电力电子技术与变频器应用实验教案

合集下载

变频器技术及应用课程教学设计第五章变频器应用技术

变频器技术及应用课程教学设计第五章变频器应用技术

第五章变频器应用技术一、教学目标1、了解掌握变频器的主电路形式及技术特点、类型变频器的控制形式、变频器各控制形式的特点、变频器载波频率的影响因素及选择变频器载波频率的方法。

2、熟悉生产机械的负载类型、变频器节能程度的影响因素、几种典型负载的节电率计算方法、IGBT的主要用途、浪涌电压、缓冲电压等概念、IGBT模块的选用方法和IGBT模块的性能。

3、掌握变频器类型的选用、变频器负载率与效率的关系曲线、变频器箱体的结构类型、前置放大器箱、主速设定器的功能、比率设定箱、遥控设定箱、跟踪设定箱的原理、联动设定操作箱、三速设定箱和带频率操作箱的功能及特点、变器的保护方法和常见变频器报警显示内容。

二、课时分配本章共8节,安排13课时。

三、教学重点通过本项目的学习,让学生学习变频器主电路形式的原理、技术特点、众多变频器的控制形式及特性、正确选择载波频率值的方法,掌握常见功率模块的性能及使用时的有关问题、变频器的选择方法和变频器的保护方法。

四、教学难点1.变频器的控制形式及特性分析2.正确选择变频器的载波频率3.解决变频器节能运行时的几个问题4.功率模块IGBT、IPM的性能及使用时的有关问题五、教学内容任务一变频器的主电路形式阶段一概述变频器的主电路多数属于电压源型(VSI)的交—直—交结构形式。

它与电流源型(CSI)相比具有运行稳定、调速范围宽、输出波形好、输入电流谐波含量低、功率因数高、效率高、电路简单、适应性好等优点。

阶段二二电平电路形式国内外所有品牌的低压变频器几乎都是二电平 6 脉冲主电路结构形式(见图)。

因输入电压较低,功率较小(≤200kW),电网电压可直接进入整流环节。

当电动机功率大于200kW 而又采用高压供电方式时,一般采用以下两种方案。

图为二电平6脉冲主电路1.高—低—低方案(见图)高—低—低方案可采用通用的低压变频器,易于改造现有设备,可靠性高,造价低,但降压变压器要特殊设计。

图为高—低—低方案2.高—低—高方案(见图)高—低—低方案投资高,效率低,占地多,升压变压器要特殊设计。

变频器的控制原理与应用实验

变频器的控制原理与应用实验

变频器的控制原理与应用实验1. 引言变频器(Variable Frequency Drive,简称VFD)是一种用于控制交流电动机转速的设备。

它通过调整电源频率来改变电机的转速,从而实现对电机的精确控制。

本文将介绍变频器的控制原理及其在实际应用中的实验。

2. 变频器的控制原理变频器的控制原理主要基于电力电子技术和数字控制技术。

其基本工作原理如下:•整流器:变频器的输入端接入交流电源,通过整流器将交流电转换为直流电。

整流器通常采用可控硅器件,实现对电流的精确控制。

•中间电路:直流电经过中间电路进行滤波和电压调节,以保证稳定的直流电源供给给逆变器。

•逆变器:逆变器将直流电转换为交流电,并通过调整交流电的频率来控制电机的转速。

逆变器通常采用高性能的智能功率模块,具有良好的动态响应和稳定性。

变频器的控制原理实际上是通过调整逆变器的输出频率来改变电机的转速。

通过对逆变器的控制策略和参数配置,可以实现对电机转速的精确控制。

3. 变频器的应用实验为了更好地理解和应用变频器,我们进行了以下实验:3.1 实验设备和材料•一个变频器•一台交流电动机•一台电源•相关连接线和控制器3.2 实验步骤1.将电源连接到变频器的输入端,并将变频器的输出端连接到电动机的输入端。

2.使用控制器配置变频器的控制策略和参数,包括输出频率、过流保护等。

3.启动电源,打开变频器并将其设置为运行状态。

4.通过控制器调整变频器的输出频率,观察电动机的转速变化。

5.测试并记录不同频率下的电动机转速和电流。

3.3 实验结果和分析通过实验,我们观察到以下现象和结果: - 随着变频器输出频率的增加,电动机转速增加。

- 在一定频率范围内,电动机的转速和电流成正比关系。

- 超出一定频率范围后,电动机的转速不再增加,电流却继续增加。

根据实验结果,我们可以得出以下结论:- 变频器可以精确控制电动机的转速,以满足不同应用需求。

- 在使用变频器时,需要根据实际情况配置适当的控制策略和参数,以提高电机运行效率并保护设备安全。

变频器应用技术教学教案

变频器应用技术教学教案

变频器应用技术教学教案第一章:变频器基础知识1.1 变频器的定义与作用1.2 变频器的分类及特点1.3 变频器的基本组成部分1.4 变频器的工作原理第二章:变频器的参数设置与调试2.1 变频器的参数设置方法2.2 主要参数的含义与设置2.3 变频器的调试步骤与方法2.4 变频器与电机的匹配调试第三章:变频器在工业控制中的应用实例3.1 变频器在风机和水泵控制中的应用3.2 变频器在电梯控制中的应用3.3 变频器在机床控制中的应用3.4 变频器在其他工业设备控制中的应用第四章:变频器的安装与维护4.1 变频器的安装位置与注意事项4.2 变频器的接线方法与要求4.3 变频器的日常维护与保养4.4 变频器的故障诊断与维修第五章:变频器的选用与未来发展5.1 变频器的选用原则与步骤5.2 变频器市场的现状与发展趋势5.3 变频器技术的创新与应用5.4 我国变频器产业的发展策略与前景展望第六章:变频器在工业自动化中的应用案例6.1 变频器在塑料机械控制中的应用6.2 变频器在起重机械控制中的应用6.3 变频器在输送带控制中的应用6.4 变频器在其他工业自动化设备中的应用第七章:变频器与其他控制技术的结合与应用7.1 变频器与PLC控制的结合7.2 变频器与触摸屏的结合7.3 变频器与矢量控制技术的结合7.4 变频器与其他先进控制技术的融合与发展第八章:变频器的编程与操作8.1 变频器的编程原理与方法8.2 常用变频器编程软件的使用8.3 变频器的操作步骤与技巧8.4 变频器编程实例与操作训练第九章:变频器的通信与联网9.1 变频器的通信原理与标准9.2 常用变频器通信协议介绍9.3 变频器与其他设备的联网方法9.4 变频器通信应用实例与实践第十章:变频器在新能源领域的应用10.1 变频器在风力发电中的应用10.2 变频器在太阳能发电中的应用10.3 变频器在其他新能源领域中的应用10.4 我国新能源产业的发展趋势与变频器的市场前景第十一章:变频器的节能环保特性与经济效益分析11.1 变频器节能原理与效果11.2 变频器在节能环保方面的优势11.3 变频器节能案例分析11.4 变频器的经济效益评估与投资回报第十二章:变频器在特殊环境中的应用12.1 变频器在高温环境中的应用12.2 变频器在低温环境中的应用12.3 变频器在潮湿与腐蚀环境中的应用12.4 变频器在嘈杂环境中的应用与解决方案第十三章:变频器的故障处理与安全防护13.1 变频器常见故障类型与原因13.2 变频器故障诊断与排除方法13.3 变频器的安全防护措施与操作规程13.4 变频器故障案例分析与经验总结第十四章:变频器在国内外市场的应用与发展趋势14.1 变频器在国际市场的应用与发展14.2 我国变频器产业的现状与挑战14.3 变频器技术的创新与研发趋势14.4 变频器在新兴市场的应用前景分析第十五章:变频器培训与教育15.1 变频器培训的目标与内容15.2 变频器培训的方法与技巧15.3 变频器培训资源的开发与利用15.4 变频器教育的发展与未来趋势重点和难点解析本文主要介绍了变频器的基础知识、参数设置与调试、应用实例、安装与维护、选用与未来发展、工业自动化应用案例、与其他控制技术的结合与应用、编程与操作、通信与联网、新能源领域应用、节能环保特性与经济效益分析、特殊环境应用、故障处理与安全防护、市场应用与发展趋势以及培训与教育等方面。

电力电子变频课程设计

电力电子变频课程设计

电力电子变频课程设计一、课程目标知识目标:1. 学生能理解电力电子变频技术的基本原理,掌握变频器的工作流程和主要组成部分。

2. 学生能描述变频调速系统的控制策略,包括PWM控制技术、频率设定方法等。

3. 学生能解释电力电子器件在变频器中的应用,了解不同电力电子器件的特性。

技能目标:1. 学生能运用所学知识,进行简单的电力电子变频器电路设计和分析。

2. 学生能通过实际操作,完成变频调速系统的调试和性能测试。

3. 学生能运用相关软件对电力电子变频器进行仿真,验证设计方案的正确性。

情感态度价值观目标:1. 培养学生对电力电子变频技术的兴趣,激发学生探索新技术的热情。

2. 培养学生的团队合作意识,使学生学会在团队中分工合作、共同解决问题。

3. 增强学生的环保意识,让学生认识到变频调速技术在实际应用中节能减排的重要性。

分析课程性质、学生特点和教学要求:本课程为电力电子变频技术的实践应用课程,结合学生已掌握的电力电子基础知识,以提高学生对电力电子变频技术的理解和实践能力为目标。

课程针对高中年级学生,要求学生具备一定的电路分析能力和动手操作能力。

在教学过程中,注重理论与实践相结合,培养学生的实际应用能力。

二、教学内容1. 变频技术原理:讲解变频器的基本工作原理,包括AC-DC转换、DC-AC转换以及PWM控制技术,关联课本第三章内容。

2. 变频器硬件构成:介绍变频器的主要硬件组成部分,如整流桥、滤波电容、逆变桥等,并分析各部分功能,关联课本第四章第二节。

3. 变频调速系统控制策略:阐述变频调速系统的控制策略,包括V/f控制、矢量控制等,结合课本第五章内容。

4. 电力电子器件应用:讲解不同电力电子器件在变频器中的应用,如IGBT、MOSFET等,关联课本第六章。

5. 变频器电路设计与分析:指导学生进行简单的变频器电路设计,分析电路性能,结合课本第七章。

6. 变频调速系统调试与性能测试:教授学生如何进行变频调速系统的调试和性能测试,关联课本第八章。

变频技术及应用电子教案变频第5章

变频技术及应用电子教案变频第5章
额定电流为1.05A,额定电压为380V。现用 MM440变频器进行外端子控制。即由变频 器的外端子控制电动机的启停和升降速。 项目目的 一.正确进行变频器的外部接线; 二.正确设置变频器的相关参数; 三.能够独立进行变频器的外部操作。
河北工业职业技术学院
相关知识
一.变频器的标准接线与端子功能
河北工业职业技术学院
不同的生产机械对加速过程的要求是不同 的。根据各种负载的不同要求,变频器给 出了各种不同的加速曲线(模式)供用户选择。 常见的曲线形式有线性方式、S形方式和半 S形方式等,如图所示。
河北工业职业技术学院
3. 启动前直流制动 如果电动机在启动前,拖动系统的转速不为0,而变频器
河北工业职业技术学院
三.变频器的频率参数 1. 变频器的基本频率参数 (1)给定频率 用户根据生产工艺的需求所设定的变频器输出频率。例如:
原来工频供电的风机电动机现改为变频调速供电,就可设 置给定频率为5OHz,其设置方法有两种:一种是用变频 器的操作面板来输入频率的数字量50;另一种是从控制接 线端上用外部给定(电压或电流)信号进行调节,最常见的 形式就是通过外接电位器来完成。 MM440、MM420变频器通过参数P1000设定给定频率的信 号源。 (2)输出频率 输出频率即变频器实际输出的频率。当电动机所带的负载 变化时,为使拖动系统稳定,此时变频器的输出频率会根 据系统情况不断地调整。因此输出频率是在给定频率附近 经常变化的。从另一个角度来说,变频器的输出频率就是 整个拖动系统的运行频率。
电动机参数;变频器参数 (2)主要相关功能参数: P0700 P1000 P1080 P1082 P1120 P1121 P1040
河北工业职业技术学院

电力电子技术实验教案

电力电子技术实验教案

电力电子技术实验教案一、实验目的:1、了解电力电子技术的基本原理和应用领域;2、学习电力电子元器件的基本特性和使用方法;3、掌握电力电子实验仪器的使用方法;4、通过实验了解电力电子技术的各种调制方式和控制技术;5、培养学生的动手实践和问题解决能力。

二、实验内容:1、电力电子元器件的特性测试;2、单相桥式整流电路实验;3、直流调压电路实验;4、单相逆变电路实验;5、三相逆变电路实验;6、电力电子调制与控制技术实验。

三、实验仪器和设备:1、实验箱;2、示波器;3、信号发生器;4、电流表和电压表;5、稳流电源和稳压电源;6、相关电力电子元器件。

四、实验步骤:1、电力电子元器件的特性测试(1)学习使用测量电流、电压和功率的三用电表,测量并记录不同电力电子元件的电流-电压特性曲线。

(2)测量并记录二极管的正向特性曲线。

(3)测量并记录晶闸管的控制特性曲线。

(4)测量并记录场效应管的传导特性曲线。

(5)测量并记录开关管(如开关二极管、开关三极管)的关断特性曲线。

2、单相桥式整流电路实验(1)搭建单相桥式整流电路,观察并记录电压和电流的波形。

(2)通过改变输入电压、负载电阻和脉宽调制等方式,观察并分析输出电压和电流的变化规律。

3、直流调压电路实验(1)搭建直流调压电路,观察并记录输出电压的波形。

(2)通过改变输入电压、负载电阻和调压器参数等方式,观察并分析输出电压的变化规律。

4、单相逆变电路实验(1)搭建单相逆变电路,观察并记录输出电压和电流的波形。

(2)通过改变输入电压、负载电阻和脉宽调制等方式,观察并分析输出电压和电流的变化规律。

5、三相逆变电路实验(1)搭建三相逆变电路,观察并记录输出电压和电流的波形。

(2)通过改变输入电压、负载电阻和脉宽调制等方式,观察并分析输出电压和电流的变化规律。

6、电力电子调制与控制技术实验(1)学习并使用PID控制器或DSP控制器,通过调整控制参数实现电力电子系统的输出电压和电流控制。

变频电路教案模板范文

教学目标:1. 了解变频电路的基本组成和原理。

2. 掌握变频电路的主要组成部分及其功能。

3. 理解变频电路在实际应用中的优势。

4. 学会分析变频电路的工作过程。

教学重点:1. 变频电路的基本组成和原理。

2. 变频电路在实际应用中的优势。

教学难点:1. 变频电路的工作过程。

2. 变频电路在实际应用中的问题及解决方法。

教学准备:1. 教学课件2. 变频电路实物或图片3. 实验设备教学过程:一、导入新课1. 提问:同学们,什么是变频电路?它有什么作用?2. 学生回答,教师总结:变频电路是一种将交流电转换为可调频率交流电的电路,广泛应用于工业、家用电器等领域。

二、讲授新课1. 变频电路的基本组成a. 整流电路:将交流电转换为直流电。

b. 平滑电路:消除整流电路产生的脉动电压。

c. 操控电路:控制逆变器的工作状态。

d. 逆变器:将直流电转换为可调频率交流电。

2. 变频电路的工作原理a. 整流电路:利用二极管或晶闸管将交流电转换为直流电。

b. 平滑电路:利用电感、电容等元件消除脉动电压。

c. 操控电路:通过控制晶闸管的导通与截止,改变逆变器输出交流电的频率和电压。

d. 逆变器:利用晶体管或晶闸管实现直流电到交流电的转换。

3. 变频电路在实际应用中的优势a. 节能:变频电路可以实现电机调速,降低能耗。

b. 稳定:变频电路输出电压稳定,提高设备运行效率。

c. 调节范围广:变频电路可以调节电机转速,满足不同工况需求。

三、课堂小结1. 回顾本节课所学内容,强调变频电路的基本组成、工作原理和优势。

2. 引导学生思考:变频电路在实际应用中可能遇到的问题及解决方法。

四、课堂练习1. 分析以下变频电路,说明其工作原理和特点。

2. 设计一个简单的变频电路,并分析其性能。

五、布置作业1. 查阅资料,了解变频电路在工业领域的应用案例。

2. 分析变频电路在实际应用中可能存在的问题,并提出解决方法。

教学反思:本节课通过讲解变频电路的基本组成、工作原理和优势,使学生掌握了变频电路的基本知识。

电力电子技术教案

电力电子技术教案一、课程概述本课程主要介绍电力电子技术的基本概念、原理和应用。

通过学习该课程,学生将了解到电力电子技术在电力系统中的重要性以及电力电子器件、电力电子变换器的工作原理和特性。

同时,学生将学会电力电子技术的设计与应用,并通过实践掌握电力电子设备的故障诊断与维修。

二、教学目标1.掌握电力电子技术的基本概念和原理;2.了解电力电子器件的工作原理和特性;3.学会电力电子变换器的设计与应用;4.具备电力电子设备的故障诊断与维修能力。

三、教学内容1.电力电子技术的基本概念与原理(4课时)1.1电力电子技术的发展历程1.2电力电子技术在电力系统中的应用1.3电力电子技术的基本原理2.电力电子器件的工作原理与特性(8课时)2.1二极管与可控硅的特点与应用2.2晶闸管与场效应管的工作原理与应用2.3双向晶闸管和功率管的工作原理与应用3.电力电子变换器的设计与应用(12课时)3.1单相桥式整流电路设计与应用3.2单相交流调压器设计与应用3.3单相变频器设计与应用3.4三相桥式整流电路设计与应用3.5三相交流调压器设计与应用3.6三相变频器设计与应用4.电力电子设备的故障诊断与维修(8课时)4.1故障诊断的基本方法与步骤4.2故障诊断与维修案例分析4.3维修实践操作指导四、教学方法1.理论讲授:通过PPT讲解电力电子技术的基本概念、原理和应用。

2.课堂讨论:引导学生积极参与课堂讨论,深入理解电力电子技术的应用问题。

3.实验实践:组织学生进行电力电子实验和故障诊断实践,培养学生的实践能力和创新思维。

五、教学评价1.考试评价:设置闭卷考试,测试学生对电力电子技术的理论知识的掌握程度。

2.实验报告:要求学生完成电力电子实验和故障诊断实践,并撰写实验报告。

3.课堂表现:评价学生在课堂讨论、实践操作中的参与度与表现。

4.作业评价:布置电力电子技术的应用题目,评价学生的解题能力和应用能力。

六、教材与参考书目主教材:《电力电子技术》,高级教育出版社。

变频器应用技术实训指导书

变频器应用技术实训指导书1. 引言1.1 背景变频器是一种用于调整交流电机转速的电力控制设备。

它可根据负载要求调整电机转速,实现节能和变速的目的。

在工业生产中,变频器已广泛应用于电梯、水泵、风机等设备中。

1.2 目的本实训指导书旨在帮助学员了解变频器的工作原理,掌握变频器的基本操作技能,并能够正确应用变频器在实际工作中。

1.3 前提条件在开始本实训之前,学员应具备以下知识和技能:•熟悉电气控制基础知识•理解交流电机的原理和运行方式•学会使用基本的电工仪器和工具2. 变频器的工作原理变频器是通过改变输入电源电压的频率来调整电机转速的。

其基本工作原理如下:1.变频器接收输入的交流电源,并对电流进行整流和滤波处理。

2.变频器将整流后得到的直流电压通过逆变器转换为交流电压。

3.通过逆变器控制电压的频率和幅值,实现对电机的转速调节和控制。

4.变频器还能实现对电机的起停、正反转等控制功能。

3. 变频器的基本操作3.1 变频器的接线在使用变频器前,学员需要了解变频器的接线方法。

变频器的接线包括输入端和输出端的接线,以及控制信号的接线。

具体的接线方法可以参考变频器使用说明书和电路图。

3.2 变频器的参数设置在使用变频器前,需要对其进行一些参数设置,以适应不同的工作要求。

常见的参数设置包括:•输出频率:根据工况需要,设置电机的运行频率。

•输出电流:根据电机的额定电流,设置输出电流的上限。

•加速时间和减速时间:设置电机的启动和停止时间。

3.3 变频器的操作步骤使用变频器进行控制操作时,需要按照以下步骤进行:1.打开变频器的电源,并确认电源输入和输出端的接线是否正常。

2.根据工况需要,设置变频器的各项参数,如输出频率、电流等。

3.通过控制信号输入,启动或停止电机,并实现正反转等功能。

4.观察电机的运行状态,根据需要调整参数和控制信号。

5.在停止使用变频器时,及时切断电源,并进行必要的维护和检查。

3.4 变频器故障排除在使用变频器的过程中,可能会遇到一些故障情况,需要进行排除。

变频器实训教学大纲

变频器实训教学大纲一、实训目的本实训旨在让学生了解变频器的基本原理、操作和维护方法,掌握变频器在工业自动化领域的应用,培养学生在变频器使用、调试和故障排除方面的实际操作能力。

二、实训内容1、变频器基本原理及分类介绍2、变频器操作面板及参数设置方法3、变频器在电机调速中的应用4、变频器的常用控制模式及参数设置5、变频器的故障排除及维护保养方法6、变频器在工业自动化中的应用案例分析三、实训方法1、理论讲解:通过讲解变频器的基本原理、分类、控制模式等基础知识,让学生了解变频器的工作原理和应用场景。

2、实操演练:让学生亲自操作变频器,包括设置参数、调整电机速度等,培养学生的实际操作能力。

3、案例分析:通过分析变频器在工业自动化中的应用案例,让学生了解变频器的实际应用和调试方法。

4、故障排除与维护保养:让学生学习如何排除变频器的故障和进行日常维护保养,提高学生的综合素质。

四、实训评估1、理论考试:考查学生对变频器的基本原理、分类、控制模式等基础知识的掌握情况。

2、实操考试:考查学生的实际操作能力,包括设置参数、调整电机速度等。

3、综合表现评估:综合考虑学生的理论学习、实操演练、案例分析和故障排除与维护保养等方面的表现,给出综合评价。

五、实训建议1、建议在理论讲解中加入更多的实际应用案例,帮助学生理解变频器的工作原理和应用场景。

2、在实操演练中,要注重培养学生的实际操作能力和问题解决能力,提高学生的综合素质。

3、通过组织小组讨论和案例分析,让学生更好地掌握变频器在工业自动化中的应用和调试方法。

数控实训教学大纲一、引言随着制造业的快速发展,数控加工技术已成为当今制造业生产中的重要组成部分。

为了满足社会对数控技术人才的需求,本大纲旨在为学生提供全面的数控实训教学,帮助他们掌握先进的数控加工技术和机械制造工艺,为未来的职业生涯做好准备。

二、教学目标通过本大纲的学习,学生将能够:1、掌握数控加工的基本原理和操作技能;2、熟悉常见的数控加工设备、工具和材料;3、学会制定合理的加工工艺和程序;4、提高解决实际问题的能力;5、培养团队合作精神和创新意识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 锯齿波同步移相触发电路 一、实验目的 1、加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2、掌握锯齿波同步移相触发电路的调试方法。

二、实验所需挂件及附件 实验装置电源控制屏操作说明 DJDK-1型实验装置采用挂件结构,可根据不同实验内容进行自由组合,结构紧凑、使用方便、功能齐全、综合性能好,能完成《电力电子技术》课程所开设的主要实验。

电源控制屏如图1.2所示,它主要为实验提供各种电源,如三相交流电源、直流励磁电源等;同时为实验提供所需的仪表,如直流电压、电流表,交流电压、电流表。屏上还设有定时器兼报警记录仪,供教师考核学生实验之用;在控制屏正面的大凹槽内,设有两根不锈钢管,可挂置实验所需挂件,凹槽底部设有12芯、10芯、4芯、3芯等插座,从这些插座提供有源挂件的电源;在控制屏两边设有单相三极220V电源插座及三相四极380V电源插座,此外还设有供实验台照明用的40W日光灯。

1、三相电网电压指示 三相电网电压指示主要用于检测输入的电网电压是否有缺相、欠压情况,操作交流电压表下面的切换开关,观测三相电网各线间电压是否平衡。

2、电源控制部分 它的主要功能是控制电源控制屏的各项功能,它由电源总开关、启动按钮及停止按钮组成。当打开电源总开关时,红灯亮;当按下启动按钮后,红灯灭,绿灯亮,此时控制屏的三相主电路及励磁电源都有电压输出。

3、三相主电路输出 三相主电路输出可提供三相交流200V/3A或240V/3A电源。输出的电压大小由“调速电源选择开关”控制,当开关置于“直流调速”侧时,A、B、C输出线电压为200V,可完成电力电子实验以及直流调速实验;当开关置于“交流调速”侧时,A、B、C输出线电压为240V,可完成交流电机调压调速及串级调速等实验。在A、B、C三相附近装有黄、绿、红发光二极管,用以指示输出电压。同时在主电源输出回路中还装有电流互感器,电流互感器可测定主电源输出电流的大小,供电流反馈和过流保护使用,面板上的TA1、TA2、TA3三处观测点用于观测三路电流互感器输出电压信号。

4、励磁电源 在按下启动按钮后将励磁电源开关拨向“开”侧,则励磁电源输出为220V的直流电压,并有发光二极管指示输出是否正常,励磁电源由0.5A熔丝做短路保护,由于励磁电源的容量有限,仅作为直流电机提供励磁电流。

5、面板仪表 面板下部设置有±300V数字式直流电压表和±5A数字式直流电流表,精度为0.5级;面板上部设置有500V真有效值交流电压表和5A真有效值交流电流表,精度为0.5级。

表2.1锯齿波同步移相触发电路实验所需挂件及附件 序号 型 号 备 注 1 DJK01 电源控制屏 该控制屏包含“三相电源输出”等几个模块。 2 DJK03-1 晶闸管触发电路 该挂件包含“锯齿波同步移相触发电路”等模块。 3 双踪示波器

三、实验线路及原理

锯齿波同步移相触发电路的功能是在晶闸管承受正向电压时向其提供触发脉冲,且触发脉冲的出现时刻可调。 锯齿波同步移相触发电路由同步电压检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成。通过同步电压检测环节,触发电路可感知当前晶闸管所承受电压的极性,即了解当前是否可发触发脉冲;同步电压环节的输出信号影响控制电容充放电的三极管,使其在同步电压负半波时截止,恒流源向电容充电,电容电压线性上升,形成锯齿波,在同步电压为正半波后导通,电容迅速放电,如此锯齿波的幅值就代表了正弦波的电角度;在移相控制段锯齿波和直流电压叠加,如结果大于0.7v,则三极管导通,控制此直流电压的大小即可导通时间;在脉冲形成段,把三极管集电极的信号送微分电路,从中取出负跳变并整形,从而得到触发脉冲;以上脉冲经功率放大再通过脉冲变压器输出到晶闸管。 电位器RP1影响锯齿波斜率,RP2调节移相角,RP3确定RP2输出电压为“零”时的相位角,起类似运算放大器之调零电位器的作用。四、实验内容 1、锯齿波同步移相触发电路的调试。 2、锯齿波同步移相触发电路各点波形的观察和分析。

五、实验方法和步骤 1、 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏)。用两根导线将200V交流线电压接到DJK03-1的“外接220V”端为挂件提供电源,并为触发电路引入同步信号。按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作。 1、用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 (1)同时观察同步电压引入端和测试点①的电压波形,了解其形成的原因。 (2)观察测试点①和②的电压波形,了解锯齿波宽度和①点电压波形的关系。 (3)调节电位器RP1,观测②点锯齿波斜率的变化。 (4)观察③~⑥点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较③点和⑤点波形间的对应关系。 2、调节触发脉冲的移相范围 将控制电压Uct调至零(电位器RP2顺时针旋到底),观察同步电压信号及⑥点的波形,调节偏移电压Ub(即调RP3电位器),使α=180°,其波形如图2.1所示。 3、调节Uct(即电位器RP2)使α=60°,观察并记录①~⑥点及输出“G、K”之间脉冲电压的波形,标出其幅值与宽度,并记录在表2.2中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。

六、演示内容 1、电源的连接。 2、用示波器观察并讲解触发电路各测试点的波形。 3、演示影响脉冲移相范围的因素。 4、移相角度测量方法介绍。 七、实验报告要求 1、整理、描绘实验中记录的各点波形,并标出其幅值和宽度。 2、总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在Uct=0的条件下,使α=90°,如何调整? 3、讨论、分析实验中出现的各种现象。 4、分析影响锯齿波宽度、脉冲宽度之电阻和电容的特性和作用。 2.2 实验二 三相半波可控整流电路 一、实验目的 1、了解三相半波可控整流电路的工作原理, 2、研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。

二、实验所需挂件及附件 DJK02挂件有两套“三相晶闸管全控桥”,无特殊要求一般就选用“正组桥”,其所需的触发脉冲来自其上方的40芯插座。 DJK02-1可为正、反两组桥的晶闸管提供12路触发脉冲。A、B、C三相同步电压来自DJK02挂件,分别送至3个KC04 IC,每个KC04 IC送出相差180°的两路脉冲;这些脉冲再由环行脉冲分配器添加补脉冲,最后经放大后送出。 D42的可调电阻额定电流仅0.4A,故为完成实验,至少需两电阻并联。通电前,电阻调至最大。 示波器虽有两个探头,但两探头在仪器内部是“共地”的,故测量控制回路信号时一般接“电源地”,测量主回路波形时注意示波器地线的连接。

表2.3 三相半波可控整流电路实验 序号 型 号 备 注 1 DJK01电源控制屏 该控制屏包含“三相电源输出”,“励磁电源”等几个模块。 2 DJK02晶闸管主电路 该控制屏包含两个“三相晶闸管全控桥”。 3 DJK02-1三相晶闸管触发电路 该挂件包含“触发电路”,“正桥触发脉冲功放”,“反桥触发脉冲功放” 等几个模块。 4 DJK06给定及实验器件 该挂件包含“给定”以及“开关”等模块。 5 D42三相可调电阻 6 双踪示波器 7 万用表

三、实验线路及原理

三相半波可控整流电路用了三只晶闸管,与单相电路比较,其输出电压脉动小,输出功率大。不足之处是晶闸管电流即变压器的副边电流各相在一个周期内只有1/3时间有电流流过,变压器利用率较低。

四、实验内容 1、研究三相半波可控整流电路带电阻性负载。 2、研究三相半波可控整流电路带电阻电感性负载。 五、实验方法 1、触发电路调试 (1)打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。 (2)将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。 (3)用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。 (4)观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。 (5)将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,并用导线将两挂件的“地”连在一起。将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“单脉冲观察孔” VT1的输出波形,使α=150°。 (6)适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。 (7)将DJK02-1面板上的Ulf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。 2、三相半波可控整流电路带电阻性负载 按图2.2接线,将D42电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到150°范围内调节,用示波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管VT1两端的电压波形,并记录相应的电源电压U2及Ud的数值。 3、三相半波整流带电阻电感性负载 将DJK02上700mH的电抗器与负载电阻R串联后接入主电路,观察不同移相角α时Ud、Id的输出波形,并记录相应的电源电压U2及Ud、Id值于表2.5中,记录α

=90o时的Ud及Id波形图。

六、演示内容 1、移相角的确定。 2、主回路波形的观察和示波器参考点的选取。

相关文档
最新文档