正负;(6) 对称轴判断2a b +和2a b -的正负. 18.12-【解析】 试题分析:由1x f x x ⎛⎫=⎪+⎝⎭,可令;1,1x x =-+求解可得; 11.2x x x =--=-。

2.4必修一:奇偶性—函数性质、单调性、奇偶性、反函数

2.4必修一:奇偶性—函数性质、单调性、奇偶性、反函数

2.4必修一:奇偶性—函数性质、单调性、奇偶性、反函数1.判断下列函数是否为奇偶函数。

⑴ f (x ) = x 3, x ∈[-1,1] ⑵ f (x ) = x 3, x ∈[-1,1)2.已知① f (x ) = x ,② f (x ) = 1 ,③ f (x ) = x 2,④ f (x ) =| x | ,⑤ f (x ) = x + 1 ,⑥ f (x ) = x。

偶函x数的序号为 ,奇函数的序号为 。

x 1 + x 2 3.已知函数 f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12)为偶函数,则 m 的值是( )A .1B .2C .3D .44.(2011·茂名月考)如果奇函数 f (x )在区间[3,7]上是增函数且最大值为 5,那么 f (x )在区间[-7,-3]上是 ( )A .增函数且最小值是-5B .增函数且最大值是-5C .减函数且最大值是-5D .减函数且最小值是-55. 函数 y =x 1( ) -x 的图象 A .关于原点对称B .关于直线 y =-x 对称C .关于 y 轴对称D .关于直线 y =x 对称6. 若偶函数 f (x ) 在(- ∞,-1]上是增函数,则下列关系式中成立的是()A . f (- 3) < 2f (-1) <f (2) B . f (-1) <f (- 3) < 2f (2)C . f (2) < f (-1) < f (- 3) D . f (2) <2f (- 3) < 2f (-1)7.已知函数 f (x ) = x2- ax + 1 是偶函数,则实数 a = 。

(x +1)(x +a )8.(2011·开封模拟)设函数 f (x )=9. 判断下列函数的奇偶性. (1)f (x )=x 2-x 3;x为奇函数,则 a = .(2)f(x)=x2-1+1-x2;10.已知函数f (x) =x3 +x 是定义域(a, a +1) 上的奇函数,则实数a =_。

高中数学必修一第三章函数的概念与性质知识点梳理(带答案)

高中数学必修一第三章函数的概念与性质知识点梳理(带答案)

高中数学必修一第三章函数的概念与性质知识点梳理单选题>0,1、已知函数f(x)=(m2−m−1)x m3−1是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2若a,b∈R,a+b<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断答案:B解析:根据函数为幂函数以及函数在(0,+∞)的单调性,可得m,然后可得函数的奇偶性,结合函数的单调性以及奇偶性,可得结果.由题可知:函数f(x)=(m2−m−1)x m3−1是幂函数则m2−m−1=1⇒m=2或m=−1>0又对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2所以函数f(x)为(0,+∞)的增函数,故m=2所以f(x)=x7,又f(−x)=−f(x),所以f(x)为R单调递增的奇函数由a+b<0,则a<−b,所以f(a)<f(−b)=−f(b)则f(a)+f(b)<0故选:B>小提示:本题考查幂函数的概念以及函数性质的应用,熟悉函数单调递增的几种表示,比如f(x1)−f(x2)x1−x20,[f(x1)−f(x2)]⋅(x1−x2)>0,属中档题.<0,且f(2)=0,则不2、定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有f(x2)−f(x1)x2−x1等式xf(x)>0的解集是()A.(−2,2)B.(−2,0)∪(2,+∞)C.(−∞,−2)∪(0,2)D.(−∞,−2)∪(2,+∞)分析:依题意可得f(x)在[0,+∞)上单调递减,根据偶函数的性质可得f (x )在(−∞,0)上单调递增,再根据f(2)=0,即可得到f (x )的大致图像,结合图像分类讨论,即可求出不等式的解集; 解:因为函数f(x)满足对任意的x 1,x 2∈[0,+∞),(x 1≠x 2),有f (x 2)−f (x 1)x 2−x 1<0,即f(x)在[0,+∞)上单调递减,又f (x )是定义在R 上的偶函数,所以f (x )在(−∞,0)上单调递增, 又f(2)=0,所以f (−2)=f (2)=0,函数的大致图像可如下所示:所以当−2<x <2时f (x )>0,当x <−2或x >2时f (x )<0, 则不等式xf(x)>0等价于{f(x)>0x >0 或{f(x)<0x <0,解得0<x <2或x <−2,即原不等式的解集为(−∞,−2)∪(0,2); 故选:C3、已知函数f (x )对于任意x 、y ∈R ,总有f (x )+f (y )=f (x +y )+2,且当x >0时,f (x )>2,若已知f (2)=3,则不等式f (x )+f (2x −2)>6的解集为( ) A .(2,+∞)B .(1,+∞)C .(3,+∞)D .(4,+∞)分析:设g (x )=f (x )−2,分析出函数g (x )为R 上的增函数,将所求不等式变形为g (3x −2)>g (4),可得出3x −2>4,即可求得原不等式的解集. 令g (x )=f (x )−2,则f (x )=g (x )+2,对任意的x 、y ∈R ,总有f (x )+f (y )=f (x +y )+2,则g (x )+g (y )=g (x +y ), 令y =0,可得g (x )+g (0)=g (x ),可得g (0)=0,令y =−x 时,则由g (x )+g (−x )=g (0)=0,即g (−x )=−g (x ), 当x >0时,f (x )>2,即g (x )>0,任取x 1、x 2∈R 且x 1>x 2,则g (x 1)+g (−x 2)=g (x 1−x 2)>0,即g (x 1)−g (x 2)>0,即g (x 1)>g (x 2), 所以,函数g (x )在R 上为增函数,且有g (2)=f (2)−2=1,由f (x )+f (2x −2)>6,可得g (x )+g (2x −2)+4>6,即g (x )+g (2x −2)>2g (2), 所以,g (3x −2)>2g (2)=g (4),所以,3x −2>4,解得x >2. 因此,不等式f (x )+f (2x −2)>6的解集为(2,+∞). 故选:A. 4、函数f(x)=0√x−2定义域为( )A .[2,+∞)B .(2,+∞)C .(2,3)∪(3,+∞)D .[2,3)∪(3,+∞) 答案:C分析:要使函数有意义,分母不为零,底数不为零且偶次方根被开方数大于等于零. 要使函数f(x)=0√x−2有意义,则{x −3≠0x −2>0,解得x >2且x ≠3, 所以f(x)的定义域为(2,3)∪(3,+∞). 故选:C.小提示:具体函数定义域的常见类型: (1)分式型函数,分母不为零;(2)无理型函数,偶次方根被开方数大于等于零;(3)对数型函数,真数大于零;(4)正切型函数,角的终边不能落在y轴上;(5)实际问题中的函数,要具有实际意义.5、下列函数既是偶函数又在(0,+∞)上单调递减的是()A.y=x+1x B.y=−x3C.y=2−|x|D.y=−1x2答案:C分析:逐项判断函数奇偶性和单调性,得出答案.解析:A项y=x+1x,B项y=−x3均为定义域上的奇函数,排除;D项y=−1x2为定义域上的偶函数,在(0,+∞)单调递增,排除;C项y=2−|x|为定义域上的偶函数,且在(0,+∞)上单调递减.故选:C.6、函数f(x)为奇函数,g(x)为偶函数,在公共定义域内,下列结论一定正确的是()A.f(x)+g(x)为奇函数B.f(x)+g(x)为偶函数C.f(x)g(x)为奇函数D.f(x)g(x)为偶函数答案:C分析:依次构造函数,结合函数的奇偶性的定义判断求解即可.令F1(x)=f(x)+g(x),则F1(−x)=f(−x)+g(−x)=−f(x)+g(x)≠−F1(x),且F1(−x)≠F1(x),∴F1(x)既不是奇函数,也不是偶函数,故A、B错误;令F2(x)=f(x)g(x),则F2(−x)=f(−x)g(−x)=−f(x)g(x)=−F2(x),且F2(−x)≠F2(x),∴F2(x)是奇函数,不是偶函数,故C正确、D错误;故选:C7、已知f(2x−1)=4x2+3,则f(x)=().A.x2−2x+4B.x2+2x C.x2−2x−1D.x2+2x+4答案:D分析:利用换元法求解函数解析式. 令t =2x −1,则x =t+12,f (t )=4(t+12)2+3=t 2+2t +4;所以f(x)=x 2+2x +4. 故选:D.8、下列四组函数中,表示相同函数的一组是( ) A .f(x)=x 2−x x,g (x )=x −1B .f(x)=√x 2,g(x)=(√x)2C . f (x )=x 2−2,g (t )=t 2-2D .f (x )=√x +1⋅√x −1,g(x)=√x 2−1 答案:C分析:根据相同函数的判断原则进行定义域的判断即可选出答案. 解:由题意得: 对于选项A :f(x)=x 2−x x的定义域为{x|x ≠0},g(x)=x −1的定义域为R ,所以这两个函数的定义域不同,不表示相同的函数,故A 错误;对于选项B :f(x)=√x 2的定义域为R ,g(x)=(√x)2的定义域为{x|x ≥0},所以这两个函数的定义域不同,不表示相同的函数,故B 错误;对于选项C :f (x )=x 2−2的定义域为R ,g (t )=t 2−2的定义域为R ,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C 正确;对于选项D :f (x )=√x +1⋅√x −1的定义域为{x|x ≥1},g(x)=√x 2−1的定义域为{x|x ≤−1或x ≥1},所以这两个函数的定义域不同,不表示相同的函数,故D 错误. 故选:C 多选题9、已知f(2x −1)=4x 2,则下列结论正确的是A .f(3)=9B .f(−3)=4C .f(x)=x 2D .f(x)=(x +1)2答案:BD解析:利用换元法求出f(x)的解析式,再对选项进行一一验证,即可得答案. 令t =2x −1⇒x =t+12,∴f(t)=4(t+12)2=(t +1)2.∴f(3)=16,f(−3)=4,f(x)=(x +1)2. 故选:BD.小提示:本题考查换元法求函数的解析式、函数值的求解,考查运算求解能力,属于基础题.10、已知函数f (x )={kx +1,x ≤0log 2x,x >0,下列是关于函数y =f [f (x )]+1的零点个数的判断,其中正确的是( )A .当k >0时,有3个零点B .当k <0时,有2个零点C .当k >0时,有4个零点D .当k <0时,有1个零点 答案:CD解析:令y =0得f [f (x )]=−1,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.令y =f [f (x )]+1=0,得f [f (x )]=−1,设f (x )=t ,则方程f [f (x )]=−1等价为f (t )=﹣1, ①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解, 由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .小提示:本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.11、下列函数既是偶函数,在(0,+∞)上又是增函数的是()A.y=x2+1B.y=2x C.y=|x|D.y=|1x−x|答案:AC分析:根据偶函数的定义和增函数的性质,逐个分析判断即可得解.对A,开口向上,且对称轴为x=0,所以y=x2+1是偶函数,在(0,+∞)上是增函数,故A正确;对B,y=2x为奇函数,故B错误;对C,y=|x|为偶函数,当x∈(0,+∞)时,y=x为增函数,故C正确;对D,令f(x)=|1x −x|,f(−x)=|1−x+x|=|1x−x|=f(x)为偶函数,当x∈(0,1),y=1x−x为减函数,故D错误,故选:AC填空题12、有对应法则f:(1)A={0,2},B={0,1},x→x2;(2)A={-2,0,2},B={4},x→x2;(3)A=R,B={y|y>0},x→1x2;(4)A=R,B=R,x→2x+1;(5)A={(x,y)|x,y∈R},B=R,(x,y)→x+y.其中能构成从集合A到集合B的函数的有________(填序号).答案:(1)(4)分析:利用函数的定义判断.(1)由函数的定义知,正确;(2)当x=0时,B中不存在数值与之对应,故错误;(3)当x=0时,B中不存在数值与之对应,故错误;(4)由函数的定义知,正确;(5)因为集合A不是数集,故错误;所以答案是:(1)(4)13、函数y=√7+6x−x2的定义域是_____.答案:[−1,7].分析:由题意得到关于x的不等式,解不等式可得函数的定义域.由已知得7+6x−x2≥0,即x2−6x−7≤0解得−1≤x≤7,故函数的定义域为[−1,7].小提示:求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.14、已知函数f(x)={|lnx|,x>0,x2+4x+3,x≤0,若函数g(x)=[f(x)]2−4f(x)+m+1恰有8个零点,则m的范围为___________.答案:2≤m<3解析:设f(x)=t,则g(x)=[f(x)]2−4f(x)+m+1=0,转化为t2−4t+m+1=0,由g(x)有8个零点,转化为方程f(x)=t,t∈(0,3]有4个不同的实根,即m+1=−t2+4t在t∈(0,3]内有2个不同的实根,利用数形结合法求解.画出函数f(x)={|lnx|,x>0,x2+4x+3,x≤0,的图像如图所示,设f(x)=t,由g(x)=[f(x)]2−4f(x)+m+1=0,得t2−4t+m+1=0.因为g(x)有8个零点,所以方程f(x)=t有4个不同的实根,结合f(x)的图像可得在t∈(0,3]内有4个不同的实根.所以方程t2−4t+m+1=0必有两个不等的实数根,即m+1=−t2+4t在t∈(0,3]内有2个不同的实根,画出函数y=−t2+4t的图象,如图所示:结合图像可知,3≤m+1<4,故2≤m<3.小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解解答题15、已知幂函数f(x)=(m2−2m+2)x3k−k2(k∈Z)是偶函数,且在(0,+∞)上单调递增.(1)求函数f(x)的解析式;(2)若f(2x−1)<f(2−x),求x的取值范围:(3)若实数a,b(a,b∈R∗)满足2a+3b=7m,求3a+1+2b+1的最小值.答案:(1)f(x)=x2;(2)(−1,1);(3)2.分析:(1)由幂函数定义得m值,由单调性得k的范围,结合奇偶性得k值.(2)利用偶函数和单调性解不等式;(3)由(1)得2a+3b=7,用“1”的代换凑配出定值,由基本不等式得最小值.(1)f(x)是幂函数,则m2−2m+2=1,m=1,又f(x)是偶函数,所以3k−k2=k(3−k)是偶数,f(x)在(0,+∞)上单调递增,则3k−k2>0,0<k<3,所以k=1或2.所以f(x)=x2;(2)由(1)偶函数f(x)在[0,+∞)上递增,f(2x−1)<f(2−x)⇔f(|2x−1|)<f(|2−x|)⇔|2x−1|2<|2−x|2⇔−1<x<1.所以x的范围是(−1,1).(3)由(1)2a+3b=7,2(a+1)+3(b+1)=12,a>0,b>0,3 a+1+2b+1=112(3a+1+2b+1)[2(a+1)+3(b+1)]=112(12+9(b+1)a+1+2(a+1)b+1)≥112(12+2√9(b+1)a+1×4(a+1)b+1)=2,当且仅当9(b+1)a+1=4(a+1)b+1,即a=2,b=1时等号成立.所以3a+1+2b+1的最小值是2.。

高一上学期数学(必修一)《第三章 函数的概念和性质》练习题及答案-湘教版

高一上学期数学(必修一)《第三章 函数的概念和性质》练习题及答案-湘教版

高一上学期数学(必修一)《第三章函数的概念和性质》练习题及答案-湘教版第I卷(选择题)一、单选题1. 下列四组函数中,表示同一个函数的一组是A. y=|x|, u=√ v2B. y=√ x2,s=(√ t)2C. y=x2−1x−1,m=n+1 D. y=√ x+1⋅√ x−1,y=√ x2−12. 已知函数f(2x−1)=x2−3,则f(3)=( )A. 1B. 2C. 4D. 63. 已知偶函数f(x)在[−7,−3]上单调增且有最小值5,则f(x)在[3,7]上( )A. 单调增且有最大值−5B. 单调增且有最小值5C. 单调减且有最大值−5D. 单调减且有最小值54. 已知f(x)是定义域为R的偶函数f(5.5)=2,g(x)=(x−1)f(x)若g(x+1)是偶函数,则g(−0.5)=A. −3B. −2C. 2D. 35. 若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为( )A. 1B. −1C. −32D. 326. 若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=2x,则g(x)=( )A. 1x B. −2xC. −1xD. 2x7. 若函数f(x)=2x+mx+1在区间[0,1]上的最大值为52,则实数m=( )A. 3B. 52C. 2 D. 52或38. 已知函数f(x)=lnx+ln(2−x),则( )A. f(x)在(0,2)单调递增B. f(x)在(0,2)单调递减C. y=f(x)的图象关于直线x=1对称D. y=f(x)的图象关于点(1,0)对称9. 已知函数f(x)={sin(x−a),x≤0,cos(x−b),x>0是偶函数,则a,b的值可能是( )A. a=π3,b=π3B. a=2π3,b=π6C. a=π3,b=π6D. a=2π310. 设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时f(x)=ax2+b.若f(0)+f(3)=6,则f(92)=( )A. −94B. −32C. 74D. 52二、多选题11. 下列选项中同一函数的有( )A. f(x)=|x|,g(x)=√ x2B. f(x)=|x|C. f(x)=xx,g(x)=1 D. f(x)=x2+2x+112. 下列各组中表示同一函数的是( )A. f(x)=|x|,g(x)=√ x2B. f(x)=x,g(x)=√x33C. f(x)=x+1,g(x)=x2−1x−1D. f(x)=(√ x)2x,g(x)=x(√ x)213. 函数f(x)是定义在R上的奇函数,下列说法正确的是( )A. f(0)=0B. 若f(x)在[0,+∞)上有最小值−1,则f(x)在(−∞,0]上有最大值1C. 若f(x)在[1,+∞)上为增函数,则f(x)在(−∞,−1]上为减函数D. 若x>0时f(x)=x2−2x,则x<0时14. 已知函数f(x),g(x)的定义域都是R,且f(x)是奇函数,g(x)是偶函数,则( )A. f(x)⋅|g(x)|是奇函数B. |f(x)|⋅g(x)是偶函数C. f(x)⋅g(x)是偶函数D. |f(x)⋅g(x)|是偶函数15. 下列说法正确的是( )A. 已知集合A={2,x,x2},若1∈A,则x=±1B. 若函数f(x)=(k−2)x2+(k−1)x+3是偶函数,则实数k的值为1C. 已知函数f(x)的定义域为[0,2],则g(x)=f(2x)x−1的定义域为[0,1)D. 已知单调函数f(x),对任意的x∈R都有f[f(x)−2x]=6,则f(2)=6第II卷(非选择题)三、填空题16. 设x≠0,f(x)∈R,且f(x)−2f(1x)=x,则f(−2)=.17. 定义在R上的奇函数f(x)满足f(1−3x)=f(3x),请写出一个符合条件的函数解析式f(x)=__________.18. 如果奇函数f(x)在[2,5]上是减函数,且最小值是−5,那么f(x)在[−5,−2]上的最大值为.19. 已知f(x)是定义在R上的奇函数,当x∈[0,+∞)时f(x)=x2+2x,则f(−1)=.20. 设函数y=f(x)是定义在[−1,1]上的偶函数,且f(x)在[0,1]上单调递减,若f(1−a)<f(a),则实数a的取值范围是__________.四、解答题21. (1)求函数f(x)=ln(4−2x)+(x−1)0+1x+1的定义域(要求用区间表示);(2)若函数f(x+1)=x2−2x,求f(3)的值和f(x)的解析式.22. 已知函数f(x)=x.x2−4(1)判断函数f(x)在(2,+∞)上的单调性并证明;(2)判断函数f(x)的奇偶性,并求f(x)在区间[−6,−3]上的最大值与最小值.,x∈R是奇函数.23. 设m为实数,已知函数f(x)=1−m5x+1(1)求m的值;(2)求证:f(x)是R上的增函数;(3)当x∈[−1,2]时,求函数f(x)的取值范围.24. 已知二次函数f(x)=ax2+bx+c(a≠0),f(x+1)−f(x)=2x,且f(0)=1.(1)求函数f(x)的解析式;(2)求函数f(x)在区间[−1,1]上的值域.25. 已知定义在(−∞,0)∪(0,+∞)上的函数f(x)满足:①对任意x,y∈(−∞,0)∪(0,+∞)f(x⋅y)=f(x)+f(y);②当x>1时f(x)>0,且f(2)=1.(1)试判断函数f(x)的奇偶性.(2)判断函数f(x)在(0,+∞)上的单调性.(3)求函数f(x)在区间[−4,0)∪(0,4]上的最大值.(4)求不等式f(3x−2)+f(x)≥4的解集.参考答案1、A2、A3、D4、D5、B6、D7、B8、C9、D10、D11、AD 12、ABD 13、ABD 14、ABD 15、BCD 16、1 17、sinπx 18、5 19、−3 20、[0,12)21、(1)解:要使函数f(x)有意义需满足{4−2x >0x −1≠0x +1≠0,解得x <2且x ≠1且x ≠−1.所以函数的定义域为(−∞,−1)∪(−1,1)∪(1,2). (2)解:∵f(x +1)=x 2−2x∴f(x +1)=(x +1)2−4(x +1)+3故f(x)=x 2−4x +3 (x ∈R). ∴f(3)=0.22、解:(1)f(x)在(2,+∞)单调递减,证明如下:任取x 1,x 2∈(2,+∞)且x 1<x 2 f(x 1)−f(x 2)=x 1x 12−4−x 2x 22−4=x 1(x 22−4)−x 2(x 12−4)(x 12−4)(x 22−4)=(x 2−x 1)(x 1x 2+4)(x 12−4)(x 22−4)∵x 2>x 1>2 ∴x 2−x 1>0,x 1x 2+4>0 (x 12−4)(x 22−4)>0 ∴f(x 1)>f(x 2),即f(x)在(2,+∞)单调递减; (2)因为函数f(x)=xx 2−4的定义域对称 且f(−x)=−x(−x)2−4=−x x 2−4=−f(x) 所以f(x)为奇函数又由(1)知f(x)在(2,+∞)单调递减 所以f(x)在(−∞,−2)也单调递减所以在区间[−6,−3] f(x)max =f(−6)=−316f(x)min =f(−3)=−35.23、解:(1)易知f(x)的定义域为R由f(x)为奇函数得f(0)=0,则f(0)=1−m 50+1=0,得m =2经检验得符合题意.(2)证明:由(1)得:函数f(x)=1−25x+1∵函数y =5x 在R 上单调递增,所以y =25x+1单调递减 故f(x)在R 上单调递增.(3)由(2)知f(x)是[−1,2)上的增函数 ∵f(−1)=−23 f(2)=1213∴当x ∈[−1,2)时,函数f(x)的值域是[−23,1213).24、(1)解:因为 f (0)=1 ,所以 c =1 ,所以 f (x )=ax 2+bx +1又因为 f (x +1)−f (x )=2x ,所以 [a (x +1)2+b (x +1)+1]−(ax 2+bx +1)=2x 所以 2ax +a +b =2x所以 {2a =2a +b =0 ,所以 {a =1b =−1 即 f (x )=x 2−x +1 .(2)解:因为 f (x )=x 2−x +1=(x −12)2+34 ,所以 f (x ) 是开口向上,对称轴为 x =12 的抛物线. 因为 f (x ) 在 [−1,12) 递减,在 [12,1] 递增,所以 f (x )min =f (12)=34因为 f (−1)=1+1+1=3 f (1)=1−1+1=1 所以 f (x )max =f (−1)=1+1+1=3 所以 f (x ) 在 [−1,1] 上的值域为 [34,3] .25、解:(1)令x =y =1则f(1×1)=f(1)+f(1),得f(1)=0;再令x =y =−1,则f[(−1)⋅(−1)]=f(−1)+f(−1),得f(−1)=0. 对于条件f(x ⋅y)=f(x)+f(y),令y =−1 则f(−x)=f(x)+f(−1) ∴f(−x)=f(x).又函数f(x)的定义域关于原点对称 ∴函数f(x)为偶函数.(2)任取x 1,x 2∈(0,+∞),且x 1<x 2,则有x2x 1>1.又∵当x >1时f(x)>0 ∴f(x2x 1)>0.而f(x 2)=f(x 1⋅x 2x 1)=f(x 1)+f(x2x 1)>f(x 1),即f(x 2)>f(x 1)∴函数f(x)在(0,+∞)上是增函数.(3)∵f(4)=f(2×2)=f(2)+f(2),且f(2)=1 ∴f(4)=2.又由(1)(2)知函数f(x)在区间[−4,0)∪(0,4]上是偶函数且在(0,4]上是增函数 ∴函数f(x)在区间[−4,0)∪(0,4]上的最大值为f(4)=f(−4)=2.(4)∵f(3x −2)+f(x)=f[x(3x −2)],4=2+2=f(4)+f(4)=f(16)∴原不等式等价于f[x(3x −2)]⩾f(16)又函数f(x)为偶函数,且函数f(x)在(0,+∞)上是增函数∴原不等式又等价于|x(3x−2)|≥16即x(3x−2)≥16或x(3x−2)≤−16得3x2−2x−16≥0或3x2−2x+16≤0,得x≤−2或x≥83∴不等式f(3x−2)+f(x)≥4的解集为{x|x≤−2或x≥8}.3。

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)首先,画出函数y=-x^2+2|x|+3的图像,然后确定函数的单调区间。

当x≥0时,y=-x^2+2x+3=-(x-1)+4;当x<0时,y=-x^2-2x+3=-(x+1)^2+4.因此,在区间(-∞,-1]和[1,+∞)上,函数是增函数;在[-1,1]上,函数是减函数。

需要注意的是,函数单调性是针对某个区间而言的,对于单独一个点没有增减变化,因此对于区间端点只要函数有意义,都可以带上。

接下来,考虑函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数的情况下,求实数a的取值范围。

首先,要充分运用函数的单调性,以对称轴为界线这一特征。

将f(x)=x^2+2(a-1)x+2写成[x+(a-1)]^2-(a-1)^2+2的形式,可以发现其对称轴是x=1-a。

因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.最后,判断函数f(x)=-2的奇偶性和函数f(x)=(x-1)的奇偶性。

对于第一个函数,其定义域为R,因为f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-f(x),因此f(x)为奇函数。

对于第二个函数,其定义域为{x|-1≤x<1},不关于原点对称,因此f (x)既不是奇函数,也不是偶函数。

判断函数的奇偶性时,需要先求出函数的定义域,并考查定义域是否关于原点对称。

然后计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f (-x)=-f(x)之一是否成立。

如果f(-x)与-f(x)的关系不明确,可以考查f(-x)±f(x)是否成立,从而判断函数的奇偶性。

最后,对于函数f(x)=|x|/x,需要判断其奇偶性并确定其在(-∞,+∞)上是增函数还是减函数。

由于f(x)的定义域为R,且f(-x)=f(x),因此f(x)为偶函数。

部编版高中数学必修一第三章函数的概念与性质带答案考点题型与解题方法

(名师选题)部编版高中数学必修一第三章函数的概念与性质带答案考点题型与解题方法单选题1、下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =−3x +1B .y =2xC .y =x 2−4x +5D .y =|x −1|+22、已知f(x)是一次函数,2f(2)−3f(1)=5,2f (0)−f (−1)=−1,则f(x)=( ) A .3x +2B .3x −2C .2x +3D .2x −33、若函数f (x +1x )=x 2+1x 2,且f (m )=4,则实数m 的值为( ) A .√6B .√6或−√6C .−√6D .34、已知函数f (1x +1)=2x +3.则f (2)的值为( ) A .6B .5C .4D .35、定义在R 上的偶函数f(x)在[0,+∞)上单调递增,且f(2)=0,则不等式x ⋅f(x)>0的解集为( ) A .(−∞,−2)∪(2,+∞)B .(−2,0)∪(0,2) C .(−2,0)∪(2,+∞)D .(−∞,−2)∪(0,2)6、已知f (2x +1)=4x 2+3,则f (x )=( ). A .x 2−2x +4B .x 2+2x C .x 2−2x −1D .x 2+2x +37、设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f(x)=ax 2+b .若f (0)+f (3)=6,则f (92)=( )A .−94B .−32C .74D .528、已知函数f(x)是定义在R 上的奇函数,且x >1时,满足f(2−x)=−f(x),当x ∈(0,1]时,f(x)=x 2,则f(−2021)+f(2022)=( ) A .−4B .4C .−1D .1 多选题9、已知函数f (x )的定义域是(0,+∞),且f (xy )=f (x )+f (y ),当x >1时,f (x )<0,f (2)=−1,则下列说法正确的是( ) A .f (1)=0B .函数f (x )在(0,+∞)上是减函数C .f (12022)+f (12021)+⋅⋅⋅+f (13)+f (12)+f (2)+f (3)+⋅⋅⋅+f (2021)+f (2022)=2022 D .不等式f (1x)−f (x −3)≥2的解集为[4,+∞)10、定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则下列说法正确的是( ) A .f (0)=0 B .f (x )为奇函数C .f (x )在区间[m,n ]上有最大值f (n )D .f (x −1)+f (x 2−1)>0的解集为{x |−2<x <1 }11、已知函数f(x)的定义域为R ,且f(x +1)为奇函数,f(x +2)为偶函数,且对任意的x 1,x 2∈(1,2),且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,则下列结论正确的是( )A .f(x)是奇函数B .f(1023)=0C .f(x)的图像关于(1,0)对称D .f(−74)>f(198) 填空题12、函数y =√3−x −√2x +4的值域为_______________.13、幂函数y =(m 2−m +1)x m 的图象与y 轴没有交点,则m =___________.部编版高中数学必修一第三章函数的概念与性质带答案(四)参考答案1、答案:D分析:根据一次函数、反比例函数和二次函数单调性直接判断可得结果. 对于A ,y =−3x +1为R 上的减函数,A 错误; 对于B ,y =2x 在(−∞,0),(0,+∞)上单调递减,B 错误;对于C ,y =x 2−4x +5在(−∞,2)上单调递减,在(2,+∞)上单调递增,C 错误;对于D ,y =|x −1|+2={x +1,x ≥13−x,x <1,则y =|x −1|+2在(1,+∞)上为增函数,D 正确.故选:D. 2、答案:D分析:设出函数f(x)的解析式,再根据给定条件列出方程组,求解作答.依题意,设f(x)=kx +b,k ≠0,则有{2(2k +b)−3(k +b)=52b −(−k +b)=−1,解得k =2,b =−3,所以f(x)=2x −3. 故选:D 3、答案:B分析:令x +1x =t ,配凑可得f (t )=t 2−2,再根据f (m )=4求解即可令x +1x =t (t ≥2或t ≤−2),x 2+1x 2=(x +1x )2−2=t 2−2,∴f (t )=t 2−2,f (m )=m 2−2=4,∴m =±√6. 故选;B 4、答案:B分析:根据题意,令1x+1=2可得x 的值,将x 的值代入f(1x+1)=2x +3,即可得答案.解:根据题意,函数f(1x+1)=2x +3,若1x+1=2,解可得x =1,将x =1代入f (1x +1)=2x +3,可得f (2)=5, 故选:B . 5、答案:C分析:结合函数的单调性与奇偶性解不等式即可.义在R 上的偶函数f(x)在[0,+∞)上单调递增,且f(2)=0, 所以f(x)在(−∞,0)上单调递减,且f(−2)=0, x ⋅f(x)>0⇒{x >0f (x )>0 或{x <0f (x )<0,故x >2或−2<x <0, 故选:C 6、答案:A分析:利用配凑法直接得出函数的解析式.因为f (2x +1)=4x 2+3=(2x +1)2−2(2x +1)+4, 所以f (x )=x 2−2x +4. 故选:A 7、答案:D分析:通过f (x +1)是奇函数和f (x +2)是偶函数条件,可以确定出函数解析式f (x )=−2x 2+2,进而利用定义或周期性结论,即可得到答案. [方法一]:因为f (x +1)是奇函数,所以f (−x +1)=−f (x +1)①; 因为f (x +2)是偶函数,所以f (x +2)=f (−x +2)②.令x =1,由①得:f (0)=−f (2)=−(4a +b ),由②得:f (3)=f (1)=a +b , 因为f (0)+f (3)=6,所以−(4a +b )+a +b =6⇒a =−2,令x =0,由①得:f (1)=−f (1)⇒f (1)=0⇒b =2,所以f (x )=−2x 2+2. 思路一:从定义入手.f (92)=f (52+2)=f (−52+2)=f (−12) f (−12)=f (−32+1)=−f (32+1)=−f (52)−f (52)=−f (12+2)=−f (−12+2)=−f (32)所以f (92)=−f (32)=52. [方法二]:因为f (x +1)是奇函数,所以f (−x +1)=−f (x +1)①; 因为f (x +2)是偶函数,所以f (x +2)=f (−x +2)②.令x =1,由①得:f (0)=−f (2)=−(4a +b ),由②得:f (3)=f (1)=a +b , 因为f (0)+f (3)=6,所以−(4a +b )+a +b =6⇒a =−2,令x =0,由①得:f (1)=−f (1)⇒f (1)=0⇒b =2,所以f (x )=−2x 2+2. 思路二:从周期性入手由两个对称性可知,函数f (x )的周期T =4. 所以f (92)=f (12)=−f (32)=52. 故选:D .小提示:在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果. 8、答案:C分析:由已知条件可得x >1时f(x +2)=f(x),然后利用f(−2021)+f(2022)= −f(1)+f(0)求解即可. 因为函数f(x)是定义在R 上的奇函数,且x >1时,满足f(2−x)=−f(x), 所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x >1时f(x +2)=f(x), 因为当x ∈(0,1]时,f(x)=x 2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1, 故选:C 9、答案:ABD分析:利用赋值法求得f (1)=0,判断A ;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用f (xy )=f (x )+f (y ),可求得C 中式子的值,判断C ;求出f (14)=f (12)+f (12)=2,将f (1x )−f (x −3)≥2转化为f (1x )+f (1x−3)≥f (14),即可解不等式组求出其解集,判断D. 对于A ,令x =y =1 ,得f (1)=f (1)+f (1)=2f (1),所以f (1)=0,故A 正确; 对于B ,令y =1x >0,得f (1)=f (x )+f (1x )=0,所以f (1x )=−f (x ), 任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)−f (x 1)=f (x 2)+f (1x 1)=f (x2x1),因为x 2x 1>1,所以f (x2x1)<0,所以f (x 2)<f (x 1),所以f (x )在(0,+∞)上是减函数,故B 正确;对于C ,f (12022)+f (12021)+⋅⋅⋅+f (13)+f (12)+f (2)+f (3)+⋅⋅⋅+f (2021)+f (2022)=f (12022×2022)+f (12021×2021)+⋅⋅⋅+f (13×3)+f (12×2)=f (1)+f (1)+⋅⋅⋅+f (1)+f (1)=0,故C 错误;对于D ,因为f (2)=−1,且f (1x )=−f (x ),所以f (12)=−f (2)=1, 所以f (14)=f (12)+f (12)=2,所以f (1x )−f (x −3)≥2等价于f (1x )+f (1x−3)≥f (14),又f (x )在(0,+∞)上是减函数,且f (xy )=f (x )+f (y ),所以{1x (x−3)≤141x >01x−3>0 ,解得x ≥4,故D 正确, 故选:ABD . 10、答案:ABD分析:令x =y =0可判断A 选项;令y =−x ,可得f (x )+f (−x )=f (0)=0,得到f (−x )=−f (x )可判断B 选项;任取x 1,x 2∈R ,且x 1<x 2,则x 1−x 2<0,f (x 1−x 2)>0,根据单调性的定义得到函数f (x )在R 上的单调性,可判断C 选项;由f (x −1)+f (x 2−1)>0可得f (x 2−1)>−f (x −1)=f (1−x ),结合函数f (x )在R 上的单调性可判断D 选项.对于A 选项,在f (x +y )=f (x )+f (y )中,令x =y =0,可得f (0)=2f (0),解得f (0)=0,A 选项正确; 对于B 选项,由于函数f (x )的定义域为R ,在f (x +y )=f (x )+f (y )中,令y =−x ,可得f (x )+f (−x )=f(0)=0,所以f(−x)=−f(x),则函数f(x)为奇函数,B选项正确;对于C选项,任取x1,x2∈R,且x1<x2,则x1−x2<0,f(x1−x2)>0,所以f(x1)−f(x2)=f(x1)+f(−x2)=f(x1−x2)>0,所以f(x1)>f(x2),则函数f(x)在R上为减函数,所以f(x)在区间[m,n]上有最小值f(n),C选项错误;对于D选项,由f(x−1)+f(x2−1)>0可得f(x2−1)>−f(x−1)=f(1−x),又函数f(x)在R上为减函数,则x2−1<1−x,整理得x2+x−2<0,解得−2<x<1,D选项正确.故选:ABD.11、答案:BCD分析:根据题设有f(x)=−f(2−x)、f(−x)=f(x+4),进而可得f(x)=f(x+4)=f(−x),即可判断f(x)的对称性、奇偶性,再由周期性、奇偶性求f(1023),最后结合f(x)在(1,2)上的单调性及对称性和周期性判断(2,4)上的单调性,比较函数值大小.由题设,f(−x+1)=−f(x+1),即f(x)=−f(2−x),则f(x)关于(1,0)对称,C正确;f(−x+2)=f(x+2),即f(−x)=f(x+4),f(x)关于x=2对称,所以f(x)=−f(x+2)=f(x+4),即f(x)周期为4,且f(x)=f(−x),即f(x)为偶函数,A错误;则f(1023)=f(4×256−1)=f(−1)=f(1)=0,B正确;又x1,x2∈(1,2),且x1≠x2,都有f(x1)−f(x2)x1−x2>0,即f(x)在(1,2)上递增,综上,f(x)在(0,1)上递增,则(2,4)上递减,故f(−74)=f(74)>f(198),D正确.故选:BCD12、答案:[−√10,√5]分析:根据函数的单调性确定最值即可.解:因为{3−x≥02x+4≥0所以−2≤x≤3,所以此函数的定义域为[−2,3],又因为y=√3−x−√2x+4是减函数,当x=−2时y=√3−x−√2x+4取得最大值√5,当x=3时y=√3−x−√2x+4取得最小值−√10,所以值域为[−√10,√5]所以答案是:[−√10,√5].13、答案:0分析:根据幂函数的定义求出m,在验证,求解即可根据幂函数的定义得m2−m+1=1,解得m=1或m=0;当m=1时,y=x,图象与y轴有交点,不满足题意;当m=0时,y=x0,图象与y轴没有交点,满足题意;综上,m=0,所以答案是:0。

高中数学必修一函数性质专项习题及答案

高中数学必修一函数性质专项习题及答案必修1函数的性质1.在区间(0,+∞)上不是增函数的函数是A.y=2x+1B.y=3x2+1C.y=1/xD.y=2x2+x+12.函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数。

则f(1)等于()A.-7B.1C.17D.253.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是()A.(3,8)B.(-7,-2)C.(3,8)D.(0,5)4.函数f(x)=ax+1在区间(-2,+∞)上单调递增,则实数a的取值范围是()x+2A.(0,11/22)B.(11/22,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)5.函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内()A.至少有一实根B.至多有一实根C.没有实根D.必有唯一的实根6.若f(x)=x+px+q满足f(1)=f(2)=5,则f(1)的值是()A.5B.-5C.6D.-67.若集合A={x|1<x<2},B={x|x≤a},且A∩B≠Ø,则实数a的集合()A.{a|a<2}B.{a|a≥1}C.{a|a>1}D.{a|1≤a≤2}8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()A.f(-1)<f(9)<f(13)B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13)D.f(13)<f(-1)<f(9)9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是()A.(-∞,0],[2,∞)B.(-∞,0],[0,2]C.[0,2],[2,∞)D.[0,2],[-∞,0)10.若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围()A.a≤3B.a≥-3C.a≤5D.a≥311.函数y=x+4x+c,则()A.f(1)<c<f(-2)B.f(1)>c>f(-2)C.c>f(1)>f(-2)D.c<f(-2)<f(1)12.已知定义在R上的偶函数f(x)满足f(x+4)=-f(x),且在区间[0,4]上是减函数,则f(2)的符号为()A.正数B.负数C.零一、文章格式已经修正,删除了明显有问题的段落,并对每段话进行了小幅度改写。

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单一性和奇偶性例 1(1)画出函数y= -x2+2| x|+3 的图像,并指出函数的单一区间.解:函数图像以以下图所示,当 x≥0时,y= -x2+2x+3 = -( x-1)2+4;当 x< 0 时,y= -x2-2x+3 = -( x+1)2+4 .在( -∞,-1]和[ 0, 1]上,函数是增函数:在[-1, 0]和[ 1, +∞)上,函数是减函数.评析函数单一性是对某个区间而言的,对于单唯一个点没有增减变化,所以对于区间端点只需函数存心义,都能够带上.( 2)已知函数 f( x)= x2+2 ( a-1)x+2在区间( -∞, 4]上是减函数,务实数 a 的取值范围.剖析要充足运用函数的单一性是以对称轴为界限这一特点.解: f( x)= x2+2( a-1)x+2 =[ x+ ( a-1)]2x= 1-a.因为-( a-1)2+2,此二次函数的对称轴是在区间( -∞, 1-a]上 f( x)是单一递减的,若使f( x)在( -∞,4]上单一递减,对称轴x=1-a 一定在 x=4 的右边或与其重合,即 1-a≥4, a≤-3.评析这是波及逆向思想的问题,即已知函数的单一性,求字母参数范围,要注意利用数形联合.例 2判断以下函数的奇偶性:( 1) f ( x)=-( 2) f ( x)=( x-1).解:( 1)f ( x)的定义域为R.因为f ( -x)=| -x+1 | -| -x-1 |=| x-1| -| x+1 |= -f (x).所以 f( x)为奇函数.(2) f ( x)的定义域为{ x| -1≤x< 1},不对于原点对称.所以f( x)既不是奇函数,也不是偶函数.评析用定义判断函数的奇偶性的步骤与方法以下:(1)求函数的定义域,并考察定义域能否对于原点对称.( 2)计算 f( -x),并与f( x)比较,判断 f ( -x)= f( x)或 f(-x)= -f( x)之一能否建立.f ( -x)与 -f ( x)的关系其实不明确时,可考察f( -x)±f(x)= 0 能否建立,从而判断函数的奇偶性.例 3已知函数f( x)=.(1)判断 f( x)的奇偶性.(2)确立 f( x)在( -∞, 0)上是增函数仍是减函数 ?在区间( 0,+∞)上呢 ?证明你的结论.解:因为 f ( x)的定义域为R,又f ( -x)=== f ( x),所以 f( x)为偶函数.( 2)f( x)在( -∞,0)上是增函数,因为f( x)为偶函数,所以f(x)在( 0,+∞)上为减函数.其证明:取 x1< x2< 0,f ( x1) -f ( x2)=-==.因为 x1< x2< 0,所以x2-x1> 0, x1+x 2< 0,x21 +1> 0, x22+1> 0,得 f ( x1) -f ( x2)< 0,即 f ( x1)< f(x2).所以 f( x)在( -∞, 0)上为增函数.评析奇函数在( a,b)上的单一性与在( -b,-a)上的单一性同样,偶函数在( a,b)与( -b,-a)的单一性相反.例 4 已知 y=f ( x)是奇函数,它在( 0, +∞)上是增函数,且 f( x)< 0,试问 F( x)=在( -∞, 0)上是增函数仍是减函数 ?证明你的结论.剖析依据函数的增减性的定义,能够任取x1< x2< 0,从而判断F( x1)-F( x2)=-=的正负.为此,需分别判断f( x1)、 f ( x2)与 f ( x2)的正负,而这能够从已条件中推出.解:任取 x1、x2∈( -∞,0)且 x1< x2,则有 -x1> -x2> 0.∵ y=f (x)在( 0,+∞)上是增函数,且 f ( x)< 0,∴ f ( -x2)< f( -x1)< 0.①又∵ f( x)是奇函数,∴ f ( -x2)= -f( x2), f( -x1)= -f ( x1)②由①、②得f( x2)> f(x1)> 0.于是F(x1) -F( x2)=> 0,即F(x1)> F( x2),所以 F( x)=在( -∞, 0)上是减函数.评析本题最简单发生的错误,是受已知条件的影响,一开始就在(0, +∞)内任取 x1< x2,睁开证明.这样就不可以保证-x1,-x2,在( -∞, 0)内的随意性而致使错误.防止错误的方法是:要明确证明的目标,有针对性地睁开证明活动.-1, 1)内的单一性.例 5 议论函数 f( x)=( a≠0)在区间(剖析依据函数的单一性定义求解.解:设 -1< x1< x2<1,则f ( x1) -f ( x2)=-=∵ x1, x2∈( -1,1),且 x1< x2,∴x1-x2< 0, 1+x1x2> 0,( 1-x 21)( 1-x 22)> 0于是,当a> 0 时, f (x1)< f( x2);当 a< 0 时, f (x1)> f( x2).故当 a>0 时,函数在(-1, 1)上是增函数;当a<0 时,函数在(-1, 1)上为减函数.评析依据定义议论(或证明)函数的单一性的一般步骤是:( 1)设 x1、x2是给定区间内随意两个值,且x1< x2;(2)作差 f( x1) -f ( x2),并将此差式变形;(3)判断 f( x1) -f ( x2)的正负,从而确立函数的单一性.例 6 求证: f( x)= x+(k>0)在区间(0,k]上单一递减.解:设 0<x1<x2≤k,则f ( x1) -f ( x2)= x1+-x2-=∵ 0< x1< x2≤k,∴x1-x2< 0, 0< x1x2< k2,∴f ( x1) -f ( x2)> 0∴f ( x1)> f ( x2),∴f ( x)= x+中(0,k]上是减函数.评析函数 f ( x)在给定区间上的单一性反应了函数 f (x)在区间上函数值的变化趋向,是函数在区间上的整体性质.所以,若要证明f( x)在[ a,b]上是增函数(减函数),就一定证明对于区间[ a,b]上随意两点x1, x2,当 x1< x2时,都有不等式f( x1)< f( x2)( f (x1)> f ( x2))近似能够证明:函数 f( x)= x+(k>0)在区间[k,+∞]上是增函数.例 7剖析判断函数f( x)=的奇偶性.确立函数的定义域后可脱去绝对值符号.解:由得函数的定义域为[-1,1].这时,|x-2 |= 2-x.∴ f ( x)=,∴ f ( -x)===f(x).且注意到 f (x)不恒为零,从而可知, f (x)=是偶函数,不是奇函数.评析因为函数分析式中的绝对值使得所给函数不像拥有奇偶性,若不作深入思虑,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭露以后,函数的奇偶性就特别显然了.这样看来,解题中先确立函数的定义域不单能够防止错误,并且有时还能够避开议论,简化解题过程.函数奇偶性练习一、选择题1.已知函数f(x)=ax2+bx+c(a≠ 0)是偶函数,那么g( x)= ax3+ bx2+ cx()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数2.已知函数f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则()A.1a, b=0. a=-, b=0. a=,b=0.a=, b=0C D33.已知f(x)是定义在 R 上的奇函数,当x≥ 0 时,f(x)=x2- 2x,则f(x)在 R 上的表达式是()A.y= x( x- 2)B.y = x(| x|- 1) C.y =| x|( x-2)D.y= x(| x|- 2)4.已知f(x)=x5+ax3+bx- 8,且f(- 2)= 10,那么f( 2)等于()A.- 26B.- 18C.- 10D.105.函数1x 2x1)f ( x)x 2是(1x1A.偶函数B.奇函数C.非奇非偶函数D.既是奇函数又是偶函数6.若(x) ,g(x)都是奇函数, f ( x)a bg ( x) 2 在(0,+∞)上有最大值5,则 f ( x)在(-∞,0)上有()A.最小值- 5B.最大值- 5C.最小值- 1D.最大值- 3二、填空题x22 7.函数f ( x)1的奇偶性为 ________(填奇函数或偶函数).x 28.若y =(-1)x2+2+ 3 是偶函数,则= _________.m mx m9.已知f(x)是偶函数,g(x)是奇函数,若1,则 f ( x)的分析式为_______.f (x) g (x)x110.已知函数f( x)为偶函数,且其图象与 x 轴有四个交点,则方程 f( x)=0的全部实根之和为________.三、解答题11.设定义在[- 2,2]上的偶函数f ()在区间[ 0, 2]上单一递减,若f(1-)<f(),务实x m m数 m的取值范围.12.已知函数 f ( x)知足 f (x+ y)+ f ( x- y)=2f ( x)· f ( y)(x R,y R),且f(0)≠0,试证 f ( x)是偶函数.13. 已知函数f ()是奇函数,且当x>0 时,f()=x3+2 2—1,求f()在 R上的表达式.x x x x14. f(x)是定义在(-∞,-5][5,+∞)上的奇函数,且 f (x)在[5,+∞)上单一递减,试判断 f (x )在(-∞,- 5]上的单一性,并用定义赐予证明.15. 设函数 y = f ( x )( x R 且 x ≠0)对随意非零实数x 1、 x 2 知足 f ( x 1· x 2)= f ( x 1)+ f ( x 2),求证 f ( x )是偶函数.函数的奇偶性练习参照答案1. 分析: f ( x )= ax 2+ bx + c 为偶函数, ( x) x 为奇函数,∴ g ( x )= ax 3+ bx 2+ cx = f ( x )· ( x) 知足奇函数的条件. 答案: A2.分析: 由f( )=2+ bx+ 3 + b 为偶函数,得 b = 0.xax a1 .应选 A .又定义域为[ a -1, 2a ],∴ a - 1=2a ,∴ a33.分析: 由 x ≥ 0 时, f ( x )= x 2- 2x , f ( x )为奇函数,∴当 x < 0 时, f ( x )=- f (- x )=-( x 2+2x )=- x 2- 2x = x (- x -2).x(x 2) ( x 0) ,∴ f ( x)2) ( x 0) 即 f (x )= x (| x | - 2)x( x,答案: D4.分析: f (x )+ 8=x 5+ ax 3+ bx 为奇函数,f (- 2)+ 8= 18,∴ f (2)+ 8=- 18,∴ f ( 2)=- 26.答案: A5.分析: 本题直接证明较烦,可用等价形式f (- x )+ f (x )= 0.答案: B6.分析:( x) 、 g (x )为奇函数,∴ f (x)2 a ( x) bg (x) 为奇函数.又 f (x )在( 0,+∞)上有最大值5,∴ f ( x )- 2 有最大值3.∴ f ( x )- 2 在(-∞, 0)上有最小值- 3, ∴ f ( x )在(-∞, 0)上有最小值- 1. 答案:C7.答案: 奇函数8.答案: 0 分析: 因为函数 y =( m - 1) x 2+ 2mx + 3 为偶函数,∴ f (- x )= f (x ),即( m - 1)(- x ) 2+ 2m (- x )+ 3=( m — 1) x 2+ 2mx + 3,整理,得 m= 0.9.分析: 由 f ( x )是偶函数, g ( x )是奇函数,可得f (x)g( x) 1 ,联立 f ( x) g ( x)1x 1x,∴1 (1111f ( x)x 11 ) .2 x x 2 1答案: f (x)1 10.答案: 011 . 答案: m1x21212. 证明: 令 x = = 0,有 f ( 0)+f (0)= 2 ( 0)· (0),又 f ( 0)≠ 0,∴可证 f ( 0)= 1.令xyf f= 0,∴ f ( y )+ f (- y )= 2f (0)· f ( y ) f (- y )= f ( y ),故 f ( x )为偶函数.13. 分析: 本题主假如培育学生理解观点的能力.f ( x )= x 3+ 2x 2- 1.因 f (x )为奇函数,∴ f ( 0)= 0.当 x <0 时,- x > 0, f (- x )=(- x ) 3+ 2(- x ) 2-1=- x 3+ 2x 2- 1, ∴ f ( x )= x 3- 2x 2+ 1.x 3 2 x 21 ( x 0) , 所以, f (x)( x 0) ,x 32x 21( x0) .评论: 本题主要考察学生对奇函数观点的理解及应用能力.14. 分析: 任取 x 1< x 2≤- 5,则- x 1>- x 2≥- 5.因 f (x )在[ 5,+∞]上单一递减,所以f (- x 1)< f (- x 2) f ( x 1)<- f ( x 2) f ( x 1)>f ( x 2),即单一减函数.评论: 本题要注意灵巧运用函数奇偶性和单一性,并实时转变.15. 分析: 由 x 1, x 2 R 且不为 0 的随意性,令 x 1= x 2= 1 代入可证,f ( 1)= 2f ( 1),∴ f ( 1)=0.又令 x 1=x 2=- 1,∴ f [- 1×(- 1)]= 2f (1)= 0,∴(- 1)= 0.又令 x 1=- 1, x 2= x ,∴ f (- x )= f (- 1)+ f ( x )= 0+ f ( x )= f ( x ),即 f ( x )为偶函数.评论: 抽象函数要注意变量的赋值,特别要注意一些特别值,如,x 1= x 2= 1, x 1=x 2=- 1 或 x 1=x2=0等,而后再联合详细题目要求结构出合适结论特点的式子即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修1函数的性质
一、选择题:
1.在区间(0,+∞)上不是增函数的函数是
( ) A .y =2x +1 B .y =3x 2+1C .y =x
2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函
数,则f (1)等于
( )
A .-7
B .1
C .17
D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )
A .(3,8)
B .(-7,-2)
C .(-2,3)
D .(0,5) 4.函数f (x )=2
1++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是( ) A .(0,21)B .( 2
1,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( )
A .至少有一实根
B .至多有一实根
C .没有实根
D .必有唯一的实根
6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )
A 5
B 5-
C 6
D 6-
7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( ) A }2|{<a a B }1|{≥a a C }1|{>a a D }21|{≤≤a a
8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是( )
A .f (-1)<f (9)<f (13)
B .f (13)<f (9)<f (-1)
C .f (9)<f (-1)<f (13)
D .f (13)<f (-1)<f (9)
9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )
A .]1,(],0,(-∞-∞
B .),1[],0,(+∞-∞
C .]1,(),,0[-∞+∞
D ),1[),,0[+∞+∞
10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围( )
A .a ≤3
B .a ≥-3
C .a ≤5
D .a ≥3 11.函数c x x y ++=42,则( )
A )2()1(-<<f c f
B )2()1(->>f c f
C )2()1(->>f f c
D )1()2(f f c <-<
12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数 则( )
A .(10)(13)(15)f f f <<
B .(13)(10)(15)f f f <<
C .(15)(10)(13)f f f <<
D .(15)(13)(10)f f f <<
二、填空题:
13.函数y =(x -1)-2的减区间是.
14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函
数,则f (1)=.
15. 若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是.
16.函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是.
三、解答题:(解答应写出文字说明,证明过程或演算步骤.)
17.证明函数f (x )=2-x x +2
在(-2,+∞)上是增函数。

18.证明函数f (x )=
1
3+x 在[3,5]上单调递减,并求函数在[3,5]的最大值和最小值。

19.已知函数[]1(),3,5,2
x f x x x -=∈+ ⑴ 判断函数()f x 的单调性,并证明;
⑵ 求函数()f x 的最大值和最小值.
20.已知函数()f x 是定义域在R 上的偶函数,且在区间(,0)-∞上单调递减, 求满足22
(23)(45)f x x f x x ++>---的x 的集合.
必修1函数的性质
函数的性质参考答案:
一.1~5 CDB B D 6~10 C C C C A 11~12 B B
二. 13. (1,+∞)14.13 15),0(+∞ 16, ⎥⎦
⎤ ⎝⎛-∞-21, 三.17.略18、用定义证明即可。

f (x )的最大值为:43,最小值为:2
1 19.解:⑴ 设任取12,[3,5]x x ∈且12x x <
1212121212113()()()22(2)(2)
x x x x f x f x x x x x ----=-=++++ 1235x x ≤<≤ 12120,(2)(2)0x x x x ∴-<++>
12()()0f x f x ∴-< 即12()()f x f x <()f x ∴在[3,5]上为增函数. ⑵ max 4()(5)7f x f ==min 2()(3)5
f x f == 20.解: ()f x 在R 上为偶函数,在(,0)-∞上单调递减
()f x ∴在(0,)+∞上为增函数 又22(45)(45)f x x f x x ---=++ 2223(1)20x x x ++=++>,2245(2)10x x x ++=++>
由22(23)(45)f x x f x x ++>++得 22
2345x x x x ++>++ 1x ∴<-∴解集为{|1}x x <-.。

相关文档
最新文档