电力系统的发展
新型电力系统装备发展趋势以及建议

新型电力系统装备发展趋势以及建议新型电力系统装备是指在电力系统中使用的新型设备和技术,以提高电力系统的安全性、可靠性、经济性和环保性。
随着能源需求的增加和能源结构的转型,新型电力系统装备的发展趋势也日益明显。
下面将列举10个新型电力系统装备的发展趋势和建议。
1. 智能电网技术:智能电网技术是新型电力系统装备的重要发展方向。
通过应用先进的传感器、通信和控制技术,实现电力系统的自动化运行和智能化管理,提高电网的安全性、可靠性和经济性。
2. 高效节能变压器:高效节能变压器是新型电力系统装备的关键组成部分。
采用先进的材料和设计,提高变压器的能效,降低能源损耗,减少对环境的污染。
3. 电能质量调节装置:电能质量调节装置是保障电力系统供电质量的重要设备。
通过控制电压、频率和谐波等参数,提高电力系统供电质量,减少电力系统故障和事故发生的可能性。
4. 新能源发电设备:随着可再生能源的快速发展,新能源发电设备成为新型电力系统装备的重要组成部分。
风力发电、光伏发电、水力发电等新能源发电设备的应用,可以有效减少对传统能源的依赖,降低能源消耗和环境污染。
5. 能量存储技术:能量存储技术是新型电力系统装备的前沿领域。
通过采用先进的储能技术,如电池储能、超级电容储能等,可以平衡电力系统的供需差异,提高电力系统的稳定性和可靠性。
6. 大数据分析应用:大数据分析应用是新型电力系统装备的重要发展方向。
通过采集和分析大量的电力系统数据,可以实现对电力系统运行状态的实时监测和分析,提高对电力系统的管理和控制能力。
7. 智能电力终端设备:智能电力终端设备是新型电力系统装备的重要组成部分。
通过应用智能电表、智能电器等设备,可以实现对电力消费的精确计量和控制,提高电力系统的能效和管理水平。
8. 充电设备和电动车辆技术:充电设备和电动车辆技术是新型电力系统装备的重要应用领域。
随着电动车辆的普及,充电设备的需求也日益增加。
通过建设充电设施和推广电动车辆技术,可以实现电力系统与交通系统的深度融合,促进能源的清洁利用。
电力系统自动化的现状与发展

电力系统自动化的现状与发展一、电力系统自动化的现状1. 设备自动化水平提升随着科技的进步,电力系统中各类设备的自动化水平不断提高。
例如,智能变电站、智能输电线路、智能开关设备等,这些设备的应用大大降低了人工操作的风险,提高了电力系统的安全性和稳定性。
2. 控制系统优化电力系统自动化技术在控制系统方面也取得了显著的成果。
通过采用先进的控制算法和设备,实现了对电力系统的实时监控和自动调节,使电力系统的运行更加高效、稳定。
3. 信息化建设成果显著电力系统自动化技术的发展离不开信息化建设的支持。
目前,我国电力行业已建立了较为完善的信息系统,实现了数据采集、处理、传输和分析的自动化,为电力系统自动化提供了有力保障。
4. 安全防护体系日益完善随着电力系统自动化程度的提高,电力系统的安全防护体系也日益完善。
通过采用加密技术、防火墙、入侵检测等手段,有效保障了电力系统的信息安全。
二、电力系统自动化的发展趋势1. 智能化升级2. 大数据应用随着大数据技术的发展,电力系统自动化将更加注重数据的挖掘和应用。
通过对海量数据的分析,实现对电力系统的精准预测和智能调度,提高电力系统的运行质量和经济效益。
3. 绿色环保在能源结构调整和环保要求的背景下,电力系统自动化将更加注重绿色环保。
通过推广清洁能源、优化电力系统结构,实现电力系统的低碳、绿色、可持续发展。
4. 分布式发电与微电网技术随着分布式发电和微电网技术的不断发展,电力系统自动化将逐步实现电力供应的多元化和个性化。
通过分布式发电和微电网的接入,提高电力系统的灵活性和可靠性。
5. 网络安全防护随着电力系统自动化程度的提高,网络安全防护将成为未来发展的重要课题。
通过建立完善的网络安全防护体系,确保电力系统的信息安全。
电力系统自动化技术在现状的基础上,将继续朝着智能化、大数据、绿色环保、分布式发电与微电网等方向发展。
在未来的发展中,电力系统自动化将为我国电力行业的持续发展提供有力支持。
电力系统自动化发展历程及趋势

电力系统自动化发展历程及趋势一、引言电力系统自动化是指利用先进的计算机技术、通信技术和控制技术,实现电力系统的自动化运行、监控和管理。
随着科技的不断进步和电力行业的发展,电力系统自动化在过去几十年中取得了巨大的发展。
本文将详细介绍电力系统自动化的发展历程以及未来的趋势。
二、电力系统自动化的发展历程1. 初期阶段(20世纪50年代-60年代)电力系统自动化最初起源于20世纪50年代,当时主要应用于电力系统的监控和保护。
通过安装传感器和测量设备,实现对电力系统各个部份的监测,并通过自动化装置实现对电力系统的保护。
这一阶段的自动化程度较低,主要依靠机械和电气设备。
2. 中期阶段(70年代-80年代)在20世纪70年代和80年代,随着计算机和通信技术的快速发展,电力系统自动化进入了中期阶段。
电力系统开始引入计算机控制和通信技术,实现了对电力系统的远程监控和远程操作。
此外,还引入了自动化调度系统和自动化设备管理系统,提高了电力系统的运行效率和可靠性。
3. 现代化阶段(90年代至今)在20世纪90年代以及近年来,电力系统自动化进入了现代化阶段。
随着信息技术的快速发展,电力系统自动化的应用范围不断扩大。
现代化的电力系统自动化包括以下几个方面的发展:(1)智能电网:智能电网是电力系统自动化的重要领域之一。
通过引入先进的传感器、通信和控制技术,实现对电力系统各个环节的智能化管理和控制,提高电力系统的可靠性、安全性和可持续性。
(2)分布式能源管理:随着可再生能源的快速发展,电力系统越来越多地引入了分布式能源,如太阳能和风能等。
分布式能源管理系统通过自动化技术,实现对分布式能源的集成管理和优化调度,提高能源利用效率。
(3)电力市场化:电力市场化是电力系统自动化的另一个重要方向。
通过引入自动化的电力市场交易系统,实现电力供需的平衡和电力价格的合理调节,提高电力市场的竞争性和透明度。
三、电力系统自动化的未来趋势1. 智能化和数字化未来的电力系统自动化将更加智能化和数字化。
国内外电力系统发展现状

国内外电力系统发展现状电力系统是国民经济发展的重要基础设施之一,国内外电力系统的发展现状具有很大差异。
我将以中国和美国为例,介绍国内外电力系统的发展现状。
首先,国内电力系统的发展现状:中国拥有世界上最大的电力系统网络,全国电网形成了东西、南北多个跨区域电网,并实现了整体联网运行。
中国电力系统的装机容量持续增长,已经超过了1.8亿千瓦。
电力交流输电线路的总长度达到了180万公里,直流输电线路的总长度超过了5万公里。
电网规模和接入率均居世界前列。
同时,中国电力系统的可再生能源装机容量也在不断增加,特别是风电和光伏发电。
目前,中国已经成为全球最大的风能和太阳能市场。
其次,国外电力系统的发展现状:美国是世界上最大的电力市场之一,拥有大规模的电力系统网络。
美国的电力系统主要由4个相互联网的区域电网组成,分别是东部、西部、中部和得克萨斯电网。
美国电力系统的装机容量超过了1.2亿千瓦,其中包括传统的火力发电、核能发电以及可再生能源发电。
美国的风能和太阳能装机容量也在不断增长,但与中国相比规模较小。
同时,美国还积极推广智能电网和能源储存技术,实现电力系统的高效运行和能源的可持续利用。
总的来说,国内外电力系统的发展现状存在一些共同的特点和挑战。
首先,随着经济的发展和能源需求的增加,电力系统的装机容量和供应能力都在不断提高。
其次,可再生能源在电力系统中的比重越来越高,对传统能源结构带来了挑战,并且也面临着可再生能源的不稳定性和波动性等问题。
此外,电力系统的运行和管理也面临着全球气候变化、能源安全和环境保护等多方面的压力和挑战。
因此,为了应对这些挑战,国内外的电力系统都在不断推进技术创新和转型升级。
例如,通过推广智能电网和能源储存技术,实现电力系统的灵活调度和优化运行。
同时,加强可再生能源的研发和利用,提高其发电效率和稳定性。
此外,加强电力系统的规划和建设,提高电网的供电能力和可靠性。
通过这些措施,国内外电力系统将能够更好地满足人们对电能的需求,推动经济的可持续发展。
电力系统自动化发展历程及趋势

电力系统自动化发展历程及趋势一、引言电力系统自动化是指利用先进的信息技术和控制技术,对电力系统进行监控、调度、保护和控制的一种技术手段。
随着信息技术的不断发展和应用,电力系统自动化在过去几十年中取得了显著的发展。
本文将介绍电力系统自动化的发展历程,并探讨未来的发展趋势。
二、电力系统自动化的发展历程1. 第一阶段:人工控制时代在电力系统刚刚建立的初期,人们主要依靠人工进行对电力系统的监控和控制。
这个阶段的主要特点是人工操作,缺乏自动化设备和技术支持。
由于人工操作的局限性,电力系统的稳定性和可靠性受到了很大的限制。
2. 第二阶段:远动控制时代随着电力系统规模的不断扩大和电力设备的增多,人们开始意识到需要引入自动化技术来提高电力系统的运行效率和可靠性。
远动控制技术的浮现标志着电力系统自动化进入了一个新的阶段。
远动控制系统通过远程传输和接收信号,实现对电力设备的远程控制和监控,极大地提高了电力系统的运行效率。
3. 第三阶段:自动化监控时代随着计算机技术的快速发展,电力系统自动化进入了一个全新的阶段。
自动化监控系统利用计算机和通信技术,实现对电力系统的实时监测和控制。
自动化监控系统可以对电力设备进行故障检测和诊断,并提供相应的控制策略,从而提高电力系统的可靠性和安全性。
4. 第四阶段:智能化控制时代随着人工智能技术的快速发展,电力系统自动化进入了智能化控制时代。
智能化控制系统利用人工智能算法和大数据分析技术,对电力系统进行智能化的监控和控制。
智能化控制系统可以根据电力系统的实时状态和需求,自动调整控制策略,提高电力系统的运行效率和可靠性。
三、电力系统自动化的未来趋势1. 智能化技术的应用未来,随着人工智能技术的不断发展和应用,电力系统自动化将更加智能化。
智能化技术将能够对电力系统进行更加精确的监控和控制,提高电力系统的运行效率和可靠性。
2. 大数据分析的应用随着电力系统数据的不断增加,大数据分析技术将发挥越来越重要的作用。
我国电力系统的发展

我国电力系统的发展随着中国经济的快速发展,电力供应成为了国家发展的重要基础。
我国电力系统经历了多年的发展和改革,取得了显著的成就。
本文将围绕我国电力系统的发展历程、现状以及未来展望进行探讨。
我国电力系统的发展可以追溯到20世纪初。
起初,电力供应主要依赖于小型水电站和煤炭发电厂。
然而,由于电力需求的快速增长,传统的电力供应方式已经无法满足需求。
在20世纪50年代,我国开始建设大型水电站和火力发电厂,迅速提高了电力供应能力。
改革开放以来,我国电力系统经历了一系列的改革和创新。
特别是在上世纪80年代末和90年代初,我国电力行业进行了一次重要的体制改革。
通过引入市场机制和竞争机制,我国电力市场逐渐形成,电力企业的管理和运营方式得到了改善。
与此同时,我国电力系统的技术水平也取得了长足的进步。
高压输电线路、变电站、发电设备等技术设施得到了全面升级,电力输送和供应的效率得到了大幅提升。
此外,新能源发电技术的广泛应用也为我国电力系统的发展带来了新的机遇和挑战。
风电、太阳能等清洁能源的利用率逐年提高,为我国电力系统的可持续发展提供了有力支撑。
我国电力系统已经形成了较为完善的供应体系。
国家电网公司作为我国电力系统的骨干,负责着电力的输送和分配。
各地方电力公司负责电力的供应和管理。
同时,我国电力市场逐渐开放,竞争机制得到进一步完善,促进了电力资源的优化配置和供应效率的提高。
未来,我国电力系统将继续朝着智能化、绿色化、可持续发展的方向发展。
随着科技的进步和新能源技术的不断创新,新一代电力系统将更加高效、安全、可靠。
智能电网的建设和应用将成为未来的发展趋势,通过智能感知、智能控制和智能调度,实现对电力系统的精细化管理和优化调度。
我国电力系统还将进一步加大对清洁能源的开发和利用。
通过加大对风能、太阳能等清洁能源的投资和发展,实现能源结构的优化和绿色低碳发展。
同时,电动汽车的普及和推广也将为电力系统带来新的需求和挑战。
我国电力系统经过多年的发展和改革,已经成为国家经济发展的重要支撑。
电力系统自动化发展历程及趋势
电力系统自动化发展历程及趋势一、引言电力系统自动化是指利用先进的信息技术手段对电力系统进行监控、控制、保护和调度的一种技术体系。
随着信息技术的快速发展和电力系统规模的不断扩大,电力系统自动化在电力行业中的重要性日益凸显。
本文将介绍电力系统自动化的发展历程,并分析未来的发展趋势。
二、电力系统自动化的发展历程1. 初期阶段电力系统自动化起源于20世纪60年代,当时主要采用模拟技术和电气机械传动技术。
在这个阶段,电力系统自动化的主要任务是实现电力系统的远程监控和数据采集,以提高电力系统的运行效率和可靠性。
2. 数字化阶段20世纪80年代,随着计算机技术的发展,电力系统自动化进入了数字化阶段。
数字化技术的应用使得电力系统的监控、控制和保护更加精确和可靠。
此阶段的典型代表是数字化保护装置的应用,它通过数字信号处理和通信技术实现对电力设备的保护。
3. 通信化阶段随着通信技术的飞速发展,电力系统自动化进入了通信化阶段。
在这个阶段,电力系统各个设备之间的通信变得更加便捷和高效。
通信化技术的应用使得电力系统的监控和控制能力得到了大幅提升,同时也为电力市场的建立和电力信息化的发展提供了基础。
4. 智能化阶段当前,电力系统自动化正逐步进入智能化阶段。
智能化技术的应用使得电力系统具备了更高的自主决策和优化能力。
智能化电力系统能够通过对大数据的分析和处理,实现电力系统的智能调度和优化配置,从而提高电力系统的运行效率和可靠性。
三、电力系统自动化的发展趋势1. 大数据与人工智能的应用随着大数据和人工智能技术的快速发展,电力系统自动化将更加依赖于大数据分析和人工智能算法。
通过对大数据的分析,电力系统可以实现对电力设备的故障预测和预防,提高电力系统的可靠性和安全性。
2. 新能源与电力系统的融合随着新能源的大规模接入,电力系统自动化将面临更多的挑战和机遇。
新能源的不确定性和间歇性给电力系统的调度和控制带来了新的问题,需要通过电力系统自动化技术来解决。
电力系统的发展历程
电力系统的发展历程1. 嘿,小伙伴们!今天咱们来聊一个超级精彩的故事 - 电力系统是怎么一步步发展起来的。
这可是一个从星星之火到燎原之势的精彩故事!2. 要说电力系统的起源,那得从1879年爱迪生发明电灯说起。
那时候的电力系统,就像是刚出生的小婴儿,只能给几盏小灯泡供电,供电范围也就是几条街的距离。
3. 到了19世纪末,直流供电系统就像个不听话的熊孩子,让人头疼不已。
电压低、传输距离短,就像是用吸管喝水,超过几百米就喝不动了。
这可愁坏了当时的科学家们!4. 后来交流电系统横空出世,简直就像是一场革命!它就像是给电力系统装上了翅膀,电能传输距离一下子就飞上天了。
这下可好,电力系统开始疯狂成长,就像是打了激素的小树苗,蹭蹭往上窜!5. 20世纪初期,发电厂开始变得越来越大。
从最早的小作坊式发电,发展到了大型火力发电厂,就像是从小作坊变成了大工厂。
一座电厂的发电量,都能点亮一座城市啦!6. 输电网络也在不断进步,从最早的几千伏,到现在的特高压输电,电压等级蹭蹭往上涨。
这就像是把小河变成了大运河,电力传输能力强得简直让人瞠目结舌!7. 到了20世纪中期,各个地区的电网开始互联互通。
这就像是修建高速公路一样,把原本孤立的"电力孤岛"连接成了一张大网。
电力系统开始变得越来越强大,越来越可靠。
8. 现代电力系统简直就是个超级大家族!有火电、水电、核电、风电、太阳能发电,就像是一个大家庭里有各种性格的成员,各展所长,共同为我们提供源源不断的电力。
9. 智能电网的出现,让电力系统变得更加聪明。
它就像是给电网装上了"大脑",能自动调节、自我修复,甚至还能预测故障。
这简直就是电力系统界的"最强大脑"!10. 新能源的接入让电力系统变得更加绿色环保。
风力发电机就像是草原上的大风车,太阳能电池板就像是向日葵一样追着太阳转,它们都在为地球的未来贡献力量。
11. 现在的特高压输电技术更是厉害,能把电力从天南送到海北。
电力系统自动化发展历程及趋势
电力系统自动化发展历程及趋势引言概述:电力系统自动化是指利用先进的信息技术和控制技术对电力系统进行监测、控制和管理的过程。
随着科技的不断进步,电力系统自动化在过去几十年中取得了巨大的发展。
本文将从历程和趋势两个方面探讨电力系统自动化的发展。
一、发展历程1.1 早期阶段在20世纪初期,电力系统自动化处于起步阶段。
当时的电力系统主要依靠人工操作和控制,存在着效率低下和安全隐患等问题。
1.2 智能化发展20世纪80年代开始,随着计算机技术的发展,电力系统自动化逐渐智能化。
智能化的发展使得电力系统的监测、控制和管理更加高效和精准。
1.3 互联网时代进入21世纪,互联网技术的广泛应用推动了电力系统自动化的进一步发展。
云计算、大数据等技术的应用使得电力系统的智能化水平不断提升。
二、发展趋势2.1 物联网技术未来,物联网技术将成为电力系统自动化的重要趋势。
通过物联网技术,电力系统可以实现设备之间的实时通信和数据共享,提高系统的智能化水平。
2.2 人工智能应用人工智能技术的发展将为电力系统自动化带来新的机遇。
通过人工智能技术,电力系统可以实现更加智能的预测和决策,提高系统的运行效率和稳定性。
2.3 新能源整合随着新能源的快速发展,电力系统自动化将面临新的挑战和机遇。
如何有效整合新能源,实现电力系统的可持续发展将成为未来的发展趋势。
结论:电力系统自动化在不断发展的过程中,经历了早期阶段、智能化发展和互联网时代。
未来,物联网技术、人工智能应用和新能源整合将成为电力系统自动化的发展趋势,推动电力系统向智能化、高效化和可持续化方向发展。
(完整)电力系统发展史
七世纪中国发明罗盘针1600年英国人Gilbert 发现磨擦琥珀可以生电1752年美国人Franklin 于放风筝时发现雷就是电1785年法国人Coulomb 发现库仑定律1799年意大利人Volta 发明电池1820年法国人Ampere 建立安培定律1827年德国人Ohm 订立欧姆定律1830年美国人Henry 研究电磁效应1831年英国人Faraday 发现电磁感应现象1832年法国人Orsted 制成第一部发电机1834年德国人Heinrich 发现楞次定律1864年德国人Maxwell 发表电磁波理论1866年德国人Gramme 发明自激式直流发电机1876年美国人Bell 发明磁铁式电话1879年美国人Edison 发明电灯1882年纽约出现第一座直流配电系统(爱迪生建立)1885年美国人Stanley 研制成功变压器1886年美国开始发展交流电力系统(西屋公司)1887年德国人Hertz 实验证明电波存在1888年美国人Tesla 发表感应电动机理论1890年美国第一座3.3kV交流输电系统完成1893年芝加哥美国博览会展出双相交流配电系统1896年意大利人Popov 发明无线电1897年英国人Thomson 证实电子存在1912年美国GE 公司正式使用消弧室1918年美国人Fortescue 发表解析不平衡理论(对称分量法)1925年美国工程师H。
R. Park提出了Park变换1933年德国 AEG 公司制造220kV级之气冲式断路器1936年美国自到LA之间完成287kV线路1938年美国人应用布尔代数于交换电路1946年美国宾州大学 Eckert完成ENIAC真空管计算器1948年美国人Bardeen 发明晶体管1951年世界第一部商用计算器UNIVAC1952年美国西屋公司产制 SF6 断路器1954年100kV之 HVDC 线路于瑞典正式运转1957年第一座商用核能电厂于美国运转1960年美国人 Maiman 作雷射证明1961年美国Fairchild及TI公司推出商用IC1962年美国发射第一枚通讯卫星Telstar 11969年美国 765kV 交流线路建成1971年各型集成电路时期1975年美国Intel公司推出4004、8080 微处理器1976年英国率先推行电力市场化改革1978年Distributed Generation分布式发电技术诞生1984年杨奇逊院士研制出中国第一台微机保护装置1986年美国电科院的N G Hingorani 提出FACTS概念1990年美国的A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统的发展定义:由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。
它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心,通过各种设备再转换成动力、热、光等不同形式的能量,为地区经济和人民生活服务。
由于电源点与负荷中心多数处于不同地区,也无法大量储存,故其生产、输送、分配和消费都在同一时间内完成,并在同一地域内有机地组成一个整体,电能生产必须时刻保持与消费平衡。
因此,电能的集中开发与分散使用,以及电能的连续供应与负荷的随机变化,就制约了电力系统的结构和运行。
据此,电力系统要实现其功能,就需在各个环节和不同层次设置相应的信息与控制系统,以便对电能的生产和输运过程进行测量、调节、控制、保护、通信和调度,确保用户获得安全、经济、优质的电能。
建立结构合理的大型电力系统不仅便于电能生产与消费的集中管理、统一调度和分配,减少总装机容量,节省动力设施投资,且有利于地区能源资源的合理开发利用,更大限度地满足地区国民经济日益增长的用电需要。
电力系统建设往往是国家及地区国民经济发展规划的重要组成部分。
电力系统的出现,使高效、无污染、使用方便、易于调控的电能得到广泛应用,推动了社会生产各个领域的变化,开创了电力时代,发生了第二次技术革命。
电力系统的规模和技术水准已成为一个国家经济发展水平的标准。
发展简况:电力系统在电能应用的初期,由小容量发电机单独向灯塔、轮船、车间等的照明供电系统,可看作是简单的住户式供电系统。
白炽灯发明后,出现了中心电站式供电系统,如1882年T.A.托马斯·阿尔瓦·爱迪生在纽约主持建造的珍珠街电站。
它装有6台直流发电机(总容量约670千瓦),用110伏电压供1300盏电灯照明。
19世纪90年代,三相交流输电系统研制成功,并很快取代了直流输电,成为电力系统大发展的里程碑。
20世纪以后,人们普遍认识到扩大电力系统的规模可以在能源开发、工业布局、负荷调整、系统安全与经济运行等方面带来显著的社会经济效益。
于是,电力系统的规模迅速增长。
世界上覆盖面积最大的电力系统是前苏联的统一电力系统。
它东西横越7000千米,南北纵贯3000千米,覆盖了约1000万平方千米的土地。
中华人民共和国的电力系统从50年代开始迅速发展。
到1991年底,电力系统装机容量为14600万千瓦,年发电量为6750亿千瓦时,均居世界第四位。
输电线路以220千伏、330千伏和500千伏为网络骨干,形成4个装机容量超过1500万千瓦的大区电力系统和9个超过百万千瓦的省电力系统,大区之间的联网工作也已开始。
此外,1989年,台湾省建立了装机容量为1659万千瓦的电力系统。
系统构成与运行:电力系统的主体结构有电源、电力网络和负荷中心。
电源指各类发电厂、站,它将一次能源转换成电能;电力网络由电源的升压变电所、输电线路、负荷中心变电所、配电线路等构成。
它的功能是将电源发出的电能升压到一定等级后输送到负荷中心变电所,再降压至一定等级后,经配电线路与用户相联。
电力系统中网络结点千百个交织密布,有功潮流、无功潮流、高次谐波、负序电流等以光速在全系统范围传播。
它既能输送大量电能,创造巨大财富,也能在瞬间造成重大的灾难性事故。
为保证系统安全、稳定、经济地运行,必须在不同层次上依不同要求配置各类自动控制装置与通信系统,组成信息与控制子系统。
它成为实现电力系统信息传递的神经网络,使电力系统具有可观测性与可控性,从而保证电能生产与消费过程的正常进行以及事故状态下的紧急处理。
系统的运行指组成系统的所有环节都处于执行其功能的状态。
系统运行中,由于电力负荷的随机变化以及外界的各种干扰(如雷击等)会影响电力系统的稳定,导致系统电压与频率的波动,从而影响系统电能的质量,严重时会造成电压崩溃或频率崩溃。
系统运行分为正常运行状态与异常运行状态。
其中,正常状态又分为安全状态和警戒状态;异常状态又分为紧急状态和恢复状态。
电力系统运行包括了所有这些状态及其相互间的转移。
各种运行状态之间的转移需通过不同控制手段来实现。
电力系统在保证电能质量、实现安全可靠供电的前提下,还应实现经济运行,即努力调整负荷曲线,提高设备利用率,合理利用各种动力资源,降低燃料消耗、厂用电和电力网络的损耗,以取得最佳经济效益。
研究与开发:电力系统的发展是研究开发与生产实践相互推动、密切结合的过程,是电工理论、电工技术以及有关科学技术和材料、工艺、制造等共同进步的集中反映。
电力系统的研究与开发,还在不同程度上直接或间接地对于信息、控制和系统理论以及计算技术起了推动作用。
反过来,这些科学技术的进步又推动着电力系统现代化水平的日益提高。
从19世纪末到20世纪20、30年代,交流电路的理论、三相交流输电理论、分析三相交流系统的不平衡运行状态的对称分量法、电力系统潮流计算、短路电流计算、同步电机振荡过程和电力系统稳定性分析、流动波理论和电力系统过电压分析等均已成熟,形成了电力系统分析的理论基础。
随着系统规模的增大,人工计算已经远远不能适应要求,从而促进了专用模拟计算工具的研制。
20世纪20年代,美国麻省理工学院电机系首次研制成功机械式模拟计算机──微分仪,后来改进成为电子管、继电器式模拟计算机,以后又研制成直流计算台和网络分析仪,成为电力系统研究的有力工具。
50年代以来,电子计算机技术的发展和应用,使大规模电力系统的精确、快速计算得以实现,从而使电力系统分析的理论和方法进入一个崭新的阶段。
在电力系统的主体结构方面,燃料、动力、发电、输变电、负荷等各个环节的研究开发,大大提高了电力系统的整体功能。
高电压技术的进步,各种超高压输变电设备的研制成功,电晕放电与长间隙放电特性的研究等,为实现超高压输电奠定了基础。
新型超高压、大容量断路器以及气体绝缘全封闭式组合电器,其额定切断电流已达100千安,全开断时间由早期的数十个工频周波缩短到1~2个周波,大大提高了对电网的控制能力,并且降低了过电压水平。
依靠电力电子技术的进步实现了超高压直流输电。
由电力电子器件组成的各种动力负荷,为节约用电提供了新的技术装备。
超导电技术的成就展示了电力系统的新前景。
30万千瓦超导发电机已经投入试运行,并且还继续研制容量为百万千瓦级的超导发电机。
超导材料性能的改进会使超导输电成为可能。
利用超导线圈可研制超导储能装置。
动力蓄电池和燃料电池等新型电源设备均已有千瓦级的产品处于试运行阶段,并正逐步进入工业应用,这些研究课题有可能实现电能储存和建立分散、独立的电源,从而引起电力系统的重大变革。
在各工业部门中,电力系统是规模最大、层次很复杂、实时性要求严格的实体系统。
无论是系统规划和基本建设,还是系统运行和经营管理,都为系统工程、信息与控制的理论和技术的应用开拓了广阔的园地,并促进了这些理论、技术的发展。
针对电力系统的特点,60年代以来在电力系统运行的安全分析与管理中,在电力系统规划和设计中,都广泛引入了系统工程方法,包括可靠性分析及各种优化方法。
电子技术、计算机技术和信息技术的进步,使电力系统监控与调度自动化发展到一个新的阶段,并在理论上和技术上继续提出新的研究课题。
电气自动化就业前景:电气工程及其自动化专业既是新兴学科,又被广泛应用,发展前景有三大利好因素,就业和创业前景都相当可观。
由于国外这方面的技术比较先进,最好能出国深造。
职业生涯规划格言:我们最大的错误是,忽略了培育一个人的内在美德,而去试图从每个人身上强索他并不具备的美德。
——哈德里安电气工程及其自动化专业是电气信息领域的一门新兴学科,触角伸向各行各业,小到一个开关的设计,大到宇航飞机的研究,都有它的身影。
由于和人们的日常生活以及工业生产密切相关,发展非常迅速,现在也相对比较成熟。
控制理论和电力网理论是电气工程及自动化专业的基础,电力电子技术、计算机技术则为其主要技术手段,同时也包含了系统分析、系统设计、系统开发以及系统管理与决策等研究领域。
该专业还有一些特点,就是强弱电结合、电工电子技术相结合、软件与硬件相结合,具有交叉学科的性质,电力、电子、控制、计算机多学科综合。
该专业产生于70年代,首先在英国的牛津大学,首次实现的是直流电的控制方式,那时候执行元件的驱动电压是直流的,控制电压也是直流的,自动化系统的工作方式是很简单、粗糙的,精度也很低。
但直流的控制方式由于其历史的久远而被人们所熟知,自然而然的人们想到了用直流电去控制交流执行元件。
随着晶体管、大功率晶体管、场效应管等大功率的电子器件的出现和成熟、以及建立在场的理论上、以现代数学、矩阵代数为理论依据的弱电强电控制系统更使电子技术与自动化达到新的历史高度。
虽然我国在这方面的发展还没有站在世界的最前沿,但随着我国综合国力的提高,对外交往的增加,我们已经逐渐缩小与发达国家的差距。
具有代表性的是:每秒3000亿次计算机研制成功;纳米技术的掌握;模拟技术的应用。
主要课程:电机及拖动、工厂电气控制技术、电力电子技术、电力电子技术实习、单片机技术、PLC技术、电子工程制图、工厂供配电技术、电子技术综合实训、电气设备、英语精读、专业英语。
发展前景:“自动化”一是属于信息产业。
信息产业被人们誉为“朝阳产业”,发展快、需要人才多、待遇高,是当今科技发展的趋势所在。
因此,作为信息产业中的重要一员,自动化专业同样有着光辉的前途。
二是自动化应用范围广。
目前,几乎所有的工业部门都可以同自动控制挂上钩,现代化的农业、国防也都与自动化息息相关。
三是本专业对于个人发展非常有利。
本专业课程设置的覆盖面广,所学的东西与其他学科交叉甚多。
这也与本专业的来历有关,自动化专业大部分源于计算机或者电子工程系的自动控制专业。
随着我国经济的不断发展,现代化工业的不断发展使电气自动化技术方面的人才市场有着相当大的潜力。
尤其是广东地区,自动化生产技术不断提高,自动化产品不断普及,智能楼宇和智能家居的应用,智能交通的不断发展,为电气自动化技术专业提供了广阔的发展前景。
电力电子技术和微机控制技术是高新技术产业的重要组成部分,智能控制电器及电气控制设备、自动控制系统及生产线广泛应用于工业、农业、国防等领域,在国民经济中其着举足轻重的作用。
通常情况下,毕业生可以选择国有的质量技术监督部门、研究所、工矿企业等;也可以是一些外资、私营企业,待遇当然是相当可观的。
如果学生能力足够强,又在学习期间积累了比较好的研究成果,完全可以自己创业,闯出一片属于自己的天空。
需要指出的是,由于国外在该专业方向的研究要领先于我们,因此如果想要有进一步的发展,确立自己在国内该方向的领先地位,出国深造是一个不错的选择。
就业方向:国家电网电气设计院电子电力产业等证书:注册电气工程师证全国注册电气工程师(发输变电、供配电)考试报名条件考试分为基础考试和专业考试。