八年级数学上册第十五章分式15.3分式方程第2课时分式方程的实际应用练习课件 新人教版

合集下载

秋八年级数学上册第十五章分式15.3分式方程二同步课件新版新人教版

秋八年级数学上册第十五章分式15.3分式方程二同步课件新版新人教版
最新中小学精品PPT课件 6
课堂导学
1.一项工程,乙队单独完成比甲队单独完成需多
用16天,甲队单独做3天的工作乙队单独做需要5
天.求甲,乙两队单独完成此项工程各需几天? 设甲单独完成此项工程需x天,则乙单独完成 此项工程需(x+16)天,依题意,得
解得x=24.经检验x=24是原方程的解,所以
x+16=40.答略. 最新中小学精品PPT课件
最新中小学精品PPT课件 13
课后巩固
7.某商场花10万元从甲厂购进一批玩具,售
完后又用22万元从乙厂购买了2倍相同的玩具
,只是单价比甲厂的贵10元.
(1)两批玩具一共买了多少个?
(2)若商场售价为每个150元,最后剩下的500
个以八折售完,商场一共赚了多少元?
最新中小学精品PPT课件 14
课后巩固
最新中小学精品PPT课件 9
课后巩固
4.轮船顺水航行80千米所需的时间与逆水航
行60千米所需的时间相同.已知水流的速度是
每小时3千米.求轮船在静水中的速度. 设轮船在静水中的速度为x千米/时,由题意
得 80 x+3
60 = x-3
,解得x=21,经检验x=
21是原方程的解,答略.
最新中小学精品PPT课件 10
最新中小学精品PPT课件
=12,12-10
12
=2(千米/时).答略.
课后巩固
6.某商店销售一种旅游纪念品,3月份的营业
额为2000元,4月份该商店对这种纪念品打8折
销售,结果销售量增加30件,营业额增加800
元,求该种纪念品3月份每件的销售价格是多
少?
设该种纪念品3月份每件的销售价格是x元, 2000+800 2000 依题意,得 - 0.8x x =30,解得x=50.经检验x=50是原方程的解

人教版八年级数学上册课件:15.3 分式方程(第二课时)

人教版八年级数学上册课件:15.3 分式方程(第二课时)
设,注意单位要统一,选择一个未知量用未知数表示, 并用含未知数的代数式表示相关量. (3)列:即列方程,根据等量关系列出分式方程. (4)解:即解所列的分式方程,求出未知数的值. (5)验:即验根,要检验所求的未知数的值是否适合分式 方程,还要检验此解是否符合实际意义. (6)答:即写出答案,注意单位和答案完整.
3.(2019新疆)两个小组同时从甲地出发,匀速步行到乙 地,甲乙两地相距7500米,第一组的步行速度是第二 组的1.2倍,并且比第二组早15分钟到达乙地.设第 二组的步行速度为x千米/小时,根据题意可列方程是 (D)
4.某学校食堂需采购部分餐桌,现有A、B两个商家,A
商家每张餐桌的售价比B商家的优惠13元.若该校花 费2万元采购款在B商家购买餐桌的张数等于花费1.8 万元采购款在A商家购买餐桌的张数,则A商家每张餐
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬 衫售完后的总利润不低于1950元,则第二批衬衫每件 至少要售多少元? (2)设第二批衬衫每件售价y元.根据题意,得 30×(200-150)+15(y-140)≥1950, 解得y≥170. 答:第二批衬衫每件至少要售170元.
桌的售价为( A )
A.117元
B.118元
C.119元
D.120元
5.某园林队计划由6名工人对180平方米的区域进行绿 化,由于施工时增加了2名工人,结果比计划提前3小 时完成任务,若每人每小时绿化面积相同,求每人每 小时的绿化面积.设每人每小时的绿化面积为x平方
米,请列出满足题意的方程是

6.某校学生捐款支援地震灾区,第一次捐款总额为 6600元,第二次捐款的总额为7260元,第二次捐款的 总人数比第一次多30人,而且两次人均捐款额恰好相 等,则第一次捐款的总人数为 300 人.

15.3.2分式方程的实际应用——工程、行程问题+课件+2024-2025学年人教版数学八年级上册

15.3.2分式方程的实际应用——工程、行程问题+课件+2024-2025学年人教版数学八年级上册
在规定日期内完成,问规定日期是多少天?
拓展应用
解:设规定日期为x天,根据题意,得
1
x 3
1


3

1
x x4
x4


解得:x=12.
经检验:x=12是原方程的解且符合题意.
答:规定日期为12天.
回顾反思
1. 本节课探究了分式的哪些问题?
2. 在探寻分式方程的应用时,你经历了哪些数学活动?在
(2)数字问题:在数字问题中要掌握十进制数的表示法;
(3)工程问题:基本公式: 工作量=工时×工效以及它的两个变式 ;
回顾复习
(4)顺水逆水问题:顺水速度= 轮船速度+水流速度 ,
逆水速度= 轮船速度-水流速度 ;
(5)利润问题:基本公式: 利润=售价-进价,利润率=利润÷进价.
探究新知
学生活动一 【一起探究】
的工作效率比原计划提高20%,结果提前2天完成任务.设原计
划每天铺设x米,下面所列方程正确的是( A )
720
720

2
x
( x 20%) x
720
720
C.

2
(1 20%) x
x
A.
720
720

2
(1 20%) x
x
720
720
D.

x 2 (1 20%) x
B.
拓展应用
x
x 2x
解得x=30,
经检验x=30为原方程的根且符合题意.
∴2x=60.
答:甲队单独完成这项工程需30天,乙队单独完成这项工程
需60天.
课后作业
1.课本P154 习题15.3第3,5题.

2019秋人教版八年级数学上册习题课件:第15章 15.3 第2课时 分式方程的应用

2019秋人教版八年级数学上册习题课件:第15章 15.3 第2课时 分式方程的应用

解:在不耽误工期的情况下只能选择方案(1)或(3).设工期为 x 天,则甲队 单独完成需 x 天,乙队单独完成需(x+5)天,由题意得:4x+x+x 5=1,解得 x=20,经检验 x=20 是原方程的解,且符合题意,则方案(1)需工程款 1.5×20 =30(万元),方案(3)需工程款 1.5×4+1.1×20=28(万元),∵28<30,∴在 不耽误工期的情况下,方案(3)最省工程款.
知识点三:百分率问题
3.(舟山中考)甲、乙两个机器人检测零件,甲比乙每小时多检测 20 个,甲 检测 300 个比乙检测 200 个所用的时间少 10%,若设甲每小时检测 x 个, 则根据题意,可列出方程: 3x00=x2-0020×(1-10%) .
知识点四:商品销售问题 4.(广东中考)某公司购买了一批 A、B 型芯片,其中 A 型芯片的单价比 B 型芯片的单价少 9 元,已知该公司用 3120 元购买 A 型芯片的条数与用 4200 元购买 B 型芯片的条数相等. (1)求该公司购买的 A、B 型芯片的单价各是多少元? (2)若两种芯片共购买了 200 条,且购买的总费用为 6280 元,求购买了多少 条 A 型芯片?
【规范解答】(1)设 B 型机器人每小时搬运 x 千克材料,则 A 型机器人每小 时搬运(x+30)千克材料.根据题意,得x1+00300=8x00.解得 x=120.经检验,x =120 是原方程的解,且符合题意.当 x=120 时,x+30=150.答:A 型机 器人每小时搬运 150 千克材料,B 型机器人每小时搬运 120 千克材料; (2)设购进 A 型机器人 a 台,则购进 B 型机器人(20-a)台.根据题意,得 150a +120(20-a)≥2800.解得 a≥430.∵a 是整数,∴a≥14.答:至少购进 A 型机 器人 14 台.

八年级上册数学15.3第2课时列分式方程解决实际问题

八年级上册数学15.3第2课时列分式方程解决实际问题

课堂练习
7.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以 体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球 ,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价 格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买 足球的数量是用900元购买篮球数量的2倍. (1)足球和篮球的单价各是多少元?
.
甲队 乙队
工作时间(月) 工作效率
1 1
1
2
3
1
1
2
x
工作总量(1)
(1 1 ) 1 23
11 2x
探索新知
知识点 列分式方程解决实际问题
等量关系: 甲队完成的工作总量+乙队完成的工作总量=“1”
(1 1 ) 1
11
23
2x
列得分式方程:1 1 1 1 1 1.
2 3 2 x
探索新知
解得 x sv
.
50
检验:由v,s都是正数,得 x sv
时,x(x+v)≠0.
50
所以,原分式方程的解为 x sv
.
50
答:提速前列车的平均速度为 sv
50
km/h.
探索新知
知识点 列分式方程解决实际问题
列分式方程解决实际问题的一般步骤 1.审:审清题意,分清题中的已知量、未知量; 2.找:找出题中的相等关系, 3.设:设出恰当的未知数,注意单位和语言的完整性; 4.列:根据题中的相等关系,正确列出分式方程; 5.解:解所列分式方程;


=30
课堂练习
6.某网店开展促销活动,其商品一律按8折销售,促销期间用400元 在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每 件多少元?

15.3+分式方程第2课时+列分式方程解决实际问题课件2024-2025学年人教版八年级数学上册++

15.3+分式方程第2课时+列分式方程解决实际问题课件2024-2025学年人教版八年级数学上册++
解: 设实际用了 天,则原计划用 天,改建的自行车道距离: , ,解得 ,经检验, 是原分式方程的解, 付给工程队的费用: (万元)答:付给工程队的费用为 万元.
能力提升
7.某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
4.解题方法:可概括为“321”,即3指该类问题中三量关系,如工程问题有工作效率,工作时间,工作量;2指该类问题中的“两个主人公”如甲队和乙队,或“甲单独和两队合作”;1指该问题中的一个等量关系.如工程问题中等量关系是:两个主人公工作总量之和=全部工作总量.
3.弄清基本的数量关系.如本题中的“合作的工效=甲乙两队工作效率的和”.
解:设运输公司用大货车 辆,小货车 辆,依题意 由②得 ,把④代入③得 解得 .方案一:当 时, ,费用为 元;方案二:当 时, ,费用为 元, 方案二费用最低,最低运输费用是15 900元.
中考链接
8.(2022·北部湾经济区)《千里江山图》是宋代王希孟的作品,它的局部画面装裱前是一个长为 ,宽为 的矩形,装裱后,整幅画宽与长的比是 ,且四周边衬宽度相等,则边衬的宽度应是多少米?设边衬的宽度为 ,根据题意可列方程( ) .
5.某瓶装饮料每箱价格是26元,某商店对该饮料进行“买一送三”的促销活动,即买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,该品牌饮料每瓶多少元?设该品牌饮料每瓶是 元,则可列方程为_ _____________.
6.自行车运动深受市民的喜爱.A地、B地间有一条自行车道.小明从A地出发骑行去B地,小军从B地出发骑行去A地.
(1)小明和小军相约上午8时同时从各自出发地出发,匀速骑行,到上午10时,他们相距 ,到中午12时,两人又相距 .求A,B两地间的自行车道的距离.

第1套人教初中数学八上 15.3 分式方程(第2课时)分式方程的应用课件 【通用,最新经典教案】

A.a4
2
3
4
5
6
).
B.a7
C.a6
D.a12
关闭
B
答案
1
2
3
4
5
6
2.下列计算正确的是(
).
A.b4·
b2=b8
B.x3+x2=x6
C.a4+a2=a6
D.m3·
m=m4
关闭
选项 A 和 D 都是同底数幂的乘法,底数不变,指数相加;选项 B 和 D 的左边都不是同类项,
不能合并.
关闭
D
解析
答案
6
.
关闭
2 187
答案
1
2
3
4
5
6
6.计算:
(1)-36×37;
(2)y5·
y4·
y;
(3)a3·
a5-a2·
a6;
(4)29×28×23.
关闭
(1)-36×37=-36+7=-313;
(2)y5·y4·y=y5+4+1=y10;
(3)a3·a5-a2·a6=a8-a8=0;
(4)29×28×23=29+8+3=220.
40
30
程为 + 3 = -3 .
5.列分式方程解应用题的基本步骤
(1) 审 ——仔细审题,找出等量关系;
(2) 设 ——合理设未知数;
(3) 列 ——根据等量关系列出方程(组);
(4) 解 ——解出方程(组);
(5) 验 ——检验;
(6) 答 ——写出答案.
新课早知
学前温故
6.小兰的妈妈在供销大厦用 12.50 元买了若干瓶酸奶,但她在百

最新人教版初中数学八年级上册《15.3 分式方程(第2课时)》精品教学课件


解:方程两边都乘以最简公分母 ( x 1)( x 1)
得: (x–1)+2(x+1)=4
∴x=1
检验:当x=1时,(x+1)(x–1)=0,
所以x=1不是原方程的根.
∴原方程无解.
课堂检测
能力提升题
某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯
片的单价少9元,已知该公司用3120元购买A型芯片的条数与
当x= –3时,(k+1)(–3)=4k,
所以当k=3或
时,原分式方程无解.
巩固练习
如果关于x的方程
A. –3
无解,则m的值等于( B )
B. –2
C. –1
D. 3
解析:方程的两边都乘x–3,得2=x–3–m,移项并合并同类项
得,x=5+m,由于方程无解,此时x=3,即5+m=3,
∴m = –2.
用4200元购买B型芯片的条数相等.
(1)求该公司购买的A、B型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,
求购买了多少条A型芯片?
课堂检测
解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x–9)元/条,根
据题意得:


=



解得:x=35,经检验,x=35是原方程的解,
具备加工能力,公司派出相关人员分别到这两间工厂了解
情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工
完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的
1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多

八年级数学上册第十五章分式课件PPT


15.3 分式方程(2课时)
第1课时 分式方程的解法
重点 解分式方程的基本思路和解法. 难点 理解解分式方程时可能无解的原因.
解分式方程的步骤: 在将分式方程变形为整式方程时,方程两边同乘一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.
一、复习引入 1.分式的乘除法法则. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2.乘方的意义: an=a·a·a·…·a(n为正整数).
四、巩固练习 教材第139页练习第1,2题. 五、课堂小结 1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业 教材第146页习题15.2第3题.
1.了解分式的基本性质,灵活运用分式的基本性质进行分式的变形. 2.会用分式的基本性质求分式变形中的符号法则.
重点 理解并掌握分式的基本性质. 难点 灵活运用分式的基本性质进行分式变形.
在解决例题1,2的第(2)小题时,教师可以引导学生观察等式两边的分母发生的变化,再思考分式的分子如何变化;在解决例2的第(1)小题时,教师引导学生观察等式两边的分子发生的变化,再思考分式的分母随之应该如何变化. 三、课堂小结 1.分式的基本性质是什么? 2.分式的变号法则是什么? 3.如何利用分式的基本性质进行分式的变形? 学生在教师的引导下整理知识、理顺思维. 四、布置作业 教材第133页习题15.1第4,5题.
三、课堂小结 1.列分式方程解应用题的一般步骤: (1)审:审清题意; (2)设:设未知数(要有单位); (3)列:根据题目中的数量关系找出相等关系,列出方程; (4)解:解方程,并验根,还要看方程的解是否符合题意; (5)答:写出答案(要有单位).

八年级数学人教版(上册)第2课时分式方程的实际应用——工程问题


解:根据题意,得 m×1180+n×1120=1. 整理,得 n=120-23m. ∵m<46,n<92,∴120-23m<92. 解得 42<m<46.
∵m 为正整数,∴m=43,44,45. 又∵n=120-23m 为正整数,∴m=45,n=90.
答:A,B 两个工程公司分别施工了 45 天、90 天.
箱药品,则下面所列方程正确的是( D )
A.6 0x00=x4+550000
B.x6-050000=4
500 x
C.6 0x00=x4-550000
D.x6+050000=4
500 x
2.(2021·东营)某地积极响应“把绿水青山变成金山银山,用绿 色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园, 促进旅游发展.某工程队承接了 90 万平方米的荒山绿化任务,为了 迎接雨季的到来,实际工作时每天的工作效率比原计划提高了 25%, 结果提前 30 天完成了任务.设原计划每天绿化的面积为 x 万平方米,
解:设八年级捐书人数是 x,则七年级捐书人数是(x-150),依 题意,得
1 8x00×1.5=x1-810500,解得 x=450. 经检验,x=450 是原方程的解,且符合题意. 答:八年级捐书人数是 450.
5.某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工
程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完
成这项工程,刚好如期完工;②乙队单独完成此项工程,要比规定工期多用 5
天;③
,剩下的工程由乙队单独完成,也正好如期完工.某同学设规
定的工期为 x 天,根据题意列出了方程:4x+x+x 5=1,则方案③中被墨水污染
的部分应该是( B )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档