4种数据仓库建模方法
数据仓库的架构方式及其比较

数据仓库的架构方式及其比较数据仓库的架构方式及其比较传统的关系数据库一般采用二维数表的形式来表示数据,一个维是行,另一个维是列,行和列的交叉处就是数据元素。
关系数据的基础是关系数据库模型,通过标准的SQL语言来加以实现。
数据仓库是多维数据库,它扩展了关系数据库模型,以星形架构为主要结构方式的,并在它的基础上,扩展出理论雪花形架构和数据星座等方式,但不管是哪一种架构,维度表、事实表和事实表中的量度都是必不可少的组成要素。
下面解析由这些要素构成的数据仓库的架构方式。
1.星形架构星形模型是最常用的数据仓库设计结构的实现模式,它使数据仓库形成了一个集成系统,为最终用户提供报表服务,为用户提供分析服务对象。
星形模式通过使用一个包含主题的事实表和多个包含事实的非正规化描述的维度表来支持各种决策查询。
星形模型可以采用关系型数据库结构,模型的核心是事实表,围绕事实表的是维度表。
通过事实表将各种不同的维度表连接起来,各个维度表都连接到中央事实表。
维度表中的对象通过事实表与另一维度表中的对象相关联这样就能建立各个维度表对象之间的联系。
每一个维度表通过一个主键与事实表进行连接,如图3-10所示。
图3-10 星形架构示意图事实表主要包含了描述特定商业事件的数据,即某些特定商业事件的度量值。
一般情况下,事实表中的数据不允许修改,新的数据只是简单地添加进事实表中,维度表主要包含了存储在事实表中数据的特征数据。
每一个维度表利用维度关键字通过事实表中的外键约束于事实表中的某一行,实现与事实表的关联,这就要求事实表中的外键不能为空,这与一般数据库中外键允许为空是不同的。
这种结构使用户能够很容易地从维度表中的数据分析开始,获得维度关键字,以便连接到中心的事实表,进行查询,这样就可以减少在事实表中扫描的数据量,以提高查询性能。
在AdventureWorksDW数据仓库中,若以网络销售数据为事实表,把与网络销售相关的多个商业角度(如产品、时间、顾客、销售区域和促销手段等)作为维度来衡量销售状况,则这些表在数据仓库中的构成如图3-11所示,可见这几个表在数据仓库中是以星形模型来架构的。
数仓建模方法

数仓建模方法数仓建模方法是数据仓库建设过程中的核心技术之一。
数仓建模方法是指根据业务需求,将数据仓库中的数据按照一定的规则、标准进行分类、整理和归类,然后建立数据仓库的存储结构,使得数据仓库能够满足不同层次用户的查询和分析需求,以及数据仓库性能和可维护性的要求。
常用的数仓建模方法有维度建模方法和实体关系建模方法。
下面将对这两种建模方法进行详细介绍。
1. 维度建模方法维度建模方法是将数据仓库中的数据按照维度和度量进行分类,并建立维度模型来存储数据。
维度指一些具有共同属性的数据对象,比如时间、地理位置、产品等,度量则是用来描述维度之间关系的数值或指标。
维度模型通常由一个中心事实表和多个维度表组成,中心事实表包含多个度量和与之相关的维度键,维度表则包含每个维度的属性和维度键。
维度建模方法具有以下优点:(1)易于理解和维护:维度建模方法采用直观的图形化表示方法,能够直观地反映业务性质和数据之间的关系,使得数据仓库使用更加直观和易于维护,同时也能够降低数据仓库的实施成本和风险。
(2)适应性强:维度建模方法能够很好地适应多种类型的业务需求,并且在模型设计过程中可以根据实际需求进行模型的调整和扩展。
(3)高性能:维度建模方法能够通过冗余数据的技术实现查询优化,提高查询效率和性能。
2. 实体关系建模方法实体关系建模方法是将数据仓库中的数据按照实体和关系进行分类,并建立实体关系模型来存储数据。
实体是业务领域中的某个具体事物,比如客户、订单、产品等,而实体之间的关系则代表了实体之间的业务关系。
实体关系模型通常由多个实体表和连接表组成,实体表包含每个实体的属性,连接表则用于描述实体之间的关系。
实体关系建模方法具有以下优点:(1)可扩展性强:实体关系建模方法能够很好地适应任何类型的业务需求,并且可以根据实际需求进行灵活的模型扩展和调整。
(2)模型具有普遍性:实体关系模型是基于实体和关系的统一建模方法,这种建模方式在软件工程领域得到广泛应用,在数据仓库建设中也具有普遍性。
数仓建模方法

数仓建模方法《数仓建模方法》一、什么是数仓建模数仓建模是一种将数据仓库中的数据通过数据建模技术来提取有用信息的一种过程。
数仓建模通常通过分析和抽取数据仓库中的数据来创建一个数据模型,以便更好地理解数据仓库中的大量数据和用户业务需求。
二、数仓建模的优势1、降低计算时间:数仓建模能够捕捉大量的历史数据,可以对大量数据进行统一处理,帮助你快速定位问题,降低计算时间。
2、减少误差:数仓建模可以在最短的时间内,准确地抽取出有效的信息,有助于你减少在数据处理过程中的误差。
3、开发新业务:使用数仓建模过程可以发现新的潜在商机,以及发现不符合预期的问题,从而帮助你开发新产品和服务。
三、数仓建模的常用方法1、ER模型:ER模型(实体关系模型)是一种简单而又有效的模型,是数据库设计阶段最重要的步骤之一,可以抽象出实体和实体之间的关系,以便构建数据库。
2、Dimensional模型:Dimensional模型是另一种在数据仓库中常用的数据建模技术,它是一种非常强大的业务模型,包含可以用来支持复杂查询的维度表和事实表。
3、OLAP模型:OLAP(在线分析处理)模型是基于维度模型的一种模型,它是一种数据挖掘技术,可以抽取出庞大的数据集中隐藏的深度信息和知识。
四、数仓建模的注意事项1、要清楚数据仓库建模的目标和目的:要清楚自己建模过程的目标,是改善业务流程,还是增加数据质量,或者是预测业务趋势等。
2、清楚数据仓库的范围:在建模之前,要明确数据仓库的范围,确定数据仓库的层级,以及存储在数据仓库中的数据类型。
3、注意模型的细节:在建模过程中,要注意模型细节,比如数据类型、缩放程度、血缘因子等,以便创建最佳的数据模型。
专题数据库建设方案

一,数据仓库的数据模型1. 数据源数据源,顾名思义就是数据的来源,互联网公司的数据来源随着公司的规模扩张而呈递增趋势,同时自不同的业务源,比如埋点采集,客户上报等。
2. ODS层数据仓库源头系统的数据表通常会原封不动地存储一份,这称为ODS(Operation Data Store)层, ODS层也经常会被称为准备区(Staging area),它们是后续数据仓库层(即基于Kimball维度建模生成的事实表和维度表层,以及基于这些事实表和明细表加工的汇总层数据)加工数据的来源,同时ODS层也存储着历史的增量数据或全量数据。
3. DW层据仓库明细层(Data Warehouse Detail ,DWD)和数据仓库汇总层(Data Warehouse Summary, DWS)是数据仓库的主题内容。
DWD和DWS层的数据是ODS 层经过ETL清洗、转换、加载生成的,而且它们通常都是基于Kimball的维度建模理论来构建的,并通过一致性维度和数据总线来保证各个子主题的维度一致性。
4. DWS层应用层汇总层主要是将DWD和DWS的明细数据在hadoop平台进行汇总,然后将产生的结果同步到DWS数据库,提供给各个应用。
二,数据采集数据采集的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。
比较常见的就是用户行为数据的采集先做sdk埋点,通过kafka实时采集到用户的访问数据,再用spark做简单的清洗,存入hdfs作为数据仓库的数据源之一。
三,数据存储随着公司的规模不断扩张,产生的数据也越来越到,像一些大公司每天产生的数据量都在PB级别,传统的数据库已经不能满足存储要求,目前hdfs是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。
在离线计算方面,也就是对实时性要求不高的部分,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC/PARQUET文件存储格式;非常方便的SQL 支持,使得Hive在基于结构化数据上的统计分析远远比MapReduce要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;而在实时计算方面,flink是最优的选择,不过目前仅支持java跟scala开发。
数据仓库建模ppt课件

数据模型的作用
进行全面的业务梳理,改进业务流程
在业务模型建设的阶段,能够帮助我们对本单位的业务进行全面的梳理。同时,帮助进一步的改进业务流 程,提高业务效率。
建立全方位的数据视角,消灭信息孤岛和数据差异
能够为企业提供一个整体的数据视角,不再是各个部门只是关注自己的数据,而且通过模型的建设,勾勒 出了部门之间内在的联系,帮助消灭各个部门之间的信息孤岛的问题,更为重要的是,通过数据模型的建 设,能够保证整个企业的数据的一致性,各个部门之间数据的差异将会得到有效解决。
内部资料,注意保密
星型结构建模( Kimball )
核心:所分析的内容以及用于分析内容的评估标准 测度、维和事实
✓ 测度,即评估标准,是事实的数字属性 ✓ 维,即所分析的内容,是事实的描述属性 ✓ 事实,一组维度及其相关的测度共同组成
内部资料,注意保密
星型结构示例
内部资料,注意保密
星型结构建模优缺点
因为该架构可以逐步建立的特点,它的开发周期比其他架构方式的开 发周期要短,相应的成本也要低
在星型结构的原子层上可以直接建立聚集,也可以建立HOLAP
内部资料,注意保密
三范式原子层+ROLAP
该数据仓库架构也称为集中式架构(Centralized Architecture), 思路是在三范式的原子层上直接建立ROLAP。
内部资料,注意保密
数据模型的必要性与重要性
数据仓库的基础
建设的导航图
数据整合的依据
消除数据的差异及 支撑业务及数据的
冗余
扩展
数据模型是 数据仓库建设的 基础,一个完整、 灵活、稳定的数 据模型对于数据 仓库项目的成功 起着重要的作用。
数据模型是 整个系统建设过 程的导航图。通 过数据模型可以 清楚地表达企业 内部各种业务主 体之间的相关性, 使不同部门的业 务人员、应用开 发人员和系统管 理人员获得关于 系统的统一完整 的视图。
dws 数据服务层 数据建模方法

dws 数据服务层数据建模方法(最新版4篇)《dws 数据服务层数据建模方法》篇1DWS(Data Warehouse System) 数据仓库系统是一个用于收集、存储、处理和分析大量数据的系统,通常用于为企业决策提供支持。
数据服务层是DWS 中的一个重要组成部分,提供了对数据的访问和操作。
数据建模方法是数据服务层的一个关键环节,用于设计和构建数据模型,以满足业务需求。
以下是一些常用的数据建模方法:1.实体关系模型(Entity-Relationship Modeling):实体关系模型是一种用于描述实体、属性和实体之间关系的数据模型。
它通常使用ER 图来表示,ER 图由实体、属性和关系组成。
实体表示数据中的某个对象,如人、地点或产品,属性表示实体的特征,如人的姓名、年龄或产品的价格。
关系表示实体之间的联系,如人与地点的关系可以是居住或工作。
2.维度建模(Dimensional Modeling):维度建模是一种用于设计数据仓库的数据模型,它将数据划分为事实和维度。
事实表示业务过程中的某个事件,如销售、采购或库存,通常包含日期、数量、金额等指标。
维度用于对事实数据进行分类和分组,如时间维度、产品维度、客户维度等。
维度建模的主要目的是支持多维数据分析,以便用户可以进行切片、切块、过滤等操作。
3.数据模型继承(Data Model Inheritance):数据模型继承是一种用于设计数据模型的方法,它允许子类继承父类的属性和关系。
这种方法可以提高数据模型的复用性和可维护性,减少数据冗余和矛盾。
4.领域建模(Domain Modeling):领域建模是一种用于设计数据模型的方法,它将数据模型与业务领域模型相结合,以便更好地反映业务过程和实体之间的关系。
领域建模通常采用UML(统一建模语言) 来描述业务领域模型,然后将其转换为数据模型。
5.数据建模工具(Data Modeling Tools):数据建模工具是一种用于设计和构建数据模型的软件工具,它可以帮助用户创建ER 图、维度模型和其他类型的数据模型,并提供数据模型的验证和优化功能。
数据仓库中的维度建模及数据挖掘方法研究

数据仓库中的维度建模及数据挖掘方法研究数据仓库是一个存储、管理以及分析大量数据的系统,它主要用于支持企业的决策制定过程。
数据仓库之所以能够支持复杂的决策制定过程,是因为它采用了维度建模的方法。
维度建模是一种特殊的建模方法,它能够清晰明确地描述一个业务过程,从而帮助业务分析师快速梳理和理解业务需求,为决策制定提供有效的支持。
维度建模的方法主要是通过维度和度量来描述业务过程,其中维度是业务过程的属性,度量是对这些属性进行度量的指标。
比如,某个零售公司希望了解其销售数据,可以采用时间、地点、商品、客户等维度来描述销售过程,而销售额、销售数量等度量则是这些维度数据的分析结果。
在维度建模的基础上,数据挖掘则是一个更深入的分析过程。
它不仅仅是对维度和度量进行分析,还需要探索这些数据之间的关系,找出潜在的模式和规律。
数据挖掘可以应用于许多领域,如金融、医疗、营销等,帮助企业识别新的机会和挑战,并制定相应的决策。
在实践中,我们可以采用OLAP(On-line Analytical Processing)工具和数据挖掘算法来分析数据仓库中的数据。
OLAP工具可以提供很多分析功能,如多维分析、数据切割、统计、图形分析等,帮助用户快速获取业务洞察。
数据挖掘算法则可以帮助用户发现有用的信息和模式,如关联规则挖掘、分类算法、聚类算法等。
值得一提的是,虽然维度建模和数据挖掘在不同层次的数据分析过程中具有不同的应用,但二者是互相关联、互相支持的。
事实上,维度建模提供了用于分析的维度和度量,而数据挖掘则需要这些维度和度量作为分析的对象。
因此,在实践中,我们需要在维度建模和数据挖掘之间建立良好的连接,将业务需求转化为有效的分析方法,并通过数据挖掘方法提取出有用的信息和模式。
总之,数据仓库中的维度建模和数据挖掘是数据分析的重要方法,它们帮助企业发掘潜在的商业机会,并优化决策制定过程。
在实践中,我们需要综合应用OLAP工具和数据挖掘算法,将业务需求转化为有效的分析方法,并从数据中挖掘出有用的信息和模式。
数据库建模技术方案

数据库建模技术方案1.引言1.1 概述数据库建模技术是指通过对现实世界中的数据进行抽象和建模,设计出数据库的结构和关系,以实现数据的存储、管理和处理。
在信息化时代,数据库建模技术成为了一项基础而重要的工作,对于实现企业数据化管理和决策支持具有重要意义。
本文将从数据库建模技术的概述、方案以及未来发展等方面进行详细介绍和分析。
在进行数据库建模时,需考虑到数据的实体、属性、关系等因素,以及数据之间的联系和约束关系。
通过对现实世界的实体进行建模,我们可以将数据划分为不同的实体集合,并定义实体的属性和关系。
通过这样的抽象和建模工作,数据的结构和关系得以清晰地展示出来,为实现高效的数据管理和应用提供了基础。
数据库建模技术方案的选择与设计是数据库建模过程中的重要环节。
不同的数据库建模技术方案适用于不同的场景和需求。
常见的数据库建模技术方案包括关系模型、层次模型、网络模型等。
关系模型是最为常见和广泛应用的数据库建模技术方案,通过表格的形式展现数据之间的关系,具有较好的可扩展性和灵活性。
而层次模型和网络模型则适用于较为特殊的数据结构和应用场景。
在未来,随着大数据、云计算和人工智能等技术的快速发展,数据库建模技术也将不断创新和演进。
比如,随着数据量的增大,分布式数据库建模技术将得到更广泛的应用;随着数据的多样化和复杂化,图数据库建模技术将具备更大的发展空间。
此外,数据库建模技术还应与其他技术进行整合,如面向对象技术、数据挖掘技术等,以提高数据库的性能和功能。
综上所述,数据库建模技术是现代信息管理的重要组成部分,通过对现实世界的数据进行抽象和建模,实现数据的存储、管理和处理。
不同的数据库建模技术方案适用于不同的场景和需求,而未来的发展则需要与其他相关技术相结合。
对于企业和个人而言,熟练掌握和应用数据库建模技术,将有助于提高数据管理和决策支持的效率和质量。
文章结构部分的内容可以包括以下几个方面:1. 文章主题:介绍文章的主要内容和讨论的问题,确保读者能够在阅读前了解文章的目的和意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言概述
在数字化时代,数据成为企业运营和决策的重要驱动力。
为了更好地管理和利用企业数据,很多企业采用数据仓库来集成和存储数据。
数据仓库建模是数据仓库设计的核心环节,它决定了数据在仓库中的组织结构和查询方式。
本文将介绍四种常见的数据仓库建模方法,包括维度建模、实体关系模型、标准化模型以及主题建模。
维度建模
维度建模是一种以事实表和维度表作为核心的建模方法。
事实表是存储数值型数据的表,维度表则存储描述性属性的表。
在维度建模中,事实表和维度表通过共享主键来建立关联。
小点详细阐述:
1.事实表的设计:事实表应选择合适的粒度,并包含与业务流程相关的度量。
例如,销售事实表可以包含销售额、销售数量等度量。
2.维度表的设计:维度表应包含与业务流程相关的描述性属性,例如时间、产品、地理位置等。
维度应具有层次结构,以便支持多维分析。
3.关系型数据库实现:维度建模通常使用关系型数据库来实现,它通过表和关联键来表示维度和事实之间的关系。
实体关系模型
实体关系模型是一种基于关系代数和数据库范式的建模方法。
它通过实体、属性和关系来描述数据的结构。
实体关系模型适用于较复杂的数据仓库场景,其中数据具有多层级和复杂的关系。
小点详细阐述:
1.实体的建模:实体是数据仓库中的核心对象,它代表了业务流程中的实际对象。
实体的属性描述了实体的特征。
2.关系的建模:关系描述了实体间的关联和依赖关系。
在实体关系模型中,关系通过外键建立。
3.数据库范式:实体关系模型追求高度的数据规范化,以减少数据冗余和不一致性。
标准化模型
标准化模型是一种以消除冗余数据为核心的建模方法。
在标准化模型中,数据被拆分为多个表,并通过关系建立关联。
小点详细阐述:
1.数据拆分:标准化模型通过将数据拆分为多个表,将重复的数据存储在一个地方,并通过外键建立关联。
2.数据插入和查询:标准化模型在数据插入和查询时需要进行多表关联操作,对性能有一定影响。
3.适用场景:标准化模型适用于事务性场景,如订单管理、库存管理等。
主题建模
主题建模是一种以业务主题为核心的建模方法。
它以业务流程为导向,将相关的数据组织到一个主题中。
小点详细阐述:
1.主题的定义:主题代表了业务流程中的一个特定方面,例如销售、供应链、客户等。
2.统一的维度:主题建模中,各个主题共享统一的维度表,以保证数据一致性和可查询性。
3.星型和雪花模型:主题建模通常使用星型或雪花模型来表示业务主题与维度表之间的关系。
总结
本文介绍了四种常见的数据仓库建模方法,包括维度建模、实体关系模型、标准化模型以及主题建模。
不同的建模方法适用于不同的业务场景,选取合适的建模方法是数据仓库设计的关键步骤。
在实际应用中,也可以根据实际情况综合运用多种建模方法,以满
足业务需求和性能要求。
通过合理的数据仓库建模,企业可以更好地管理和利用数据,从而提升业务运营和决策能力。