2022年湖北武汉中考数学试卷
2022年湖北武汉中考数学试题(完整版)

2022年湖北武汉中考数学试题(完整版)2022年湖北武汉中考数学试题(完整版)对于数学成绩不好的同学们,小编为你精心准备了2022年湖北武汉中考数学试题,一起来看看吧,试试自己的水平吧,希望能够帮助到你考试!2022年湖北武汉中考数学试题中考数学压轴题解题技巧1、基本知识不丢一分在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。
“首先要梳理知识网络,思路清晰知己知彼。
其次要掌握数学考纲,对考试心中有谱。
掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的解题技巧,根据考纲和自己的实际情况来侧重复习。
2、运用数形结合思想中考数学压轴题解题技巧之一就是数形结合思想,是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法,或利用数量关系来研究几何图形的性质,解决几何问题的一种数学思想。
纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。
有些数学问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考数学压轴题分类讨论思想解题已成为新的热点。
4、分题得分中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
5、分段得分一道中考数学压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。
2022年湖北省武汉市市中考数学真题含答案

2022年湖北省武汉市市中考数学真题含答案一、选择题1.2022的相反数是()A.12022 B.12022C.−2022D.2022【答案】C【解析】【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数.【详解】解:2022的相反数是−2022.故选:C.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件【答案】D【解析】【分析】直接根据随机事件的概念即可得出结论.【详解】购买一张彩票,结果可能为中奖,也可能为不中奖,中奖与否是随机的,即这个事件为随机事件.故选:D.【点睛】本题考查了随机事件的概念,解题的关键是熟练掌握随机事件发生的条件,能够灵活作出判断.3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】利用轴对称图形的概念可得答案.【详解】解:A.不是轴对称图形,故此选项不合题意;B .不是轴对称图形,故此选项不合题意;C .不是轴对称图形,故此选项不合题意;D .是轴对称图形,故此选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4.计算 342a 的结果是()A.122a B.128a C.76a D.78a 【答案】B 【解析】【分析】直接运用幂的乘方、积的乘方计算即可.【详解】解:4134233228a a a .故答案为B .【点睛】本题主要考查了幂的乘方、积的乘方的运算,灵活运用相关运算法则成为解答本题的关键.5.如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B.C. D.【答案】A 【解析】【分析】根据从正面所看得到的图形为主视图,据此解答即可.【详解】解:从正面可发现有两层,底层三个正方形,上层的左边是一个正方形.故选:A .【点睛】本题主要考查了三视图的知识,掌握主视图是从物体的正面看得到的视图成为解答本题的关键.6.已知点 11,A x y , 22,B x y 在反比例函数6y x的图象上,且120x x ,则下列结论一定正确的是()A.120y y B.120y y C.12y y D.12y y 【答案】C 【解析】【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系.【详解】解:∵点 11,A x y , 22,B x y )是反比例函数6y x的图象时的两点,∴11226x y x y .∵120x x ,∴120y y .故选:C .【点睛】本题主要考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.7.匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是()A.B. C. D.【答案】A 【解析】【分析】根据函数图象的走势:较缓,较陡,陡,注水速度是一定的,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,从而得到答案.【详解】解:从函数图象可以看出:OA 段上升最慢,AB 段上升较快,BC 段上升最快,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,∴题中图象所表示的容器应是下面最粗,中间其次,上面最细;故选:A .【点睛】本题考查了函数图象的性质在实际问题中的应用,判断出每段函数图象变化不同的原因是解题的关键.8.班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是()A.14B.13C.12D.23【答案】C 【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A ,B 两位同学座位相邻的概率是61122.故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.9.如图,在四边形材料ABCD 中,AD BC ∥,90A ,9cm AD ,20cm AB ,24cm BC .现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A.110cm 13B.8cmC.62cmD.10cm【答案】B 【解析】【分析】如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,据此求解即可.【详解】解:如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,∵AD BC ∥,∠BAD =90°,∴△EAD ∽△EBC ,∠B =90°,∴EA AD EB BC,即92024EA EA ,∴12cm EA ,∴EB =32cm ,∴2240cm EC EB BC,设这个圆的圆心为O ,与EB ,BC ,EC 分别相切于F ,G ,H ,∴OF =OG =OH ,∵=EBC EOB COB EOC S S S S △△△△,∴11112222EB BC EB OF BC OG EC OH ,∴ 2432=243240OF ,∴8cm OF ,∴此圆的半径为8cm ,故选B .【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作出辅助线是解题的关键.10.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12【答案】D【解析】【分析】根据题意设出相应未知数,然后列出等式化简求值即可.【详解】解:设如图表所示:x62022z yn m根据题意可得:x+6+20=22+z+y,整理得:x-y=-4+z,x+22+n=20+z+n,20+y+m=x+z+m,整理得:x=-2+z,y=2z-22,∴x-y=-2+z-(2z-22)=-4+z,解得:z=12,∴x +y =3z -24=12故选:D .【点睛】题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.二、填空题11.计算的结果是_________.【答案】2【解析】【分析】根据二次根式的性质进行化简即可.2 .故答案为:2.(0000a a a a a a>)<.12.某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.尺码/cm 2424.52525.526销售量/双131042【答案】25【解析】【分析】直接根据众数的定义:一组数据中出现次数最多的数即为众数即可得出结论.【详解】由表格可知:尺码25的运动鞋销售量最多为10双,即众数为25.故答案为:25.【点睛】本题考查了众数,解题的关键是熟练掌握众数的定义.13.计算:22193x x x的结果是__.【答案】13x .【解析】【分析】【详解】原式23(3)(3)(3)(3)x x x x x x23(3)(3)x x x x3(3)(3)x x x13x.故答案为:13x .14.如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取150ABC ,1600m BC ,105BCD ,则C ,D 两点的距离是_________m .【答案】【解析】【分析】如图所示:过点C 作CE BD 于点E ,先求出800m CE ,再根据勾股定理即可求出CD 的长.【详解】如图所示:过点C 作CE BD 于点E ,则∠BEC =∠DEC =90°,150ABC ∵,30CBD ,∴∠BCE =90°-30°=60°,又105BCD ∵,45CDB ,∴∠ECD =45°=∠D ,∴CE DE ,1600m BC ∵,111600800m 22CE BC,22222CD CE DE CE,即CD .故答案为:【点睛】本题考查三角形内角和定理、等腰三角形的判定与性质、直角三角形的性质及勾股定理,解题的关键是熟练掌握相关内容并能灵活运用.15.已知抛物线2y ax bx c (a ,b ,c 是常数)开口向下,过 1,0A , ,0B m 两点,且12m .下列四个结论:①0b ;②若32m,则320a c ;③若点 11,M x y , 22,N x y 在抛物线上,12x x ,且121x x ,则12y y ;④当1a 时,关于x 的一元二次方程21ax bx c 必有两个不相等的实数根.其中正确的是_________(填写序号).【答案】①③④【解析】【分析】首先判断对称轴02bx a=->,再由抛物线的开口方向判断①;由抛物线经过A (-1,0), ,0B m ,当32m 时, 312y a x x,求出32c a ,再代入32a c 判断②,抛物线 2211y ax bx c a x x m ax a m x am ,由点 11,M x y ,22,N x y 在抛物线上,得 21111y ax a m x am , 22221y ax a m x am ,把两个等式相减,整理得 1212121y y a x x x x m ,通过判断12x x ,121x x m 的符号判断③;将方程21ax bx c 写成a (x -m )(x +1)-1=0,整理,得 2110x m x m a,再利用判别式即可判断④.【详解】解:∵抛物线过 1,0A , ,0B m 两点,且12m ,122b mx a,∵12m ,11022m,即02ba,∵抛物线开口向下,0a ,0b >,故①正确;若32m,则 23131222y a x x ax ax a,32c a ,3323202a c a a,故②不正确;∵抛物线2211y ax bx c a x x m ax a m x am ,点 11,M x y ,22,N x y 在抛物线上,∴ 21111y ax a m x am , 22221y ax a m x am ,把两个等式相减,整理得1212121y y a x x x x m ,120,a x x ∵,121x x ,12m ,12120,10x x x x m >,12121210y y a x x x x m >,12y y >,故③正确;依题意,将方程21ax bx c 写成a (x -m )(x +1)-1=0,整理,得 2110x m x m a, 2214141m m m a a,12m ∵,1a ,2419m ,44a, 2410m a>,故④正确.综上所述,①③④正确.故答案为;①③④.【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.16.如图,在Rt ABC 中,90ACB ,AC BC ,分别以ABC 的三边为边向外作三个正方形ABHL ,ACDE ,BCFG ,连接DF .过点C 作AB 的垂线CJ ,垂足为J ,分别交DF ,LH 于点I ,K .若5CI ,4CJ ,则四边形AJKL 的面积是_________.【答案】80【解析】【分析】连接LC 、EC 、EB ,LJ ,由平行线间同底的面积相等可以推导出:JAL CAL BAE EAC S S S S ,,由CAL EAB ,可得CAL EAB S S ,故JAL CAL BAE EAC S S S S ,证得四边形ALKJ 是矩形,可得2ALJ ALKJ S S 矩形,在正方形ACDE 中可得:2EAC ACDE S S 正方形,故得出:2ALKJ S AC 矩形.由ACJ CBJ ,可得CJ AJBJ CJ,即可求出8AJ ,可得出【详解】连接LC 、EC 、EB ,LJ ,在正方形ABHL ,ACDE ,BCFG 中90,ALK LAB EAC ACD BCF ,,,,AL AB EA AC BC CF AC CD AE CD ,AB LH ,2EAC ACDE S S 正方形.∵CK LH ,∴90CKL ,CK AB∴180CKL ALK ,90CJA CJB∴CK AL ,∴CAL JAL S S .∵90JKL ALK JAL ,∴四边形ALKJ 是矩形,∴2ALJ ALKJ S S 矩形.∵LAB EAC ,∴LAB BAC EAC BAC ,∴EAB CAL ,∵,,AL AB EA AC ∴CAL EAB ,∴CAL EAB S S .∵AE CD ∥,∴EAB EAC S S .∴JAL CAL BAE EACS S S S ∴22EAC ALKJ ACDE S S S AC 矩形正方形.∵90,DCA BCF DCF BCD .∴90DCF BCD ,∵,,BC CF AC CD ∴ABC DCF ,∴,CAB CDF AB DF ,∵90,90ACB CJB ,∴90,90CAB ABC JCB CBJ ,∴CAB JCB ,∵DCI JCB ,∴DCI IDC ,∴5ID CI ,∵90,90IDC DFC DIC ICF ,∴ICF IFC ,∴5IF CI ,∴10DF ,∴10AB .设,10AJ x BJ x ,∵,,CAJ BCJ CJA CJB ∴ACJ CBJ ,∴CJ AJBJ CJ,∴4104xx ,∴1228x x ,,∵AC BC ,∴AJ BJ ,∴10x x ,∴5x ,∴8x .∴222224880AC CJ AJ ,∴280ALKJ S AC 矩形.故答案为:80.【点睛】此题考查正方形的性质、矩形的性质与判定、相似三角形的判定与性质、勾股定理,平行线间同底的两个三角形,面积相等;难度系数较大,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键.三、解答题17.解不等式组2532x x x①②请按下列步骤完成解答.(1)解不等式①,得_________;(2)解不等式②,得_________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集是_________.【答案】(1)3x (2)1x (3)详见解析(4)31x 【解析】【分析】分别求出每一个不等式的解集,根据口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”原则取所含不等式解集的公共部分,即确定为不等式组的解集.【小问1详解】解:解不等式①,得3x 【小问2详解】解:解不等式②,得1x 【小问3详解】解:把不等式①和②的解集在数轴上表示出来:【小问4详解】解:由图可得,原不等式组的解集是:31x 【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在四边形ABCD 中,AD BC ∥,80B .(1)求BAD 的度数;(2)AE 平分BAD 交BC 于点E ,50BCD .求证:AE DC ∥.【答案】(1)100BAD (2)详见解析【解析】【分析】(1)根据两直线平行,同旁内角互补,即可求解;(2)根据AE 平分BAD ,可得50DAE .再由AD BC ∥,可得50AEB DAE .即可求证.【小问1详解】解:∵AD BC ∥,∴180B BAD °,∵80B ,∴100BAD .【小问2详解】证明:∵AE 平分BAD ,∴50DAE .∵AD BC ∥,∴50AEB DAE .∵50BCD ,∴BCD AEB .∴AE DC ∥.【点睛】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键19.为庆祝中国共青团成立100周年,某校开展四项活动:A 项参观学习,B 项团史宣讲,C 项经典诵读,D 项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是__________,B 项活动所在扇形的圆心角的大小是_________,条形统计图中C 项活动的人数是_________;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.【答案】(1)80,54 ,20(2)大约有800人【解析】【分析】(1)根据“总体=部分÷对应百分比”与“圆心角度数=360°×对应百分比”可求得样本容量及B 项活动所在扇形的圆心角度数,从而求得C 项活动的人数;(2)根据“部分=总体×对应百分比”,用总人数乘以样本中“参观学习”的人数所占比例可得答案.【小问1详解】解:样本容量:16÷20%=80(人),B 项活动所在扇形的圆心角:123605480,C 项活动的人数:80-32-12-16=20(人);故答案为:80,54°,20;【小问2详解】解:32200080080(人),答:该校意向参加“参观学习”活动的学生大约有800人.【点睛】本题主要考查了条形统计图,扇形统计图,用样本估计总体,读懂图,找出对应数据,熟练掌握总体、部分与百分比之间的关系是解题的关键.20.如图,以AB 为直径的O 经过ABC 的顶点C ,AE ,BE 分别平分BAC 和ABC ,AE 的延长线交O 于点D ,连接BD .(1)判断BDE 的形状,并证明你的结论;(2)若10AB ,BE BC 的长.【答案】(1)BDE 为等腰直角三角形,详见解析(2)8BC 【解析】【分析】(1)由角平分线的定义、结合等量代换可得BED DBE ,即BD ED ;然后再根据直径所对的圆周角为90°即可解答;(2)如图:连接OC ,CD ,OD ,OD 交BC 于点F .先说明OD 垂直平分BC .进而求得BD 、OD 、OB 的长,设OF t ,则5DF t .然后根据勾股定理列出关于t 的方程求解即可.【小问1详解】解:BDE 为等腰直角三角形,证明如下:证明:∵AE 平分BAC ,BE 平分ABC ,∴BAE CAD CBD ,ABE EBC .∵BED BAE ABE ,DBE DBC CBE ,∴BED DBE .∴BD ED .∵AB 为直径,∴90ADB .∴BDE 是等腰直角三角形.【小问2详解】解:如图:连接OC ,CD ,OD ,OD 交BC 于点F .∵DBC CAD BAD BCD ,∴BD DC .∵OB OC ,∴OD 垂直平分BC .∵BDE 是等腰直角三角形,BE∴BD .∵10AB ,∴5OB OD .设OF t ,则5DF t .在Rt BOF 和Rt BDF V 中,22225(5)t t .解得,3t .∴4BF .∴8BC .【点睛】本题主要考查了角平分线的定义、等腰三角形的判定与性质、勾股定理的应用、垂直平分线的判定与性质、圆的性质等知识点,灵活运用相关知识成为解答本题的关键.21.如图是由小正方形组成的96 网格,每个小正方形的顶点叫做格点.ABC 的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D ,E 分别是边AB ,AC 与网格线的交点.先将点B 绕点E 旋转180 得到点F ,画出点F ,再在AC 上画点G ,使DG BC ∥;(2)在图(2)中,P 是边AB 上一点,BAC .先将AB 绕点A 逆时针旋转2 ,得到线段AH ,画出线段AH ,再画点Q ,使P ,Q 两点关于直线AC 对称.【答案】(1)作图见解析(2)作图见解析【解析】【分析】(1)取格点,作平行四边形,利用平行四边形对角顶点关于对角线交点对称即可求点F;平行四边形对边在网格中与格线的交点等高,连接等高点即可作出DG BC ∥;(2)取格点,作垂直平分线即可作出线段AH ;利用垂直平分线的性质,证明三角形全等,作出P ,Q 两点关于直线AC 对称【小问1详解】解:作图如下:取格点F ,连接AF,AF BC ∥且AF BC ,所以四边形ABCF 是平行四边形,连接BF,与AC 的交点就是点E ,所以BE =EF ,所以点F 即为所求的点;连接CF ,交格线于点M ,因为四边形ABCF 是平行四边形,连接DM 交AC 于一点,该点就是所求的G 点;【小问2详解】解:作图如下:取格点D 、E ,连接DE ,AC 平行于DE ,取格点R ,连接BR 并延长BR 交DE 于一点H ,连接AH ,此线段即为所求作线段;理由如下:取格点W 连接AW 、CW ,连接CR ,∴AWC RCB ,∴WAC CRB ,∵90WAC ACW ,∴90CRB ACW ,∴90RKC ,∴AC BH ,∵DH CK ∥,∴BK BCBH BD,∵点C 是BD 的中点,∴点K 是BH 的中点,即BK KH ,∴AC 垂直平分BH ,∴AB AH.连接PH ,交AC 于点M ,连接BM 交AH 于点Q ,则该点就是点P 关于AC 直线的对称点.理由如下:∵AC 垂直平分BH ,∴BMH 是等腰三角形,PAM QAM ,∴BMK AMQ HMK AMP ,∴AMP AMQ ,∴AP AQ ,∴P ,Q 两点关于直线AC 对称.【点睛】本题考查了用无刻度直尺在网格中作图的知识,找准格点作出平行四边形和垂直平分线是解决本题的关键.22.在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A 处开始减速,此时白球在黑球前面70cm 处.小聪测量黑球减速后的运动速度v (单位:cm/s )、运动距离y (单位:cm )随运动时间t (单位:s )变化的数据,整理得下表.运动时间/s t 01234运动速度/cm/s v 109.598.58运动距离/cmy 09.751927.7536小聪探究发现,黑球的运动速度v 与运动时间t 之间成一次函数关系,运动距离y 与运动时间t 之间成二次函数关系.(1)直接写出v 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm 时,求它此时的运动速度;(3)若白球一直..以2cm/s 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.【答案】(1)1102v t ,21104y t t (2)6cm/s(3)黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球【解析】【分析】(1)根据黑球的运动速度v 与运动时间t 之间成一次函数关系,设表达式为v =kt +b ,代入两组数值求解即可;根据运动距离y 与运动时间t 之间成二次函数关系,设表达式为2y at bt c ,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm 时,代入(1)式中y 关于t 的函数解析式求出时间t ,再将t 代入v 关于t 的函数解析式,求得速度v 即可;(3)设黑白两球的距离为cm w ,得到217028704w t y t t,化简即可求出最小值,于是得到结论.【小问1详解】根据黑球的运动速度v 与运动时间t 之间成一次函数关系,设表达式为v =kt +b ,代入(0,10),(1,9.5)得,109.5b k b ,解得1210k b ,∴1102v t ,根据运动距离y 与运动时间t 之间成二次函数关系,设表达式为2y at bt c ,代入(0,0),(1,9.75),(2,19)得09.751942c a b a b ,解得14100a b c,∴21104y t t ;【小问2详解】依题意,得2110644t t,∴2402560t t ,解得,18t ,232t ;当18t 时,6v ;当232t 时,6v (舍);答:黑球减速后运动64cm 时的速度为6cm/s .【小问3详解】设黑白两球的距离为cm w ,217028704w t y t t 21(16)64t,∵104,∴当16t 时,w 的值最小为6,∴黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球.【点睛】本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.23.问题提出:如图(1),ABC 中,AB AC ,D 是AC 的中点,延长BC 至点E ,使DE DB ,延长ED 交AB 于点F ,探究AF AB 的值.(1)先将问题特殊化.如图(2),当60BAC 时,直接写出AF AB的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在ABC 中,AB AC ,D 是AC 的中点,G 是边BC 上一点,12CG n BC n ,延长BC 至点E ,使DE DG ,延长ED 交AB 于点F .直接写出AF AB的值(用含n 的式子表示).【答案】(1)[问题提出](1)14;(2)见解析(2)[问题拓展]24n 【解析】【分析】[问题探究](1)根据等边三角形的性质结合已知条件,求得30ADF ADB ,90AFD ,根据含30度角的直角三角形的性质,可得111,222AF AD AD AC AB ,即可求解;(2)取BC 的中点H ,连接DH .证明DBH DEC △≌△,可得BH EC ,根据DH AB ∥,证明EDH EFB △∽△,根据相似三角形的性质可得32FB EB DH EH ,进而可得14AF AB ;[问题拓展]方法同(2)证明DBH DEC △≌△,得出,GH EC =,证明EDH EFB △∽△,得到2+2FB EB n DH EH ,进而可得AF AB 24n .【小问1详解】[问题探究]:(1)如图,∵ABC 中,AB AC ,D 是AC 的中点,60BAC ,ABC 是等边三角形,12AD AB30ABD DBE ,60A ,DB DE ,30E DBE ,180120DCE ACB ∵,18030ADF CDE E DCE ,60A ∵,90AFD ,12AF AD ,1124AD AF AB AB .(2)证明:取BC 的中点H ,连接DH.∵D 是AC 的中点,∴DH AB ∥,12DH AB.∵AB AC ,∴DH DC ,∴DHC DCH .∵BD DE ,∴DBH DEC .∴BDH EDC .∴DBH DEC △≌△.∴BH EC .∴32EB EH .∵DH AB ∥,∴EDH EFB △∽△.∴32FB EB DH EH .∴34FB AB .∴14AF AB .【小问2详解】[问题拓展]如图,取BC 的中点H ,连接DH .∵D 是AC 的中点,∴DH AB ∥,12DH AB.∵AB AC ,∴DH DC ,∴DHC DCH .∵DE DG ,∴DGH DEC .∴GDH EDC .∴DGH DEC ≌.∴GH EC =.HE CG∵ 12CG n BC nBC nCG1BG n CG ,1111222n CE GH BC BG nCG n CG CG ∴1221+22nCG EB BC CE n n EH EH n C CG G .∵DH AB ∥,∴EDH EFB △∽△.∴2+2FB EB n DH EH .∴24FB n AB .∴42244AF n n AB . AF AB 24n .【点睛】本题考查了等边三角形的性质,全等三角形的性质与判定,相似三角形的性质与判定,等边对等角,掌握相似三角形的性质与判定是解题的关键.24.抛物线223y x x 交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图(1),当OP OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图(2),直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m .求FP OP的值(用含m 的式子表示).【答案】(1) 1,0A , 3,0B ;(2)0,3412或3412 ;(3)13m .【解析】【分析】(1)令223=0x x 求出x 的值即可知道A ,B 两点的坐标;(2)求出直线AC 的解析式为1y x ,分情况讨论:①若点D 在AC 下方时,②若点D 在AC 上方时;(3)设点E 的横坐标为n .过点P 的直线解析式为y kx b .联立223y kx by x x ,得2(2)30x k x b .利用A ,B 点的横坐标求出3m b ,13b n ,设直线CE 的解析式为y px q ,求出3mn q ,进一步求出OP b ,213FP b b 即可求出答案.【小问1详解】解:令223=0x x ,解得:11x ,2=3x ,∴ 1,0A , 3,0B .【小问2详解】解:∵1OP OA ,∴ 0,1P ,∴直线AC 的解析式为1y x .①若点D 在AC 下方时,过点B 作AC 的平行线与抛物线的交点即为1D .∵ 3,0B ,1BD AC ∥,∴1BD 的解析式为3y x .联立2323y x y x x,解得,10x ,23x (舍).∴点1D 的横坐标为0.②若点D 在AC 上方时,点 10,3D 关于点P 的对称点为 0,5G .过点G 作AC 的平行线l ,则l 与抛物线的交点即为符合条件的点D .直线l 的解析式为5y x .联立2523y x y x x ,得2380x x ,解得,132x ,232x .∴点2D ,3D 的横坐标分别为3412,3412 .∴符合条件的点D 的横坐标为:0,32 或32 .【小问3详解】解:设点E 的横坐标为n .过点P 的直线解析式为y kx b .联立223y kx by x x ,得2(2)30x k x b .设1x ,2x 是方程2(2)30x k x b 两根,则123x x b .(*)∴3A C B E x x x x b .∵1A x ,∴3C x b ,∴3m b .∵3B x ,∴13E b x,∴13b n .设直线CE 的解析式为y px q ,同(*)得3mn q ,∴3q mn .∴21(3)13233b q b b b.∴2123OF b b .∵OP b ,∴213FP b b.∴1111(3)1333FP b m m OP .【点睛】本题考查二次函数与一次函数的综合,难度较大,需要掌握函数与x 轴交点坐标,(1)的关键是令223=0x x 进行求解;(2)的关键是分点D 在AC 下方和在AC 上方时两种情况讨论:(3)的关键是求出OP ,FP .。
2022年湖北省武汉市江汉区中考数学模拟试卷(3月份)及答案解析

2022年湖北省武汉市江汉区中考数学模拟试卷(3月份)1. −3相反数是( )A. 13B. −3 C. −13D. 32. 不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球3. 下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.4. 下列各式中计算结果为x6的是( )A. x2+x4B. x8−x2C. x2⋅x4D. x12÷x25. 如图所示的几何体的左视图是( )A.B.C.D.6. 一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机搭配在一起,则颜色搭配正确的概率是( )A. 14B. 13C. 12D. 347. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A. {7x +7=y9(x −1)=yB. {7x +7=y9(x +1)=yC. {7x −7=y9(x −1)=yD. {7x −7=y9(x +1)=y8. 为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道A 处匀速跑往B 处,乙同学从B 处匀速跑往A 处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x(秒),甲、乙两人之间的距离为y(米),y 与x 之间的函数关系如图所示,则图中t 的值是( )A. 503B. 18C. 553D. 209. 如图,线段AB =10,点C 、D 在AB 上,AC =BD =1.已知点P 从点C 出发,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动.在点P 移动过程中作如下操作:先以点P 为圆心,PA 、PB 的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P 的移动时间为t(秒),两个圆锥的底面面积之和为S ,则S 关于t 的函数图象大致是( )A. B.C. D.10. 已知函数y=x−2与y=2022的图象交于点P(a,b),则代数式a3−a2+b2−2022a−xab的值是( )A. −2018B. 2026C. 6070D. −606211. 计算√9的结果是______.12. 学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级共售书50本,具体情况如下表:售价3元4元5元6元数目14本11本10本15本则在该班级所售图书价格组成的一组数据中,中位数是______.13. 已知反比例函数y=−a2−3(a为常数)图象上有三个点分别为:A(x1,y1),B(x2,y2),xC(x3,y3),其中x1<0<x2<x3,则y1,y2,y3的大小关系的是______.(用“<”号连接)14. 如图,要测量楼房BC的高度,在热气球上的观测点A处测得楼顶B的俯角为30°,测得楼底C的俯角为60°,热气球与楼房的水平距离DC为90m,则楼房BC的高度为______m.(√3取1.732,按四舍五入法将结果保留整数位)15. 下列关于抛物线y=mx2−2x+1(m为常数,且m≠0)的四个结论:①若m>0,则抛物线与直线y=−2x−2没有公共点;②若m=1,则当x>1时,y随x的增大而减小;③若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;④当m的值变化时,抛物线的顶点始终在同一条直线上.其中正确的结论是______(填写序号).16. 如图,已知△ABC中,AB=BC=13,AC=10,O为边BC上一点,若⊙O分别与AC,AB相切于D,E,则⊙O的半径为______.17. 解不等式组{2x>x+1①,请按下列步骤完成解答:5x−4≥2x+5②(Ⅰ)解不等式①,得______;(Ⅱ)解不等式②,得______;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为______.18. 已知:如图,D,E,F分别是AB,AC,BC上的点,DE//BC,∠ADE=∠EFC,求证:∠1=∠2.19. 为了解学生寒假阅读情况,某学校进行了问卷调查,对部分学生假期的阅读总时间作了随机抽样分析.设被抽样的每位同学寒假阅读的总时间为t(小时),阅读总时间分为四个类别:A(0<t<12),B(12≤t<24),C(24≤t<36),D(t≥36),将分类结果制成如下两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)本次抽样的样本容量为______;(2)补全条形统计图;(3)扇形统计图中α的值为______,圆心角β的度数为______;(4)若该校有2000名学生,估计寒假阅读的总时间少于24小时的学生有多少名?20. 如图,已知⊙O经过菱形ABCD的顶点A,C,且与CD相切,直径CF交AB于点E.(1)求证:AD与⊙O相切;(2)若DCCF =34,求AECE的值.21. 在如图的网格中建立平面直角坐标系,其中A(2,0),B(4,0),C(6,3),H(4,4),仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)将△ABC绕点H逆时针旋转90°,画出旋转后的△A1B1C1;(2)画出∠BAC的角平分线AD;(3)在线段AC上画点P,使得AP=AB;(4)若y轴上一点E,满足BE⊥AC,请直接写出点E的坐标:______.22. 北京冬奥会的召开激起了人们对冰雪运动的极大热情,如图是某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−112x2+43x+43近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−18x2+bx+c运动.(1)当小张滑到离A处的水平距离为6米时,其滑行高度最大,为172米,直接写出b,c的值;(2)在(1)的条件下,当小张滑出后离A的水平距离为多少米时,他滑行高度与小山坡的竖直距离为43米?(3)小张若想滑行到最大高度时恰好在坡顶正上方,且与坡顶距离不低于3米,求b,c的值或取值范围.23. 【问题背景】(1)如图1,在△ABC中,∠ABC=90°,BH⊥AC于H,求证:△AHB∽△BHC;【变式迁移】(2)如图2,已知∠ABC=∠D=90°,E为BD上一点,且AE=AB,若ABBC =45,求BECD的值;【拓展创新】(3)如图3,四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E为边CD上一点,且AE=AB,BE⊥CD,直接写出DECE的值.24. 平面直角坐标系中,已知抛物线C1:y=−x2+(1+m)x−m(m为常数)与x轴交于点A,B两点(点A在点B左边),与y轴交于点C.(1)若m=4,求点A,B,C的坐标;(2)如图1,在(1)的条件下,D为抛物线x轴上方一点,连接BD,若∠DBA+∠ACB=90°,求点D的坐标;(3)如图2,将抛物线C1向左平移n个单位长度(n>0)与直线AC交于M,N(点M在点N右边),CN,求m,n之间的数量关系.若AM=12答案和解析1.【答案】D【解析】【分析】本题主要考查了互为相反数的定义,熟记定义是解题的关键.根据只有符号不同的两个数互为相反数解答.【解答】解:−3相反数是3.故选:D.2.【答案】A【解析】【分析】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.根据白色的只有2个,不可能摸出3个白球进行解答.【解答】解:A.摸出的是3个白球是不可能事件,故A符合题意;B.摸出的是3个黑球是随机事件,故B不符合题意;C.摸出的是2个白球、1个黑球是随机事件,故C不符合题意;D.摸出的是2个黑球、1个白球是随机事件,故D不符合题意.故选:A.3.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】C【解析】解:x2与x4不是同类项,不能合并计算,它是一个多项式,因此A选项不符合题意;同理选项B不符合题意;x2⋅x4=x2+4=x6,因此选项C符合题意;x12÷x2=x12−2=x10,因此选项D不符合题意;故选:C.根据合并同类项、同底数幂乘除法的性质进行计算即可.本题考查同底数幂的乘除法的计算法则,同类项、合并同类项的法则,掌握运算性质是正确计算的前提.5.【答案】B【解析】解:该几何体从左边看有两列,左边一列底层是一个正方形,右边一列是三个正方形.故选:B.根据左视图即从左边观察所得图形.本题主要考查简单组合体的三视图,解题的关键是掌握三视图的定义.6.【答案】C【解析】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.;所以颜色搭配正确的概率是12故选:C.根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=m n .7.【答案】A【解析】【分析】本题考查了由实际问题抽象出二元一次方程组;根据题意得出方程组是解决问题的关键.设该店有客房x 间,房客y 人;根据题意“如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房”得出方程组即可.【解答】解:设该店有客房x 间,房客y 人;根据题意得:{7x +7=y 9(x −1)=y, 故选:A .8.【答案】A【解析】解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10−4=10−4=6(米/秒),则t =1006=503, 故选:A .根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t 的值.本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.9.【答案】D【解析】解:∵AB =10,AC =BD =1,∴CD =10−1−1=8,∴AP =t +1,PB =8−t +1=9−t ,设围成的两个圆锥底面圆半径分别为r 和R 则:2πr =60180π⋅(t +1);2πR =60180π⋅(9− t). 解得:r =t+16,R =9− t 6, ∴两个锥的底面面积之和为S =π(t+16)2+π(9−t 6)2 =π36(t 2+2t +1)+π36(t 2−18t +81) =π18(t 2−8t +41),根据函数关系式可以发现该函数图形是一个开口向上的二次函数.故选:D .先用t 的代数式表示出两个扇形的半径,根据扇形的弧长等于底面圆的周长求出两个圆锥底面圆的半径,最后列方出两个底面积之后关t 的函数关系式,根据关系式即可判断出符号题意的函数图形. 本题考查的是动点图象问题,涉及到扇形、圆锥有关知识,解决此类问题关键是:弄清楚题意思列出函数关系式.10.【答案】B【解析】解:∵函数y =x −2与y =2022x的图象交于点P(a,b), ∴b =a −2,ab =2022,∴a(a −2)=2022,整理得a 2=2a +2022,∴a 3−a 2+b 2−2022a −ab=a(2a +2022)−(2a +2022)+b 2−2022a −ab=2a 2+2022a −2a −2022−2022a +b(b −a)=2a 2−2a −2022−2b=2(2a +2022)−2a −2022−2b=4a +4044−2a −2022−2b=2(a −b)+2022=2×2+2022=2026.将P点坐标代入到两个解析式,可以的到ab=2022和b−a=−2,将代数式a3−a2+b2−2022a−ab变形,代入即可解决.本题考查的是反比例与一次函数的交点问题,关键步骤是将代数式进行准确变形,再运用整体思想进行代入,是本题的突破口.11.【答案】3【解析】解:∵32=9,∴√9=3.故填3.由√9表示9的算术平方根,根据算术平方根的定义即可求出结果.本题考查了算术平方根的定义.注意一个正数有两个平方根,它们互为相反数,其中正的平方根又叫做算术平方根.12.【答案】4.5元【解析】解:∵共有50本图书,∴从小到大排列第25本和第26本图书价格的平均值为中位数,即中位数为:4+52=4.5(元).故答案为:4.5元.根据中位数的概念求解.本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.【答案】y2<y3<y1【解析】解:∵反比例函数y=−a 2−3x(a为常数)中,−a2−3<0,∴函数图象的两个分支分别位于第二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故答案为:y2<y3<y1.先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.【答案】60√3【解析】解:过C作CE⊥AE于E,∵∠CAE=60°,∴∠CAD=30°,∵CD=90m,∴AC=2DC=180(m),在Rt△ACE中,∠AEC=90°,∠CAE=60°,AC=180m,∴CE=ACsin60°=180×√32=90√3(m),AE=12AC=90(m).在Rt△ABE中,∠AEB=90°,∠BAE=30°,∴BE=AEtan30°=90×√33=30√3(m).∴BC=EC−BE=90√3−30√3=60√3(m).故答案为:60√3.过C作CE⊥AE于E,求这栋楼的高度,即BC的长度,根据BC=CE−BE,在Rt△ACE和Rt△ABE 中分别求出CE,BE就可以.此题主要考查了仰角俯角问题,以及利用三角函数关系解直角三角形,题目难度不大,是中考中常考题型.15.【答案】①③④【解析】解:mx 2−2x +1=−2x −2,整理得mx 2+3=0,∵Δ=02−12m =−12m∴当m >0时,Δ<0,此时抛物线与直线y =−2x −2没有公共点,所以①正确;当m =1时,抛物线y =x 2−2x +1的对称轴为直线x =1,∵抛物线开口向上,∴当x >1时,y 随x 的增大而增大,所以②错误;∵抛物线与x 轴有两个交点,∴Δ=(−2)2−4m >0,解得m <1,∵x =0时,y =1>0;当x =1时,y =m −2+1=m −1<0,∴抛物线与x 轴有一个交点在点(0,0)与(1,0)之间,所以③正确;∵y =mx 2−2x +1=m(x −1m )2+1−1m ,∴抛物线的顶点坐标为(1m ,1−1m ),∴抛物线的顶点在直线y =−x +1上,所以④正确.故答案为:①③④.计算方程mx 2−2x +1=−2x −2的根的判别式得到Δ=−12m ,则当m >0时,Δ<0,于是可对①进行判断;当m =1时,抛物线y =x 2−2x +1的对称轴为直线x =1,则根据二次函数的性质可对②进行判断;根据根的判别式的意义得到Δ=(−2)2−4m >0,解得m <1,由于x =0时,y =1>0;当x =1时,y =m −1<0,从而可对③进行判断;利用配方法得到y =m(x −1m )2+1−1m ,抛物线的顶点坐标为(1m ,1−1m ),利用顶点的横纵坐标的和为1可得到抛物线的顶点在直线y =−x +1上,于是可对④进行判断.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了一次函数的性质和二次函数的性质.16.【答案】12023【解析】解:过点B作BF⊥AC于点F,连接OA,∵AB=BC=13,AC=10,BF⊥AC,∴AF=5,∴BF=√AB2−AF2=√132−52=12,∴S△ABC=12AC⋅BF=12×10×12=60,∵⊙O分别与AC,AB相切于D,E,∴OD⊥AC,OE⊥AB,∵S△ABC=S△AOB+S△AOC=12AB⋅OE+12AC⋅OD=12×13⋅OE+12×10⋅OE=132OE+5OE=232OE,∴232OE=60,∴OE=12023,故答案为:12023.过点B作BF⊥AC于点F,连接OA,根据等腰三角形的性质得到AF=5,根据勾股定理得到BF=12,根据三角形面积公式求解即可.此题考查了切线的性质、等腰三角形的性质,熟记切线的性质定理、等腰三角形的性质并作出合理的辅助线是解题的关键.17.【答案】x>1x≥3x≥3【解析】解:(Ⅰ)解不等式①,得x>1;(Ⅱ)解不等式②,得x≥3;(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为x≥3,故答案为:x>1,x≥3,x≥3.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】证明:∵DE//BC,∴∠ADE=∠ABC.∵∠ADE=∠EFC,∴∠ABC=∠EFC.∴AB//EF.∴∠1=∠2.【解析】先利用平行线的性质与已知,说明∠ABC与∠EFC的关系,再利用平行线的判定方法说明AB与EF的关系,最后利用平行线的性质得结论.本题考查了平行线的性质和判定,掌握“两直线平行,同位(内错)角相等”“同位角相等,两直线平行”是解决本题的关键.19.【答案】6020144°=60(人),【解析】解:(1)本次抽样的人数610%∴样本容量为60,故答案为:60;(2)C组的人数为40%×60=24(人),补全统计图如下:(3)A组所占的百分比为12×100%=20%,60∴a的值为20,β=40%×360°=144°,故答案为:20,144°;(4)总时间少于24小时的学生的百分比为12+18×100%=50%,60∴估计寒假阅读的总时间少于24小时的学生有2000×50%=1000(名),答:估计寒假阅读的总时间少于24小时的学生有1000名.(1)根据D组的人数和百分比即可求出样本容量;(2)根据C组所占的百分比即可求出C组的人数;(3)根据A组的人数即可求出A组所占的百分比,根据C组所占的百分比即可求出对应的圆心角;(4)先算出低于24小时的学生的百分比,再估算出全校低于24小时的学生的人数.本题主要考查统计图形的应用,能看懂统计图是关键,一般求总量所用的公式是一个已知分量除以它所占的百分比,第一问基本都是求总量,所以要记住,估算的公式是总人数乘以满足要求的人数所占的百分比,这两种问题中考比较爱考,记住公式,平时要多加练习.20.【答案】(1)证明:如图1,连接OA,OD,∵⊙O与CD相切,OC为半径,∴∠DCO=90°,∵⊙O经过菱形ABCD的顶点A,C,∴OA=OC,AD=CD,∵OD=OD,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD=90°,∵OA为半径,∴AD与⊙O相切;(2)解:如图2,连接OA,OD,AC,∵CO=12CF,DCCF=34,∴DC CO =32,∴tan∠CDO=COCD =23,∵DC=DA,OA=OC,∴OD垂直平分AC,∴∠CDO+∠ACE=90°,∵∠OCD=90°,∴∠DCA+∠ACE=90°,∴∠CDO=∠ACE,∴tan∠CDO=tan∠ACE=23,在Rt△CAE中,tan∠ACE=AECE =23.【解析】(1)连接OA,OD,根据⊙O与CD相切,OC为半径,得出∠DCO=90°,通过“SSS”证明△OAD≌△OCD(SSS),得出∠OAD=∠OCD=90°,即可证明AD与⊙O相切;(2)连接OA,OD,AC,由CO=12CF,DCCF=34,得出DCCO=32,进而得出tan∠CDO=COCD=23,由DC=DA,OA =OC ,得出OD 垂直平分AC ,得出∠CDO +∠ACE =90°,由∠OCD =90°,得出∠DCA +∠ACE =90°,得出∠CDO =∠ACE ,进而得出tan∠CDO =tan∠ACE =23,即可得出AE CE =23. 本题考查了菱形的性质,切线的判定与性质,熟练掌握菱形的性质,切线的判定与性质,正切的定义是解决问题的关键.21.【答案】(0,163)【解析】解:(1)如图所示△A 1B 1C 1即为所求;(2)如图所示,射线AD 即为所求;(3)如图所示,点P 即为所求作.(4)如图所示,点E 即为所求作;设点E 的坐标为(0,y),∵y 4=43,∴y =163,∴点E 的坐标为(0,163), 故答案为:(0,163). (1)利用旋转变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)根据角平分线的性质即可得到结论;(3)根据题意在线段AC 上符合条件的点P 即可;(4)根据垂线的性质作出图形即可.本题考查作图−旋转变换,角平分线的性质等知识,解题的关键是掌握旋转变换,正确作出图形,属于中考常考题型.22.【答案】解:(1)由题意可知抛物线C 2:y =−18x 2+bx +c 过点(0,4)和(6,172),将其代入得:{4=c 172=−18×62+6b +4, 解得,{c =4b =32. ∴b =32,c =4.(2)由(1)可得抛物线C2方程为:y=−18x2+32x+4,设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为43米,依题意得:−1 8m2+32m+4−(−112m2+43m+43)=43,(m+4)(m−8)=0,解得:m1=8,m2=−4(舍),故运动员运动的水平距离为8米时,运动员与小山坡的竖直距离为43米.(3)抛物线C1:y=−112x2+43x+43=−112(x−8)2+403,当x=8时,运动员到达坡顶,即−18×82+8b+4>3+403,∴b>6124.【解析】(1)根据题意将点(0,4)和(6,)代入C2求出b、c的值即可;(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意列出方程,解出m即可;(3)求出山坡的顶点坐标为(8,403),根据题意即−18×82+8b+4>3+403,再解出b的取值范围即可.本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.23.【答案】解:(1)∵∠ABC=90°,BH⊥AC,∴∠AHB=∠BHC=90°,∠A+∠C=90°,∠A+∠ABH=90°,∴∠ABH=∠C,∴△AHB∽△BHC;(2)如图,过点A作AF⊥BE于点F,则∠AFB=90°,∵AE=AB,AF⊥BE,∴BF=EF=12BE,∵∠ABC=∠D=90°,∠AFB=90°,∴∠AFB=∠D=90°,∠ABF+∠CBD=90°,∠C+∠CBD=90°,∴∠ABF=∠C,∴△ABF∽△BCD,∴BF CD =ABBC,又∵ABBC =45,∴12BECD=45,∴BE CD =85;(3)如图,过点A作AH⊥BE于点H,延长BE,AD相交于点N,∵AE=AB,AH⊥BE,∴BH=EH=12BE,设BH=x(x>0),则EH=x,BE=2x,∵AH⊥BE,∠ABC=90°,BE⊥CD,∴∠AHB=∠BEC=90°,∠ABH+∠CBE=90°,∠C+∠CBE=90°,∴∠ABH=∠C,在△AHB与△BEC中,{∠AHB=∠BEC ∠ABH=∠CAB=BC,∴△AHB≌△BEC(AAS),∴AH=BE=2x,BH=CE=x,∵AH⊥BE,∠DAB=90°,∴∠AHB=∠NHA=90°,∠ABH+∠N=90°,∠N+∠NAH=90°,∴∠ABH=∠NAH,∴△AHB∽△NHA,∴AH NH =BHAH,∴2x NH =x2x,∴NH=4x,∴NE=NH−EH=4x−x=3x,∵∠DAB=∠ABC=90°,∴∠DAB+∠ABC=180°,∴AN//BC,∴∠N=∠CBE,又∵∠NED=∠BEC,∴△NED∽△BEC,∴DE CE =NEBE=3x2x=32.【解析】(1)利用同角的余角相等得∠ABH=∠C,即可证明结论;(2)过点A作AF⊥BE于点F,利用两个角相等证明△ABF∽△BCD,得BFCD =ABBC,从而得出答案;(3)过点A作AH⊥BE于点H,延长BE,AD相交于点N,设BH=x(x>0),则EH=x,BE=2x,首先利用AAS证明△AHB≌△BEC,得AH=BE=2x,BH=CE=x,再根据△AHB∽△NHA,得NH=4x,NE=NH−EH=4x−x=3x,最后根据△NED∽△BEC,进而解决问题.本题是相似形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,利用前面探索的结论和方法解决新问题是解题的关键.24.【答案】解:(1)当m=4时,抛物线C1为y=−x2+5x−4,令x=0得y=−4,∴C(0,−4),令y=0得−x2+5x−4=0,解得x=1或x=4,∴A(1,0),B(4,0);答:A的坐标为(1,0),B的坐标为(4,0),C的坐标为(0,−4);(2)过D作DF⊥x轴于F,过A作AE⊥BC于E,如图:由(1)知A(1,0),B(4,0),C(0,−4),∴∠ABC=45°,AB=3,BC=4√2,在Rt△ABE中,AE=BE=√22AB=3√22,∴CE=BC−BE=5√22,∴tan∠ACB=AECE =3√225√22=35,∵∠DBA+∠ACB=90°,又∠DBA+∠BDF=90°,∴∠ACB=∠BDF,∴tan∠BDF =35, ∴BF DF =35, 设D(t,−t 2+5t −4),则BF =4−t ,DF =−t 2+5t −4,∴4−t−t 2+5t−4=35, 解得t =83或t =4(舍去), ∴D(83,209); (3)过N 作NG//x 轴交y 轴于点G ,过M 作HM//x 轴,过A 作AH//y 轴交HM 于点H ,如图:∵抛物线y =−x 2+(1+m)x −m =−(x −m)(x −1),∴A(1,0),B(m,0),C(0,−m),将其向左平移n 个单位,得到的抛物线的解析式为y =−(x −m +n)(x −1+n),由C(0,−m)设直线AC 的解析式为y =px −m ,将A(1,0)代入得p −m =0,解得p =m ,∴直线AC 的解析式为y =mx −m ,由{y =mx −m y =−(x −m +n)(x −1+n),得x 2+(2n −1)x +n 2−mn −n =0,设点M 、N 的横坐标分别为x 1、x 2,则x 1+x 2=−2n +1,x 1⋅x 2=n 2−mn −n ,∵∠CNG =∠HMA ,∠H =∠CGN =90°,∴△CNG∽△AMH ,∵AM =12CN ,∴CN AM =NG MH =2,∴NG =2MH ,∴−x 2=2(x 1−1),即x 2=−2x 1+2,∴x 1+x 2=2−x 1,∴−2n +1=2−x 1,∴x 1=2n +1,∴x 2=−2x 1+2=−4n ,∵x 1⋅x 2=n 2−mn −n ,∴(2n +1)⋅(−4n)=n 2−mn −n ,∵n >0,∴整理得m =9n +3.【解析】(1)当m =4时,抛物线C 1为y =−x 2+5x −4,令x =0得y =−4,令y =0得−x 2+5x −4=0,即可解得A 的坐标为(1,0),B 的坐标为(4,0),C 的坐标为(0,−4);(2)过D 作DF ⊥x 轴于F ,过A 作AE ⊥BC 于E ,由A(1,0),B(4,0),C(0,−4),可得∠ABC =45°,AB =3,BC =4√2,即得AE =BE =√22AB =3√22,CE =BC −BE =5√22,从而tan∠ACB =AE CE =35=tan∠BDF =35,设D(t,−t 2+5t −4),则BF =4−t ,DF =−t 2+5t −4,可得4−t −t 2+5t−4=35,即可解得D(83,209); (3)过N 作NG//x 轴交y 轴于点G ,过M 作HM//x 轴,过A 作AH//y 轴交HM 于点H ,由抛物线y =−x 2+(1+m)x −m =−(x −m)(x −1),知将其向左平移n 个单位的抛物线的解析式为y =−(x −m +n)(x −1+n),用待定系数法可求得直线AC 的解析式为y =mx −m ,根据x 2+(2n −1)x +n 2−mn −n =0,设点M 、N 的横坐标分别为x 1、x 2,有x 1+x 2=−2n +1,x 1⋅x 2=n 2−mn −n ,而CN AM =NG MH =2,可得NG =2MH ,即−x 2=2(x 1−1),即x 2=−2x 1+2,故x 1=2n +1,x 2=−2x 1+2=−4n ,代入x 1⋅x 2=n 2−mn −n 可得m =9n +3.本题考查二次函数综合应用,涉及锐角三角函数、三角形相似的判定与性质、一元二次方程根与系数的关系等知识,解题的关键是通过正确地作出辅助线,构造所需要的图形,从而列出方程,求得结果,此题综合性强,计算繁琐,属于考试压轴题.。
2022年湖北省武汉市江汉油田、潜江、天门、仙桃初中学业水平考试中考数学真题

2022年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)1.(3分)在1,﹣2,0,这四个数中,最大的数是()A.1B.﹣2C.0D.2.(3分)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱3.(3分)下列说法正确的是()A.为了解我国中小学生的睡眠情况,应采取全面调查的方式B.一组数据1,2,5,5,5,3,3的众数和平均数都是3C.若甲、乙两组数据的方差分别是0.01,0.1,则甲组数据比乙组数据更稳定D.抛掷一枚硬币200次,一定有100次“正面向上”4.(3分)如图,AB∥CD,直线EF分别交AB,CD于点E,F.∠BEF的平分线交CD于点G.若∠EFG =52°,则∠EGF=()A.128°B.64°C.52°D.26°5.(3分)下列各式计算正确的是()A.+=B.4﹣3=1C.×=D.÷2=6.(3分)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为()A.30πcm2B.60πcm2C.120πcm2D.180πcm27.(3分)二次函数y=(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.(3分)若关于x的一元二次方程x2﹣2mx+m2﹣4m﹣1=0有两个实数根x1,x2,且(x1+2)(x2+2)﹣2x1x2=17,则m=()A.2或6B.2或8C.2D.69.(3分)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A,B,C都在格点上,∠O=60°,则tan∠ABC=()A.B.C.D.10.(3分)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为()A.B.C.D.二、填空题(本大题共5个小题,每小题3分,满分15分.请将答案直接填写在答题卡对应的横线上)11.(3分)科学家在实验室中检测出某种病毒的直径约为0.000000103米,该直径用科学记数法表示为米.12.(3分)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货吨.13.(3分)从2名男生和2名女生中任选2名学生参加志愿者服务,那么选出的2名学生中至少有1名女生的概率是.14.(3分)在反比例函y=的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4是一个完全平方式,则该反比例函数的解析式为.15.(3分)如图,点P是⊙O上一点,AB是一条弦,点C是上一点,与点D关于AB对称,AD交⊙O 于点E,CE与AB交于点F,且BD∥CE.给出下面四个结论:①CD平分∠BCE;②BE=BD;③AE2=AF•AB;④BD为⊙O的切线.其中所有正确结论的序号是.三、解答题(本大题共9个题,满分75分)16.(10分)(1)化简:(﹣)÷;(2)解不等式组,并把它的解集在数轴上表示出来.17.(6分)已知四边形ABCD 为矩形,点E 是边AD 的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD 的对称轴m ,使m ∥AB ; (2)在图2中作出矩形ABCD 的对称轴n ,使n ∥AD .18.(6分)为了解我市中学生对疫情防控知识的掌握情况,在全市随机抽取了m 名中学生进行了一次测试,随后绘制成如下尚不完整的统计图表:(测试卷满分100分,按成绩划分为A ,B ,C ,D 四个等级) 等级 成绩x 频数 A90≤x ≤10048B80≤x <90n C70≤x <8032 D0≤x <708 根据以上信息,解答下列问题:(1)填空:①m = ,n = ,p = ;②抽取的这m 名中学生,其成绩的中位数落在 等级(填A ,B ,C 或D );(2)我市约有5万名中学生,若全部参加这次测试,请你估计约有多少名中学生的成绩能达到A 等级.19.(6分)小红同学在数学活动课中测量旗杆的高度.如图,已知测角仪的高度为1.58米,她在A点观测旗杆顶端E的仰角为30°,接着朝旗杆方向前进20米到达C处,在D点观测旗杆顶端E的仰角为60°,求旗杆EF的高度.(结果保留小数点后一位)(参考数据:≈1.732)20.(7分)如图,OA=OB,∠AOB=90°,点A,B分别在函数y=(x>0)和y=(x>0)的图象上,且点A的坐标为(1,4).(1)求k1,k2的值;(2)若点C,D分别在函数y=(x>0)和y=(x>0)的图象上,且不与点A,B重合,是否存在点C,D,使得△COD≌△AOB.若存在,请直接写出点C,D的坐标;若不存在,请说明理由.21.(8分)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE交⊙O 于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.22.(10分)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售单价x(元/千克)有如下表所示的关系:销售单价x(元/千克)…2022.52537.540…销售量y(千克)…3027.52512.510…(1)根据表中的数据在如图中描点(x,y),并用平滑曲线连接这些点,请用所学知识求出y关于x的函数关系式;(2)设该超市每天销售这种商品的利润为w(元)(不计其它成本).①求出w关于x的函数关系式,并求出获得最大利润时,销售单价为多少;②超市本着“尽量让顾客享受实惠”的销售原则,求w=240(元)时的销售单价.23.(10分)已知CD是△ABC的角平分线,点E,F分别在边AC,BC上,AD=m,BD=n,△ADE与△BDF的面积之和为S.(1)填空:当∠ACB=90°,DE⊥AC,DF⊥BC时,①如图1,若∠B=45°,m=5,则n=,S=;②如图2,若∠B=60°,m=4,则n=,S=;(2)如图3,当∠ACB=∠EDF=90°时,探究S与m,n的数量关系,并说明理由;(3)如图4,当∠ACB=60°,∠EDF=120°,m=6,n=4时,请直接写出S的大小.24.(12分)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p ﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.。
2022年湖北省武汉市新洲区邾城街联考中考数学模拟试题及答案解析

2022年湖北省武汉市新洲区邾城街联考中考数学模拟试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 实数−5的相反数是( )A. −5B. 15C. −15D. 52. 掷一个质地均匀的骰子,骰子的六面上分别是1至6的点数,骰子朝上一面的点数不小于1,这个事件是( )A. 必然事件B. 不可能事件C. 随机事件D. 确定性事件3. 以下图案,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4. 下列运算正确的是( )A. a3+a3=a6B. 5a5−a5=4a5C. (2a)3=6a3D. a8÷a2=a45. 如图所示,该几何体的俯视图是( )A. B. C. D.6. 已知点A(−2,y1),B(−1,y2),C(3,y3)在反比例函数y=−|a|+1x(a为常数)的图象上,则y1,y2,y3的大小关系是( )A. y3<y2<y1B. y3<y1<y2C. y1<y2<y3D. y2<y1<y37. 同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是( )A. 112B. 16C. 13D. 128. 如图①.在正方形ABCD的边BC上有一点E,连接AE.点P从正方形的顶点A出发,沿A→D→C以1cm/s的速度匀速运动到点C.图②是点P运动时,△APE的面积y(cm2)随时间x(s)变化的函数图象.当x=6时,y的值为( )A. 7B. 6C. 132D. 1129. 如图,点O为△ABC的内心,∠A=60°,OB=2,OC=4,则△OBC的面积是( )A. 4√3B. 2√3C. 2D. 410. 已知a,b为实数,且a2−12a−12+b=0,若−1≤a≤1,则b的取值范围是( )A. −1≤b≤0B. −1≤b≤12C. −1≤b≤916D. 0≤b≤916二、填空题(本大题共6小题,共18.0分)11. 化简√(−2)2的结果是______ .12. 已知一组数据:1,2,6,4,6,2,则这组数据的中位数是______.13. 计算6a2−9+1a+3的结果是______.14. 如图,小明先在C处用测角仪测得建筑物AB上一点E的仰角∠EDF=22°,接着他沿着CB 方向前进50米到达G处,再用测角仪测得点A的仰角∠AHF=45°.若AE=100米,∠EFD=90°,测角仪CD =GH =1.4米,则AB 的高度是______米;(结果精确到1米,参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)15. 已知抛物线y =ax 2+bx +c 与x 轴交于点A(−1,0),顶点坐标为(1,n),且n >0.下列结论:①ab <0;②8a +c <0;③4a +b >0;④一元二次方程ax 2+(b +2)x +c =n +2x 有两个相等的实数根.其中结论正确的是______.(填序号)16. 把一张矩形纸片ABCD 沿平行于AB 的虚线EF 剪开得到两个小矩形纸片(如图1),把得到的两个小矩形纸片叠放在一起,使得较小矩形的各顶点分别落在较大矩形的每条边上(如图2),若AB =5,BC =6,则BE =______.三、解答题(本大题共8小题,共72.0分。
中考数学专题复习2022年中考模拟试卷三(湖北武汉卷)

中考数学专题复习2022年中考模拟试卷三(湖北武汉卷)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.-12020的倒数的相反数为()A.-2020B.1C.2020D.1 20202.式子3x 在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥﹣3C.x≥3D.x≤﹣33.在一个不透明的袋子中装有6个除颜色外其余完全相同的小球,其中黄球2个,红球2个,白球2个,“从中任意摸出2个球,它们的颜色相同”,这一事件是() A.必然事件B.不可能事件C.确定事件D.随机事件4.下列图形中是轴对称图形是()A.B.C.D.5.如图的几何体是由5个相同的小正方体搭成的,若从下列图形中选出该几何体的主视图、左视图和俯视图,则落选的是()A.B.C.D.6.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是()A.16B.14C.13D.127.已知点A是双曲线y=1x在第一象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx(x>0)上运动,则k的值是()A.3B.3C.﹣3D.﹣38.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,则乙在途中等候甲用了()秒A.200B.150C.100D.809.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2020次跳后它停的点所对应的数为()A.1B.2C.3D.510.如图,动点M从(0,3)出发,沿y轴以每秒1个单位长度的速度向下移动,同时动点N从(4,0)出发,沿x轴以每秒2个单位长度的速度向右移动,当点M移动到O点时,点M、N同时停止移动.点P在第一象限内,在M、N移动过程中,始终有PM PN⊥,且PM PN=.则在整个移动过程中,点P移动的路径长为()A.322B.332C.5D.253评卷人得分二、填空题11.在327、m、4、6、2a、12102a a⎛⎫-<<⎪⎝⎭中,二次根式有______. 12.如果a+b=2,那么a ba b b a+--22的值是_____.13.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是_______.14.如图,在五边形ABCDE 中,3AB AE==,45CAD∠=︒,90E EAB B∠=∠=∠=︒,点A 到直线CD 的距离为__________15.关于x的方程412ax x-=-的解为正整数,且关于x的不等式组128263a xxx-≤⎧⎪-⎨+>⎪⎩有解且最多有7个整数解,则满足条件的所有整数a的值为_______.16.对于任意实数a,b,定义一种运算“&”如下:a&b=a(a-b)+b(a+b),如3&2=3×(3-2)+2×(3+2)=13,那么3&2________=.评卷人得分三、解答题17.已知三个互不相等的有理数,既可以表示为1,a,a+b的形式,又可以表示0,ba,b的形式,试求a2n-1a2n(n≥1)的值.18.如图,AB 和CD 相交于点O ,EF∥AB ,∥C =∥COA ,∥D =∥BOD .求证:∥A =∥F .19.某学校七年级、八年级各有500名学生,为了解两个年级的学生对垃圾分类知识的掌握情况,学校从七年级、八年级各随机抽取20名学生进行垃圾分类知识测试,满分100分,成绩整理分析过程如下,请补充完整: 【收集数据】七年级20名学生测试成绩统计如下:67,58,64,56,69,70,95,84,74,77,78,78,71,86,91,86,86,92,86,70【整理数据】按照如下分数段整理、描述两组样本数据:成绩 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤七年级 2 3 7 5 3 八年级 04574【分析数据】两组样本数据的平均数、中位数、众数、方差如下表所示:年级 平均数 中位数众数方差 七年级 76.9 a b126.2 八年级 79.28174100.4(1)请直接写出a ,b 的值;(2)根据抽样调查数据,估计七年级垃圾分类知识测试成绩在80分及其以上的大约有多少人?(3)通过以上分析,你认为哪个年级对垃圾分类知识掌握得更好,并说明推断的合理性(说明两条理由即可).20.如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积为,边长为.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是.(3)如图3,网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是.21.如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数12(0)y xx=>图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连接AB.(1)求证:P为线段AB的中点;(2)求△AOB的面积.22.如图,在平面直角坐标系中,函数y=2x+8的图象分别交x轴、y轴于A、B两点,过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.(1)求直线AM的函数解析式.(2)试在直线AM上找一点P,使得S△ABP=S△AOB,求出点P的坐标.(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是平行四边形?若存在,请直接写出所有点H的坐标;若不存在,请说明理由.23.思维探索:在正方形ABCD中,AB=4,∥EAF的两边分别交射线CB,DC于点E,F,∥EAF=45°.(1)如图1,当点E,F分别在线段BC,CD上时,∥CEF的周长是;(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求∥CEF的周长;拓展提升:如图3,在Rt∥ABC中,∥ACB=90°,CA=CB,过点B作BD∥BC,连接AD,在BC 的延长线上取一点E,使∥EDA=30°,连接AE,当BD=2,∥EAD=45°时,请直接写出线段CE的长度.24.已知抛物线21:65L y x x=-+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为M.(1)请求出C、M两点的坐标;(2)将抛物线21:65L y x x=-+绕平面内的某一点旋转180°,旋转后得到抛物线2L,抛物线2L的顶点为M',与x轴相交于E、P两点(点F在点E的右侧),使得抛物线2L 过点M,且以点C、M、M'、F为顶点的四边形为平行四边形,请求出所有满足条件的抛物线2L的顶点坐标.参考答案:1.C【解析】【分析】根据倒数和相反数的定义解答即可.【详解】解:﹣12020的倒数是﹣2020,﹣2020的相反数是2020.故选:C.【点睛】本题考查了倒数和相反数的定义,属于应知应会题型,熟练掌握基础知识是解题的关键.2.B【解析】【分析】根据二次根式有意义的条件解题即可.【详解】∥式子3x+在实数范围内有意义,30x∴+≥3x∴≥-故选:B.【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是关键.3.D【解析】【分析】直接利用随机事件的定义进而得出答案.【详解】解:∥黄球2个,红球2个,白球2个共6个小球,∥从中任意摸出2个球,它们的颜色相同是随机事件.故选D.【点睛】此题主要考查了随机事件,正确把握相关定义是解题关键.4.A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.B【解析】【分析】分别从正面,左面,上面看,得到该组合体的三种视图,从而可得出答案.【详解】解:从正面看得到主视图是,A故A不符合题意;从左面看得到左视图是C,故C不符合题意;从上面看得到的俯视图是D,故D不符合题意;所以落选的是B,故B符合题意;故选.B【点睛】本题考查的是简单组合体的三视图,掌握三种视图的知识是解题的关键.6.C【解析】【分析】列举出所有可能,进而求出和为偶数的概率.【详解】画树状图如下:由树状图知共有6种等可能结果,其中和为偶数的有2种结果,所以两个球上的数字之和为偶数的概率为26=13.故选C.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.C【解析】【分析】连接OC,根据反比例函数的中心对称性质,知OA=OB,根据等腰三角形三线合一,可得OC∥AB,且OC:OA=3,过点A作AD∥x轴,垂足为点D,过点C作CE∥x轴,垂足为点E,可证明△DOA∥△ECO,得EC=3DO,OE=3AD,把线段转化为坐标,结合反比例函数的解析式求解即可.【详解】如图,连接OC,根据反比例函数的中心对称性质,得OA=OB,∥△ABC是等边三角形,∥OC∥AB,∥OCA=30°,∥OC:OA=3,过点A作AD∥x轴,垂足为点D,过点C作CE∥x轴,垂足为点E,∥∥ADO=∥OEC=90°,∥∥AOD+∥OAD =90°,∥AOD+∥COE=90°,∥∥OAD=∥COE,∥△DOA∥△ECO,∥EC:DO=OE:AD=OC:AD,∥EC=3DO,OE=3AD,设点A(a,b),则DO=a,AD=b,ab=1,∥点C在第四象限,∥点C的坐标为(3b,-3a),∥点C始终在双曲线y=kx(x>0)上运动,∥k=(-3a)×3b= -3ab= -3,故选C.【点睛】本题考查了反比例函数的对称性,等腰三角形三线合一的性质,三角形的相似,坐标与线段之间的关系,熟练掌握反比例函数的对称性,灵活选择方法证明三角形的相似是解题的关键.8.C【解析】【分析】首先求得C点的纵坐标,即a的值,则CD段的路程可以求得,时间是560-500=60秒,则乙跑步的速度即可求得.【详解】解:根据图象可以得到:甲共跑了900米,用了600秒,则速度是:900÷600=1.5米/秒;甲跑500秒时的路程是:500×1.5=750米,则CD段的长是900﹣750=150米,时间是:560﹣500=60秒,则速度是:150÷60=2.5米/秒;甲跑150米用的时间是:150÷1.5=100秒,则甲比乙早出发100秒.乙跑750米用的时间是:750÷2.5=300秒,则乙在途中等候甲用的时间是:500﹣300﹣100=100秒.故选:C .【点睛】本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息是关键. 9.A【解析】【分析】先得出青蛙前4次跳后它停的点所对应的数,再归纳类推出一般规律,由此即可得出答案.【详解】由题意得:青蛙第1次跳到的那个点是3,青蛙第2次跳到的那个点是5,青蛙第3次跳到的那个点是2,青蛙第4次跳到的那个点是1, 归纳类推得:青蛙跳后它停的点所对应的数是以3,5,2,1循环往复的,因为20204505=⨯,所以经2020次跳后它停的点所对应的数与经4次跳后它停的点所对应的数相同,即为1, 故选:A .【点睛】本题考查了数字变化类的规律型问题,依据题意,正确归纳类推出一般规律是解题关键. 10.A【解析】【分析】由题意过P 点作PD ON ⊥交于D 点,作PE OM ⊥交于E 点,并利用全等三角形判定()PEM PDN AAS ≅,得出PE PD =,从而分当0=t 时,有M (0,3),N (4,0),设P 点坐标为(,)m m 以及当3t =时,有M 、O (0,0),N 、H (10,0),设P 点坐标为(,)n n ,求出P 点坐标,继而由点P 移动的路径为一条线段利用两点间距离公式求得点P 移动的路径长.【详解】解:由题意过P 点作PD ON ⊥交于D 点,作PE OM ⊥交于E 点,如图,∥PM PN ⊥,∥NPD DPM DPM EPM ∠+∠=∠+∠,∥NPD EPM ∠=∠,∥90NPD EPM PEM PDN PM PN ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∥()PEM PDN AAS ≅,即有PE PD =,由题意可知03t ≤≤,当0=t 时,有M (0,3),N (4,0),设P 点坐标为(,)m m , 由PE PD =,即有()()()()22220340m m m m -+-=-+-,解得72m =, 即此时P 点坐标为77(,)22; 当3t =时,有M 、O (0,0),N 、H (10,0),设P 点坐标为(,)n n ,由PM PN =即图上PO PH =,即有()()()()222200100n n n n -+-=-+-,解得5n =,即此时P 点坐标为(5,5);由图可知点P 移动的路径为一条线段,则点P 移动的路径长为:22277552322⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 故选:A.【点睛】本题考查平面直角坐标系点的运动问题,熟练掌握全等三角形的性质和判定以及两点间距离公式是解题的关键.11.4、6和2a【解析】【分析】根据二次根式的定义:一般地,形如a(a≥0)的代数式叫做二次根式,逐一判定即可.【详解】根据题意,得327和12102a a⎛⎫-<<⎪⎝⎭不符合定义,故不是二次根式;m不能确定m的取值,故不能确定是否是二次根式;4、6、2a符合定义,故是二次根式.【点睛】此题主要考查对二次根式的理解,熟练掌握,即可解题.12.2【解析】【分析】先将原式化为同分母分式的减法,再依据法则计算、化简,继而将a+b的值代入计算可得.【详解】解:原式=2-aa b﹣2ba b-=22 a b a b--=()() a b a ba b+--=a+b,当a+b=2时,原式=2,故答案为:2.【点睛】此题主要考查分式的化简求值,解题的关键是熟练掌握分式的运算顺序和运算法则.13.28【解析】【详解】解:把这一组数据从小到大依次排列为20,24,27,28,31,34,38,最中间的数字是28,所以这组数据的中位数是28故答案为:2814.3【解析】【分析】延长ED与BC交于点F,作AH∥DC于点H,先证明出四边形AEFB是正方形,然后将∥ABC逆时针旋转90°得到∥AEG,通过证明∥GAD∥∥CAD证明出AH=AE最终得出答案.【详解】如图,延长ED与BC交于点F,作AH∥DC于点H,∥90E EAB B∠=∠=∠=︒,∥四边形AEFB是矩形,∥AB=AE,∥四边形AEFB是正方形,将∥ABC逆时针旋转90°得到∥AEG,如图所示,则AG=AC,∥GAE=∥CAB,∥45CAD∠=︒,∥∥CAB+∥DAE=45°,∥∥GAD=∥GAE+∥DAE=45°,∥∥GAD=∥CAD,在∥GAD与∥CAD中,∥GA=CA,∥GAD=∥CAD,AD=AD,∥∥GAD∥∥CAD(SAS),∥AH=AE=3,故答案为3.【点睛】本题主要考查了正方形与全等三角形的综合运用,熟练掌握相关概念是解题关键. 15.﹣2,﹣1【解析】【分析】表示出分式方程的解,由分式方程的解为正整数确定出a的值,表示出不等式组的解集,由不等式组最多有7个整数解,即可得到a的取值范围,从而得出满足条件的所有整数a 的值.【详解】解:分式方程去分母得:8﹣4x=ax﹣x,解得:x=83a+,由分式方程解为正整数,得到a+3=1,2,4,8,解得:a=﹣2,﹣1,1,5,又∥x≠2,∥a≠1,∥a=﹣2,﹣1,5,不等式组整理得:5xx a<⎧⎨≥⎩,解得:a≤x<5,由不等式组有解且最多有7个整数解,得到整数解为4,3,2,1,0,﹣1,﹣2,∥﹣3<a<5,∥整数解为4,3,2,1,0,﹣1,﹣2,则满足题意a的值为﹣2,﹣1,故答案为:﹣2,﹣1.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握各自的解法是解本题的关键.16.5【详解】3&23(32)2(32)36625 =-++=-++=.17.-1.【解析】【分析】由于ba有意义,则a≠0,则应有a+b=0,则ba=-1,故只能b=1,a=-1了,再代入代数式求解.【详解】解:由题可得:a≠0,a+b=0,∥ba=-1,b=1,∥a=-1,又∥2n-1为奇数,-1的奇数次方得-1;2n为偶数,-1的偶数次方得1,∥a2n-1•a2n=(-1)2n-1×(-1)2n=-1×1=-1.【点睛】本题主要考查了实数的运算,解决问题的关键是根据已知条件求出未知数a,b的值.18.见解析.【解析】【分析】求出∥C=∥D,根据平行线的判定得出AC∥DF,根据平行线的性质得出∥A=∥DBO,∥F =∥DBO,即可得出答案.【详解】证明:∥∥AOC=∥DOB,∥C=∥COA,∥D=∥BOD,∥∥C=∥D,∥AC∥DF,∥∥A=∥DBO,∥EF∥AB,∥∥F=∥DBO,∥∥A=∥F.本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.19.(1)a=77.5,b=86,(2)200人,(3)八年级对垃圾分类知识掌握得更好.理由见解析.【解析】【分析】(1)根据中位数、众数的意义可求;(2)求出样本中七年级垃圾分类知识测试成绩在80分及其以上的百分比,再用它来估计总体;(3)根据平均数和方差可判断.【详解】解:(1)将七年级的数据从小到大排列,56,58,64,67,69,70,70,71,74,77,78,78,84,86,86,86,86,91,92,95.中位数是:(77+78) ÷2=77.5,众数是:86,故a=77.5,b=86.=200(人),(2)500×820答:根据抽样调查数据,估计七年级垃圾分类知识测试成绩在80分及其以上的大约有200人;(3)因为八年级平均数比七年级的高,方差比七年级的低,我认为八年级对垃圾分类知识掌握得更好.【点睛】本题考查了数据的分析和根据数据对统计结果进行估计,解题关键是明确中位数、众数、方差的意义.20.(1)5,5;(2)51 ;(3)6【解析】【分析】(1)根据题意可得,5个小正方形的面积和是拼成的正方形的面积,求得面积的算术平方根即为大正方形的边长;(2)利用勾股定理得出直角三角形的斜边长,进而根据线段的和差关系求出点A表示的数;(3)图中阴影部分的面积相当于6个小正方形的面积,然后求面积的算术平方根即为新正方形的边长.【详解】(1)∥5个小正方形拼成一个大正方形后,面积不变,∥拼成的正方形的面积是:5×1×1=5,边长=5,故答案是:5,5;(2)根据勾股定理可求出图中直角三角形的斜边长=5,∥A点表示的数是51-,故答案是:51-;(3)∥阴影部分的面积是6个小正方形的面积,即为6,∥拼成的新正方形的面积是6,∥新正方形的边长=6,故答案是:6.21.(1)证明见解析;(2)S△AOB=24.【解析】【详解】试题分析:(1)利用圆周角定理的推论得出AB是∥P的直径即可;(2)首先假设点P坐标为(m,n)(m>0,n>0),得出OA=2OM=2m,OB=2ON=2n,进而利用三角形面积公式求出即可.试题解析:(1)证明:∥∥AOB=90°,且∥AOB是∥P中弦AB所对的圆周角,∥AB是∥P的直径.(2)过点P作PM∥x轴于点M,PN∥y轴于点N,设点P 坐标为(m,n)(m>0,n>0),∥点P是反比例函数y=(x>0)图象上一点,∥mn=12.则OM=m,ON=n.由垂径定理可知,点M为OA中点,点N为OB中点,∥OA=2OM=2m,OB=2ON=2n,∥S△AOB=12BO•OA=12×2n×2m=2mn=2×12=24.考点: 反比例函数综合题.22.(1)y=x+4;(2)点P的坐标为(-12,-8)或(4,8);(3)存在,(-4,-4),(-4,4)或(4,12).【解析】【分析】(1)通过函数y=2x+8求出A、M两点坐标,由两点坐标求出直线AM的函数解析式;(2)设出P点坐标,按照等量关系“S△ABP=S△AOB”即可求出;(3)设点H的坐标为(m,n),然后分三种情况进行讨论即可.【详解】(1)当x=0时,y=2x+8=8,∥点B的坐标为(0,8);当y=0时,2x+8=0,解得:x=-4,∥点A的坐标为(-4,0).∥点M为线段OB的中点,∥点M的坐标为(0,4).设直线AM的函数解析式为y=kx+b(k≠0),将A(-4,0),B(0,4)代入y=kx+b,得:404k bb-+=⎧⎨=⎩,解得:14kb=⎧⎨=⎩,∥直线AM的函数解析式为y=x+4.(2)设点P的坐标为(x,x+4),∥S△ABP=S△AOB,∥12BM•|xP-xA|=12OA•OB,即12×4×|x+4|=12×4×8,解得:x1=-12,x2=4,∥点P的坐标为(-12,-8)或(4,8).(3)存在,(-4,-4),(-4,4)或(4,12).设点H的坐标为(m,n).分三种情况考虑(如图所示):∥当AM为对角线时,040804mn+=-+⎧⎨+=+⎩,解得:44mn=-⎧⎨=-⎩,∥点H1的坐标为(-4,-4);∥当AB为对角线时,040408mn+=-+⎧⎨+=+⎩,解得:44mn=-⎧⎨=⎩,∥点H2的坐标为(-4,4);∥当BM为对角线时,-400 048mn+=+⎧⎨+=+⎩,解得:412mn=⎧⎨=⎩,∥点H3的坐标为(4,12).综上所述:在坐标平面内存在点H,使以A、B、M、H为顶点的四边形是平行四边形,点H的坐标为(-4,-4),(-4,4)或(4,12).【点睛】此题考查一次函数综合题,解题关键在于求出A、M两点坐标,再利用待定系数法求解析式.23.思维探索:(1)8;(2)12;拓展提升:CE=3﹣1.【解析】【分析】思维探索:(1)利用旋转的性质,证明∥AGE∥∥AFE即可;(2)把∥ABE绕点A逆时针旋转90°到AD,交CD于点G,证明∥AEF∥∥AGF即可求得EF=DF﹣BE;拓展提升:如图3,过A作AG∥BD交BD的延长线于G,推出四边形ACBG是矩形,得到矩形ACBG是正方形,根据正方形的性质得到AC=AG,∥CAG=90°,在BG上截取GF=CE,根据全等三角形的性质得到AE=AF,∥EAC=∥F AG,∥ADF=∥ADE=30°,解直角三角形得到DE=DF=4,BE=23,设CE=x,则GF=CE=x,BC=BG=23﹣x,根据线段的和差即可得到结论.【详解】思维探索:(1)如图1,将∥ADF绕点A顺时针旋转90°得到∥ABG,∥GB=DF,AF=AG,∥BAG=∥DAF,∥四边形ABCD为正方形,∥∥BAD=90°,∥∥EAF=45°,∥∥BAE+∥DAF=45°,∥∥BAG+∥BAE=45°=∥EAF,在∥AGE和∥AFE中AG AFGAE EAF AE AE=⎧⎪∠=∠⎨⎪=⎩∥∥AGE∥∥AFE(SAS),∥GE=EF,∥GE=GB+BE=BE+DF,∥EF=BE+DF,∥∥CEF的周长=CE+CF+EF=CE+BE+DF+CF=BC+CD=8,故答案为:8;(2)如,2,把∥ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得∥AEF∥∥AGF,∥EF=GF,且DG=BE,∥EF=DF﹣DG=DF﹣BE,∥∥CEF的周长=CE+CF+EF=CE+CF+DF﹣BE=BC+DF+CF=4+4+2+2=12;拓展提升:如图3,过A作AG∥BD交BD的延长线于G,∥BD∥BC,∥ACB=90°,∥∥ACB=∥CBG=∥G=90°,∥四边形ACBG是矩形,∥AC=BC,∥矩形ACBG是正方形,∥AC=AG,∥CAG=90°,在BG上截取GF=CE,∥∥AEC∥∥AGF(SAS),∥AE=AF,∥EAC=∥F AG,∥∥EAD=∥BAC=∥GAB=45°,∥∥DAF=∥DAE=45°,∥AD=AD,∥∥ADE∥∥ADF(SAS),∥∥ADF=∥ADE=30°,∥∥BDE=60°,∥∥DBE=90°,BD=2,∥DE=DF=4,BE=23,设CE=x,则GF=CE=x,BC=BG=23﹣x,∥DG=2+23﹣x,∥DG﹣FG=DF,即2+23﹣x﹣x=4,∥x=3﹣1,∥CE=3﹣1.【点睛】本题以正方形为背景,结合旋转,三角形全等,解直角三角形进行综合性考查,熟知常见的全等模型,旋转性质,三角形的判定及性质,正方形,矩形的性质是解题的关键.24.(1)()0,5C、()3,4M-;(2)()1313,9M'-、()2313,9M'+【解析】【分析】(1)将x=0代入即可求得点C坐标,将函数关系式配成顶点式即可求得点M的坐标;(2)先根据中心对称可得点M'在抛物线21:65L y x x=-+的图像上,当点M'抛物线1L对称轴的右侧时,过点M作MG∥y轴于点G,过点M'作M'G∥x轴于点H,根据平行四边形的性质可得CM∥M'F,CM=M'F,进而可证得∥CGM∥∥M'HF,从而可得点M'的纵坐标,代入抛物线21:65L y x x=-+即可求得点M'的坐标,当点M'抛物线1L对称轴的左侧时,同理可得.【详解】解:(1)当x=0时,y=5,则点C坐标为(0,5),∥2265(3)4y x x x=-+=--,∥顶点M的坐标为(3,-4),(2)∥抛物线21:65L y x x=-+绕平面内的某一点旋转180°,旋转后得到抛物线2L,∥1L与2L关于该点成中心对称∥2L经过1L的顶点M,∥1L经过2L的顶点M',如图,当点M'抛物线1L对称轴的右侧时,过点M作MG∥y轴于点G,过点M'作M'G∥x轴于点H,当四边形CM FM'为平行四边形时,则CM∥M'F,CM=M'F,∥∥CGM∥∥M'HF,∥点C坐标为(0,5),点M的坐标为(3,-4),∥M'H=CG=5-(-4)=9,∥点M'的纵坐标为9,将y=9代入265y x x=-+得2659x x-+=,解得12313,313x x=-=+∥此时点M'的坐标为()313,9+,如图,当点M '抛物线1L 对称轴的左侧时,同理可得,此时点M'的坐标为()313,9-,综上所述,此时点M'的坐标为()313,9-或()313,9+【点睛】本题考查了二次函数的图像性质、平行四边形的性质及全等三角形的判定及性质,根据平行四边形的性质求得点M'的纵坐标是解决本题的关键.。
2022年中考数学试题分项版解析汇编(第02期)专题1.4 因式分解分式二次根式(含解析)

专题1.4 因式分解分式二次根式一、单项选择题1.【湖南省邵阳市 2022年中考数学试卷】将多项式x﹣x3因式分解正确的选项是〔〕A. x〔x2﹣1〕 B. x〔1﹣x2〕 C. x〔x+1〕〔x﹣1〕 D. x〔1+x〕〔1﹣x〕【答案】D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案.【详解】x﹣x3=x〔1﹣x2〕=x〔1﹣x〕〔1+x〕.应选D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.2.【台湾省 2022年中考数学试卷】某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购置假设干本笔记本.假设小锦购置笔记本的花费为36元,那么小勤购置笔记本的花费可能为以下何者?〔〕A. 16元 B. 27元 C. 30元 D. 48元【答案】D点睛:此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.3.【湖南省郴州市 2022年中考数学试卷】以下运算正确的选项是〔〕A. a3•a2=a6 B. a﹣2=﹣ C. 3﹣2= D.〔a+2〕〔a﹣2〕=a2+4【答案】C【解析】【分析】直接利用同底数幂的乘除运算法那么、负指数幂的性质、二次根式的加减运算法那么、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、〔a+2〕〔a﹣2〕=a2﹣4,故D选项错误,应选C.【点睛】此题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法那么是解题关键.4.【河北省 2022年中考数学试卷】假设2n+2n+2n+2n=2,那么n=〔〕A.﹣1 B.﹣2 C. 0 D.【答案】A【点睛】此题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法那么是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n〔m,n是正整数〕.5.【湖北省孝感市 2022年中考数学试题】,,那么式子的值是〔〕A. 48 B. C. 16 D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:〔x-y+〕〔x+y-〕===〔x+y〕〔x-y〕,当x+y=4,x-y=时,原式=4×=12,应选:D.点睛:此题考查了分式的混合运算和求值,能正确根据分式的运算法那么进行化简是解此题的关键.6.【湖南省邵阳市 2022年中考数学试卷】据?经济日报? 2022年5月21日报道:目前,世界集成电路生产技术水平最高已到达7nm〔1nm=10﹣9m〕,主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为〔〕A.28×10﹣9m B. 2.8×10﹣8m C.28×109m D. 2.8×108m【答案】B【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【四川省内江市 2022年中考数学试卷】:﹣=,那么的值是〔〕A. B.﹣ C. 3 D.﹣3【答案】C【解析】分析:等式左边两项通分并利用同分母分式的减法法那么计算,变形后即可得到结果.详解:∵﹣=,∴=,那么=3,应选:C.点睛:此题考查了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目具体条件选择适宜的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为0.8.【四川省内江市 2022年中考数学试卷】小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为〔〕A.毫米 B.毫米 C.厘米 D.厘米【答案】A点睛:此题考查了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.【河北省 2022年中考数学试卷】老师设计了接力游戏,用合作的方式完成分式化简,规那么是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如下图:接力中,自己负责的一步出现错误的选项是〔〕A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法那么逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,应选D.【点睛】此题考查了分式的乘除法,熟练掌握分式乘除法的运算法那么是解题的关键. 10.【四川省达州市 2022年中考数学试】题二次根式中的x的取值范围是〔〕A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣2【答案】D点睛:此题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.11.【台湾省 2022年中考数学试卷】算式×〔﹣1〕之值为何?〔〕A. B. C. 2- D. 1【答案】A【解析】分析:根据乘法分配律可以解答此题.详解:×〔﹣1〕=×﹣1=,应选:A.点睛:此题考查二次根式的混合运算,解答此题的关键是明确二次根式混合运算的计算方法.12.【山东省聊城市 2022年中考数学试卷】以下计算正确的选项是〔〕A. B.C. D.【答案】B点睛:此题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法那么. 13.【湖南省张家界市 2022年初中毕业学业考试数学试题】以下运算正确的选项是〔〕A. B. C. D.=【答案】D【解析】分析:根据合并同类项的法那么:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a 〔a≥0〕;完全平方公式:〔a±b〕2=a2±2ab+b2;幂的乘方法那么:底数不变,指数相乘进行计算即可.详解:A、a2和a不是同类项,不能合并,故原选项错误;B、=|a|,故原选项错误;C、〔a+1〕2=a2+2a+1,故原选项错误;D、〔a3〕2=a6,故原选项正确.应选:D.点睛:此题主要考查了二次根式的性质、合并同类项、完全平方公式、幂的乘方,关键是掌握各计算法那么和计算公式.二、填空题14.【山东省东营市 2022年中考数学试题】分解因式:x3﹣4xy2=_____.【答案】x〔x+2y〕〔x﹣2y〕【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x〔x2-4y2〕=x〔x+2y〕〔x-2y〕,故答案为:x〔x+2y〕〔x-2y〕点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的关键.15.【湖南省郴州市 2022年中考数学试卷】因式分解:a3﹣2a2b+ab2=_____.【答案】a〔a﹣b〕2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的关键.16.【湖南省怀化市 2022年中考数学试题】因式分解:ab+ac=_____.【答案】a〔b+c〕【解析】分析:直接找出公因式进而提取得出答案.详解:ab+ac=a〔b+c〕.故答案为:a〔b+c〕.点睛:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.【河北省 2022年中考数学试卷】假设a,b互为相反数,那么a2﹣b2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=〔a+b〕〔a﹣b〕=0,故答案为:0.【点睛】此题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.【山东省威海市 2022年中考数学试题】分解因式:﹣a2+2a﹣2=__.【答案】﹣〔a﹣2〕2【解析】分析:原式提取公因式,再利用完全平方公式分解即可.详解:原式=﹣〔a2﹣4a+4〕=﹣〔a﹣2〕2,故答案为:﹣〔a﹣2〕2点睛:此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解此题的关键.19.【湖南省湘西州 2022年中考数学试卷】要使分式有意义,那么x的取值范围为_____.【答案】x≠﹣2【解析】【分析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为:x≠﹣2.【点睛】此题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.20.【湖北省襄阳市 2022年中考数学试卷】计算的结果是_____.【答案】【点睛】此题考查了同分母分式的加减法,熟练掌握同分母公式加减法的法那么是解题的关键,注意结果要化成最简分式.21.【湖北省武汉市 2022年中考数学试卷】计算的结果是_____.【答案】【解析】【分析】根据分式的加减法法那么进行计算即可得答案.【详解】原式===,故答案为:.【点睛】此题考查分式的加减运算,熟练掌握分式加减的运算法那么是解题的关键,此题属于根底题.22.【山东省滨州市 2022年中考数学试题】假设分式的值为0,那么x的值为______.【答案】-3点睛:此题主要考查分式的值为0的条件,注意分母不为0.23.【新疆自治区 2022年中考数学试题】如果代数式有意义,那么实数x的取值范围是_____.【答案】x≥1.【解析】分析:直接利用二次根式的定义分析得出答案.详解:∵代数式有意义,∴x-1≥0,解得,x≥1.∴实数x的取值范围是:x≥1.故答案为:x≥1.点睛:此题主要考查了二次根式的定义,正确把握定义是解题关键.24.【山东省烟台市 2022年中考数学试卷】与最简二次根式5是同类二次根式,那么a=_____.【答案】2【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=2,∴a+1=3,解得:a=2.故答案为2.点睛:此题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.25.【黑龙江省哈尔滨市 2022年中考数学试题】计算6﹣10的结果是_____.【答案】【解析】分析:首先化简,然后再合并同类二次根式即可.详解:原式=6-10×=6-2=4,故答案为:4.点睛:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.三、解答题26.【浙江省杭州市临安市 2022年中考数学试卷】阅读以下题目的解题过程:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4〔A〕∴c2〔a2﹣b2〕=〔a2+b2〕〔a2﹣b2〕〔B〕∴c2=a2+b2〔C〕∴△ABC是直角三角形问:〔1〕上述解题过程,从哪一步开始出现错误?请写出该步的代号:;〔2〕错误的原因为:;〔3〕此题正确的结论为:.【答案】〔1〕C;〔2〕没有考虑a=b的情况;〔3〕△ABC是等腰三角形或直角三角形.〔2〕错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;〔3〕此题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.【点睛】此题考查因式分解的应用、勾股定理的逆定理,解答此题的关键是明确题意,写出相应的结论,注意考虑问题要全面.27.【上海市 2022年中考数学试卷】先化简,再求值:〔﹣〕÷,其中a=.【答案】原式=【点睛】此题考查了分式的化简求值,熟练掌握分式化简求值的步骤是解题的关键.28.【吉林省长春市 2022年中考数学试卷】先化简,再求值:,其中x=﹣1.【答案】【解析】【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答此题.【详解】====x+1,当x=﹣1时,原式=﹣1+1=.【点睛】此题考查分式的化简求值,熟练掌握分式化简求值的方法是解答此题的关键.29.【云南省昆明市 2022年中考数学试题】先化简,再求值:〔+1〕÷,其中a=tan60°﹣|﹣1|.【答案】原式=【解析】分析:根据分式的运算法那么即可求出答案.详解:当a=tan60°-|-1|时,∴a=-1∴原式===.点睛:此题考查分式的运算法那么,解题的关键是熟练运用分式运算法那么.30.【黑龙江省哈尔滨市 2022年中考数学试题】先化简,再求代数式〔1﹣〕÷的值,其中a=4cos30°+3tan45°.【答案】点睛:此题考查分式的运算,解题的关键是熟练运用分式的运算法那么,此题属于根底题型.31.【广西钦州市 2022年中考数学试卷】计算:|﹣4|+3tan60°﹣﹣〔〕﹣1【答案】+2【解析】【分析】按顺序先进行绝对值的化简、特殊角的三角函数值、二次根式的化简、负指数幂的计算,然后再按运算顺序进行计算即可得出答案.【详解】|﹣4|+3tan60°﹣﹣〔〕﹣1=4+3﹣2﹣2=+2.【点睛】此题考查了实数的混合运算,涉及到特殊角的三角函数值、二次根式的化简、负指数幂的运算等,熟练掌握各运算的运算法那么以及实数混合运算的运算法那么是解题的关键.32.【江苏省徐州巿 2022年中考数学试卷】计算:〔﹣1〕 2022+π0﹣〔〕﹣1+.【答案】1【解析】【分析】按顺序分别进行乘方的运算、0次幂的运算、负指数幂的运算、立方根的运算,然后再按去处顺序进行运算即可.【详解】〔﹣1〕 2022+π0﹣〔〕﹣1+=1+1﹣3+2=1.【点睛】此题考查了实数的混合运算,涉及到0次幂、负指数幂,熟练掌握0次幂的运算法那么、负指数幂的运算法那么以及实数混合运算的运算法那么是解题的关键.33.【湖北省荆门市 2022年中考数学试卷】先化简,再求值:〔x+2+〕÷,其中x=2.【答案】,4-2.【点睛】此题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法那么是解题的关键.34.【四川省达州市2022年中考数学试题】化简代数式:,再从不等式组的解集中取一个适宜的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法那么化简,再解不等式组,进而得出x 的值,即可计算得出答案.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法那么是解题关键.35.【湖南省邵阳市 2022年中考数学试卷】计算:〔﹣1〕2+〔π﹣3.14〕0﹣|﹣2|【答案】【解析】【分析】按顺序先分别进行乘方的计算,零指数幂的运算、绝对值的化简,然后再按运算顺序进行计算即可.【详解】〔﹣1〕2+〔π﹣3.14〕0﹣|﹣2|=1+1-〔2-〕=1+1-2+=.【点睛】此题考查了实数的运算,熟练掌握运算法那么是解此题的关键.36.【湖北省随州市 2022年中考数学试卷】先化简,再求值:,其中x为整数且满足不等式组.【答案】,.【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,由x为整数且满足不等式组可以求得x的值,然后代入化简后的结果进行计算即可得答案.【详解】===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点睛】此题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,熟练掌握分式的化简求值的方法是解答此题的关键.37.【山东省烟台市 2022年中考数学试卷】先化简,再求值:〔1+〕÷,其中x满足x2﹣2x ﹣5=0.【答案】5点睛:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.38.【江苏省淮安市 2022年中考数学试题】先化简,再求值:〔1﹣〕÷,其中a=﹣3.【答案】原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法那么化简,再将a的值代入计算可得.详解:原式===,当a=﹣3时,原式==﹣2.点睛:此题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法那么.39.【贵州省〔黔东南,黔南,黔西南〕 2022年中考数学试题】〔1〕计算:|﹣2|﹣2cos60°+〔〕﹣1﹣〔 2022﹣〕0〔2〕先化简〔1﹣〕•,再在1、2、3中选取一个适当的数代入求值.【答案】〔1〕6;〔2〕-2〔2〕〔1﹣〕•,===,当x=2时,原式=.点睛:此题考查分式的化简求值、绝对值、特殊角的三角函数值、负整数指数幂、零指数幂,解答此题的关键是明确它们各自的计算方法.40.【湖北省黄石市 2022年中考数学试卷】先化简,再求值:.其中x=sin60°.【答案】【解析】分析:先根据分式的混合运算顺序和运算法那么化简原式,再根据三角函数值代入计算可得.详解:原式==,当x=sin60°=时,原式==.点睛:此题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法那么.41.【江苏省盐城市 2022年中考数学试题】先化简,再求值:,其中.【答案】原式=x-1=点睛:此题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.42.【湖北省恩施州 2022年中考数学试题】先化简,再求值:,其中x=2﹣1.【答案】【解析】分析:直接分解因式,再利用分式的混合运算法那么计算得出答案.详解:==,把x=2-1代入得,原式==.点睛:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.43.【新疆自治区 2022年中考数学试题】先化简,再求值:〔+1〕÷,其中x是方程x2+3x=0的根.【答案】-2点睛:此题考查分式的化简求值、一元二次方程的解,解答此题的关键是明确分式的化简求值的计算方法.44.【山东省聊城市 2022年中考数学试卷】先化简,再求值:,其中.【答案】-4【解析】分析: 首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.详解:原式====-当a=-时,原式=-4.点睛:此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.45.【四川省眉山市 2022年中考数学试题】先化简,再求值:,其中x满足x2-2x-2=0.【答案】点睛:此题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法那么.46.【湖南省常德市 2022年中考数学试卷】先化简,再求值:,其中.【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把数值代入化简后的结果进行计算即可得.【详解】原式=[+]×〔x﹣3〕2=×〔x﹣3〕2=x﹣3,当x=时,原式=﹣3=﹣.【点睛】此题主要考查了分式的化简求值,熟练掌握分式的混合运算法那么是解题关键.47.【湖南省常德市 2022年中考数学试卷】计算:.【答案】-2.【解析】【分析】按顺序先分别进行零指数幂运算、绝对值化简、二次根式化简、负指数幂的运算,然后再按运算顺序进行计算即可得.【详解】原式=1﹣〔2﹣1〕+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点睛】此题主要考查了实数的混合运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.48.【 2022年湖南省湘潭市中考数学试卷】先化简,再求值:〔1+〕÷.其中x=3.【答案】x+2,5点睛:此题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.49.【江苏省泰州市 2022年中考数学试题】〔1〕计算:π0+2cos30°﹣|2﹣|﹣〔〕﹣2;〔2〕化简:〔2﹣〕÷.【答案】〔1〕2﹣5;〔2〕【解析】分析:〔1〕先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;〔2〕根据分式的混合运算顺序和运算法那么计算可得.详解:〔1〕原式=1+2×﹣〔2﹣〕﹣4=1+﹣2+-4=2﹣5;〔2〕原式=,=,=.点睛:此题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法那么.【山东省菏泽市 2022年中考数学试题】先化简,再求值:,其中,50..【答案】7点睛:此题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法那么.。
2022年中考数学试题分项版解析汇编(第02期)专题5.2 图形的相似(含解析)

专题5.2 图形的相似一、单项选择题1.两三角形的相似比是2:3,那么其面积之比是〔〕A.: B. 2:3 C. 4:9 D. 8:27【来源】广西壮族自治区玉林市 2022年中考数学试卷【答案】C【解析】【分析】根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵两三角形的相似比是2:3,∴其面积之比是4:9,应选C.【点睛】此题考查了相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键. 2.△ABC∽△DEF,相似比为2,且△ABC的面积为16,那么△DEF的面积为〔〕A. 32 B. 8 C. 4 D. 16【来源】贵州省铜仁市 2022年中考数学试题【答案】C点睛:此题考查了相似三角形的性质.此题比拟简单,注意掌握相似三角形的面积的比等于相似比的平方的性质的应用.3.?孙子算经?是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸〔提示:1丈=10尺,1尺=10寸〕,那么竹竿的长为〔〕A.五丈 B.四丈五尺 C.一丈 D.五尺【来源】吉林省长春市 2022年中考数学试卷【答案】B【点睛】此题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.4.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,那么以下结论一定正确的选项是〔〕A. B. C. D.【来源】黑龙江省哈尔滨市 2022年中考数学试题【答案】D【解析】分析:由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出,此题得解.详解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴,,∴.应选:D.点睛:此题考查了相似三角形的判定与性质,利用相似三角形的性质找出是解题的关键.5.如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,那么S△EFG:S△ABG=〔〕A. 1:3 B. 3:1 C. 1:9 D. 9:1【来源】湖北省荆门市 2022年中考数学试卷【答案】C【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识,熟练掌握和灵活运用平行四边形的性质、相似三角形的判定与性质是解题的关键.6.如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,那么的值为〔〕A. B. C. D. 1【来源】四川省达州市 2022年中考数学试题【答案】C【解析】分析:首先证明AG:AB=CH:BC=1:3,推出GH∥AC,推出△BGH∽△BAC,可得,,由此即可解决问题.点睛:此题考查平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.7.如下图,在平面直角坐标系中,点A〔2,4〕,过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,那么CD的长度是〔〕A. 2 B. 1 C. 4 D. 2【来源】湖南省邵阳市 2022年中考数学试卷【答案】A【点睛】此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.8.如图,平行于BC的直线DE把△ABC分成面积相等的两局部,那么的值为〔〕A. 1 B. C.-1 D.+1【来源】湖北省随州市 2022年中考数学试卷【答案】C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,∴,∴,应选C.【点睛】此题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.9.如图,在平面直角坐标系中,M、N、C三点的坐标分别为〔,1〕,〔3,1〕,〔3,0〕,点A为线段MN上的一个动点,连接AC,过点A作交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为〔0,b〕,那么b的取值范围是〔〕A. B. C. D.【来源】广西壮族自治区桂林市 2022年中考数学试题【答案】A【解析】分析:分两种情形:当A与点N、M重合时来确定b的最大与最小值即可.详解:如图1,当点A与点N重合时,CA⊥AB,∴MN是直线AB的一局部,∵N〔3,1〕∴OB=1,此时b=1;当点A与点M重合时,如图2,延长NM交y轴于点D,易证△MCN∽△BMD∴∵MN=3-=,DM=,CN=1∴BD=∴OB=BD-OD=-1=,即b=-,∴b的取值范围是.应选A.点睛:此题考查了坐标与图形,灵活运用相似三角形的判定与性质是解此题的关键..10.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,假设菱形ABCD的周长为16,∠BAD =60°,那么△OCE的面积是〔〕A. B. 2 C. D. 4【来源】江苏省宿迁市 2022年中考数学试卷【答案】A【详解】∵菱形ABCD的周长为16,∴菱形ABCD的边长为4,∵∠BAD=60°,∴△ABD是等边三角形,又∵O是菱形对角线AC、BD的交点,∴AC⊥BD,【点睛】此题考查了相似三角形的判定与性质,等边三角形的判定与性质,勾股定理,菱形的性质,结合图形熟练应用相关性质是解题的关键.11.如图,在△ABC中,EF∥BC,AB=3AE,假设S四边形BCFE=16,那么S△ABC=〔〕A. 16 B. 18 C. 20 D. 24【来源】广西壮族自治区贵港市 2022年中考数学试卷【答案】B【解析】【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.【详解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴,解得:x=2,∴S△ABC=18,应选B.【点睛】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解此题的关键.12.在△ABC中,点D、E分别为边AB、AC的中点,那么△ADE与△ABC的面积之比为〔〕A. B. C. D.【来源】广东省 2022年中考数学试题【答案】C【点睛】此题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE∥BC 是解题的关键.二、填空题13.:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,那么四边形BCED的面积为_____.【来源】四川省资阳市 2022年中考数学试卷【答案】9【解析】【分析】设四边形BCED的面积为x,那么S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.14.如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,那么对角线EG长的最小值为_____.【来源】贵州省贵阳市 2022年中考数学试卷【答案】【解析】【分析】作AQ⊥BC于点Q,交DG于点P,设GF=PQ=x,那么AP=4﹣x,证△ADG∽△ABC得,据此知EF=DG=〔4﹣x〕,由EG=即可求得答案.【详解】如图,作AQ⊥BC于点Q,交DG于点P,【点睛】此题主要考查相似三角形的判定与性质,解题的关键是掌握矩形的性质、相似三角形的判定与性质及二次函数的性质及勾股定理.15.如图,正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是_____.【来源】上海市 2022年中考数学试卷【答案】【详解】作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,那么GF=x,MH=x,AM=3﹣x,∵GF∥BC,∴△AGF∽△ABC,∴,即,解得x=,即正方形DEFG的边长为,故答案为:.【点睛】此题考查了相似三角形的判定与性质,正确添加辅助线求出BC边上的高是解题的关键.16.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,甲楼的高AB是120m,那么乙楼的高CD是_____m〔结果保存根号〕【来源】广西钦州市 2022年中考数学试卷【答案】40【点睛】此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.17.如下图,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:_____.【来源】湖南省邵阳市 2022年中考数学试卷【答案】△ADF∽△ECF【解析】【分析】利用平行四边形的性质得到AD∥CE,那么根据相似三角形的判定方法可判断△ADF∽△ECF.【详解】∵四边形ABCD为平行四边形,∴AD∥CE,∴△ADF∽△ECF,故答案为:△ADF∽△ECF.【点睛】此题考查了平行四边形的性质、相似三角形的判定,熟练掌握平行四边形的性质和相似三角形的判定是解题的关键.18.如图,在矩形中,是边的中点,连接交对角线于点,假设,,那么的长为________.【来源】北京市 2022年中考数学试卷【答案】点睛:考查矩形的性质,勾股定理,相似三角形的性质及判定,熟练掌握相似三角形的判定方法和性质是解题的关键.19.如图,与是以点为位似中心的位似图形,相似比为,,,假设点的坐标是,那么点的坐标是__________.【来源】山东省菏泽市 2022年中考数学试题【答案】〔2,2〕详解:与是以点为位似中心的位似图形,,,假设点的坐标是,过点作交于点E.点的坐标为:与的相似比为,点的坐标为:即点的坐标为:故答案为:点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.三、解答题20.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如下图.请根据相关测量信息,求河宽AB.【来源】陕西省 2022年中考数学试题【答案】河宽为17米.【解析】【分析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.【点睛】此题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.21.正方形中与交于点,点在线段上,作直线交直线于,过作于,设直线交于.〔1〕如图,当在线段上时,求证:;〔2〕如图2,当在线段上,连接,当时,求证:;〔3〕在图3,当在线段上,连接,当时,求证:.【来源】湖南省常德市 2022年中考数学试卷【答案】〔1〕证明见解析;〔2〕证明见解析;〔3〕证明见解析.【详解】〔1〕∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;〔3〕设CE=a〔a>0〕∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,∴a=b〔已舍去不符合题意的〕∴CN=a=b,AC=〔a+b〕=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点睛】此题是相似形综合题,涉及到的知识点有正方形的性质、平行四边形、菱形的判定、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等,判断出四边形DENM是菱形是解〔2〕的关键,判断出△DEN∽△ADE是解〔3〕的关键.22.如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.〔1〕求证:BN平分∠ABE;〔2〕假设BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;〔3〕如图②,假设点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.【来源】四川省眉山市 2022年中考数学试题【答案】〔1〕证明见解析;〔2〕;〔3〕证明见解析.详解:〔1〕∵AB=AC,∴∠ABC=∠ACB,∵M为BC的中点,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN为等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;〔2〕设BM=CM=MN=a,∵四边形DNBC是平行四边形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN〔SAS〕,∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得〔2a+a〕2+a2=1,解得:a=±〔负值舍去〕,∴BC=2a=;点睛:此题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.23.在△ABC中,∠ABC=90°.〔1〕如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;〔2〕如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;〔3〕如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.【来源】湖北省武汉市 2022年中考数学试卷【答案】〔1〕证明见解析;〔2〕;〔3〕.【详解】〔1〕∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;〔2〕如图,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠PAC=,同〔1〕的方法得,△ABP∽△PQF,∴,设AB=a,PQ=2a,BP=b,FQ=2b〔a>0,b>0〕,∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,〔3〕在Rt△ABC中,sin∠BAC=,如图,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴,同〔1〕的方法得,△ABG∽△BCH,∴=,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC=.【点睛】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,根据题意添加辅助线构造出图1中的相似三角形模型是解此题的关键.24.如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.〔1〕证明:四边形OEFG是平行四边形;〔2〕将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①假设OE=,OG=1,求的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.〔不要求证明〕【来源】湖南省邵阳市 2022年中考数学试卷【答案】〔1〕证明见解析;〔2〕①;②添加AC=BD.【解析】【分析】〔1〕连接AC,由四个中点可知OE∥AC、OE=AC,GF∥AC、GF=AC,据此得出OE=GF、OE//GF,即可得证;〔2〕①由旋转性质知OG=OM、OE=ON,∠GOM=∠EON,据此可证△OGM∽△OEN得;②连接AC、BD,根据①知△OGM∽△OEN,假设要GM=EN只需使△OGM≌△OEN,添加使AC=BD的条件均可以满足此条件.【详解】〔1〕如图1,连接AC,〔2〕①∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴,∴△OGM∽△OEN,∴;②添加AC=BD,如图2,连接AC、BD,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OG=EF=BD、OE=GF=BD,∵AC=BD,【点睛】此题主要考查相似形的综合题,解题的关键是熟练掌握中位线定义及其定理、平行四边形的判定、旋转的性质、相似三角形与全等三角形的判定与性质等知识点.25.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形〞.〔1〕假设△ABC是“准互余三角形〞,∠C>90°,∠A=60°,那么∠B= °;〔2〕如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.假设AD是∠BAC的平分线,不难证明△ABD是“准互余三角形〞.试问在边BC上是否存在点E〔异于点D〕,使得△ABE也是“准互余三角形〞?假设存在,请求出BE的长;假设不存在,请说明理由.〔3〕如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形〞,求对角线AC的长.【来源】江苏省淮安市 2022年中考数学试题【答案】〔1〕15°;〔2〕BE=.〔3〕AC=20.【解析】分析:〔1〕根据“准互余三角形〞的定义构建方程即可解决问题;〔2〕只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题;〔3〕如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,那么有:x〔x+7〕=122,推出x=9或﹣16〔舍弃〕,再利用勾股定理求出AC即可;详解:〔1〕∵△ABC是“准互余三角形〞,∠C>90°,∠A=60°,∴2∠B+∠A=60°,解得,∠B=15°;〔2〕如图①中,〔3〕如图②中,将△BCD沿BC翻折得到△BCF.那么有:x〔x+7〕=122,∴x=9或﹣16〔舍去〕,∴AF=7+9=16,在Rt△ACF中,AC=.点睛:此题考查四边形综合题、相似三角形的判定和性质、“准互余三角形〞的定义等知识,解题的关键是理解题意,学会利用翻折变换添加辅助线,构造相似三角形解决问题,学会利用模型构建辅助线解决问题,属于中考压轴题.26.在△ABC中,E、F分别为线段AB、AC上的点〔不与A、B、C重合〕.〔1〕如图1,假设EF∥BC,求证:〔2〕如图2,假设EF不与BC平行,〔1〕中的结论是否仍然成立?请说明理由;〔3〕如图3,假设EF上一点G恰为△ABC的重心,,求的值.【来源】湖北省黄石市 2022年中考数学试卷【答案】〔1〕证明见解析;〔2〕证明见解析;〔3〕详解:〔1〕∵EF∥BC,∴△AEF∽△ABC,∴,∴==;〔2〕假设EF不与BC平行,〔1〕中的结论仍然成立,分别过点F、C作AB的垂线,垂足分别为N、H,∵FN⊥AB、CH⊥AB,∴FN∥CH,∴△AFN∽△ACH,∴,∴==;〔3〕连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,而==a,∴+ a =a,解得:a=,∴=×=.点睛:此题主要考查相似形的综合问题,解题的关键是熟练掌握相似三角形的判定与性质和三角形重心的定义及其性质等知识点.27.〔1〕〔发现〕如图①,等边△ABC,将直角三角板的60°角顶点D任意放在BC边上〔点D不与点B、C重合〕,使两边分别交线段AB、AC于点E、F.①假设AB=6,AE=4,BD=2,那么CF =________;②求证:△EBD∽△DCF.〔2〕〔思考〕假设将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?假设存在,求出的值;假设不存在,请说明理由.〔3〕〔探索〕如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处〔其中∠MON=∠B〕,使两条边分别交边AB、AC于点E、F〔点E、F均不与△ABC的顶点重合〕,连接EF.设∠B=α,那么△AEF与△ABC的周长之比为________〔用含α的表达式表示〕.【来源】江苏省盐城市 2022年中考数学试题【答案】〔1〕①4;②证明见解析;〔2〕存在;〔3〕1-cosα.〔1〕①先求出BE的长度后发现BE=BD,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,【解析】分析:另外∠EDF=60°,可证得△CDF是等边三角形,从而CF=CD=BC-BD;②证明△EBD∽△DCF,这个模型可称为“一线三等角相似模型〞,根据“AA〞判定相似;〔2〕【思考】由平分线可联系到角平分线的性质“角平分线上的点到角两边的距离相等〞,可过D作DM⊥BE,DG⊥EF,DN⊥CF,那么DM=DG=DN,从而通过证明△BDM≅△CDN可得BD=CD;详解:〔1〕①∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°,∵AE=4,∴BE=2,那么BE=BD,∴△BDE是等边三角形,∴∠BDE=60°,又∵∠EDF=60°,∴∠CDF=180°-∠EDF-∠B=60°,那么∠CDF =∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC-BD=6-2=4;②证明:∵∠EDF=60°,∠B=60°∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF,又∵∠B=∠C,∴△EBD∽△DCF〔2〕存在.如图,作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别为M,G,N,〔 3 〕连结AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别为G,D,H,那么∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点∴∠B=∠C,OB=OC,∴△OBG≅△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°−α,那么∠GOH=180°-〔∠BOG+∠COH〕=2α,∵∠EOF=∠B=α,那么∠GOH=2∠EOF=2α,由〔2〕题可猜测应用EF=ED+DF=EG+FH,那么 C△AEF=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,设AB=m,那么OB=mcosα,GB=mcos2α,.点睛:此题考查了角平分线的定义,等边三角形的性质,全等三角形以及相似三角形的判定和性质等知识点.难度较大.28.如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.〔1〕如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;〔2〕假设tan∠FMN=,BC=4,那么可求出图中哪些线段的长?写出解答过程;〔3〕连接CM,DN,CF,DF.试证明△FMC与△DNF全等;〔4〕在〔3〕的条件下,图中还有哪些其它的全等三角形?请直接写出.【来源】山东省威海市 2022年中考数学试题【答案】〔1〕;〔2〕可求线段AD的长;〔3〕证明见解析;〔4〕△BMF≌△NFM≌△MAN≌△FNE.〔3〕根据△ABC和△ADE都是直角三角形,M,N分别是AB,AE的中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;〔4〕由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.详解:〔1〕∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,〔2〕可求线段AD的长.由〔1〕可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;〔3〕∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,〔4〕在〔3〕的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.点睛:此题属于相似形综合题,主要考查了全等三角形的判定与性质,相似三角形的判定与性质,直角三角形的性质以及矩形的判定与性质的综合运用,解决问题的关键是判定全等三角形或相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出有关结论.29.〔1〕某学校“智慧方园〞数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题〔如图2〕.请答复:∠ADB= °,AB= .〔2〕请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【来源】山东省东营市 2022年中考数学试题【答案】〔1〕75;4;〔2〕CD=4.详解:〔1〕∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.〔2〕过点B作BE∥AD交AC于点E,如下图.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.点睛:此题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:〔1〕利用相似三角形的性质求出OD的值;〔2〕利用勾股定理求出BE、CD的长度.30.如图1,在矩形ABCD中,P为CD边上一点〔DP<CP〕,∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.〔1〕求证:AD2=DP•PC;〔2〕请判断四边形PMBN的形状,并说明理由;〔3〕如图2,连接AC,分别交PM,PB于点E,F.假设=,求的值.【来源】云南省昆明市 2022年中考数学试题【答案】〔1〕证明见解析;〔2〕四边形PMBN是菱形,理由见解析;〔3〕〔3〕由于,可设DP=k,AD=2k,由〔1〕可知:AG=DP=k,PG=AD=2k,从而求出GB=PC=4k,AB=AG+GB=5k,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得,,从而可求出EF=AF-AE=AC-AC=AC,从而可得.详解:〔1〕过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;〔2〕∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB-∠PAM=∠APB-∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;又易证:△PCE∽△MAE,AM=AB=,∴∴,∴EF=AF-AE=AC-AC=AC,∴.点睛:此题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.41。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年湖北武汉中考数学试卷1.(2022·真题)实数2022的相反数是( )A.2022B.−2022C.12022D.−120222.(2022·真题)式子√x−1在实数范围内有意义,则x的取值范围是( )A.x≥0B.x≥−1C.x≥1D.x≤13.(2022·真题)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球4.(2022·真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列美术字是轴对称图形的是( )A.B.C.D.5.(2022·真题)如图是由5个相同的小正方体组成的几何体,该几何体的左视图是( )A.B.C.D.6.(2022·真题)“漏壶”是一种中国古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内璧有刻度,人们根据壶中水面的位置计算时间,用x表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示 y 与 x 的对应关系的是 ( )A .B .C .D .7. (2022·真题)从 1,2,3,4 四个数中随机选取两个不同的数,分别记为 a ,c ,则关于 x 的一元二次方程 ax 2+4x +c =0 有实数解的概率是 ( )A . 14B . 13C . 12D . 238. (2022·真题)已知反比例函数 y =k x 的图象分别位于第二、第四象限,A (x 1,y 1),B (x 2,y 2) 两点在该图象上.下列命题:①过点 A 作 AC ⊥x 轴,C 为垂足,连接 OA .若 △ACO 的面积是 3,则 k =−6;②若 x 1<0<x 2,则 y 1>y 2;③若 x 1+x 2=0,则 y 1+y 2=0.其中真命题个数是 ( )A . 0B . 1C . 2D . 39. (2022·真题)如图,AB 是 ⊙O 的直径,M ,N 是 AB⏜(异于 A ,B )上两点,C 是 MN ⏜ 上一动点,∠ACB 的平分线交 ⊙O 于点 D ,∠BAC 的平分线交 CD 于点 E .当点 C 从点 M 运动到点 N 时,则 C ,E 两点的运动路径长的比是 ( )A . √2B . π2C . 32D . √5210. (2022·真题)观察等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2;⋯.已知按一定规律排列的一组数:250,251,252,⋯,299,2100.若 250=a ,用含 a 的式子表示这组数的和是 ( )A . 2a 2−2aB . 2a 2−2a −2C . 2a 2−aD . 2a 2+a11.(2022·真题)计算√16的结果是.12.(2022·真题)武汉市某气象观测点记录了5天的平均气温(单位:∘C),分别是25,20,18,23,27,这组数据的中位数是.13.(2022·真题)计算2aa2−16−1a−4的结果是.14.(2022·真题)如图,在平行四边形ABCD中,E,F是对角线AC上两点,AE=EF=CD,∠ADF=90∘,∠BCD=63∘,则∠ADE的大小是.15.(2022·真题)抛物线y=ax2+bx+c经过A(−3,0),B(4,0)两点,则关于x的一元二次方程a(x−1)2+c=b−bx的解是.16.(2022·真题)请回答下列各题:(1)问题背景:如图1,将△ABC绕点A逆时针旋转60∘得到△ADE,DE与BC交于点P可推出结论:PA+PC=PE.(2)问题解决:如图2,在△MNG中,MN=6,∠M=75∘,MG=4√2.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.17.(2022·真题)计算:(2x2)3−x2⋅x4.18.(2022·真题)如图,点A,B,C,D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF.求证:∠E=∠F.19.(2022·真题)为弘扬中华传统文化,某校开展“汉剧进课堂”的活动.该校随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题.(1) 这次共抽取名学生进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是.(2) 将条形统计图补充完整.(3) 该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?20.(2022·真题)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1) 如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2) 如图1,在边AB上画一点G,使∠AGD=∠BGC.(3) 如图2,过点E画线段EM,使EM∥AB,且EM=AB.21.(2022·真题)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM,BN于D,C两点.(1) 如图1,求证:AB2=4AD⋅BC.(2) 如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.22.(2022·真题)某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价,周销售量,周销售利润w(元)的三组对应值如下表:售价x(元/件)506080注:周销售利润=周销售量×(售价−进价)周销售量y(件)1008040周销售利润w(元)100016001600(1) ① 求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2) 由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.=n,M是BC边上一点,连接23.(2022·湖北武汉市·真题)在Rt△ABC中,∠ABC=90∘,ABBCAM.(1) 如图1,若n=1,N是AB延长线上一点,CN与AM垂直.求证:BM=BN.(2) 过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CPPQ =BMBQ.②如图3,若M是BC的中点,直接写出tan∠BPQ的值(用含n的式子表示).24.(2022·真题)已知抛物线C1:y=(x−1)2−4和C2:y=x2.(1) 如何将抛物线C1平移得到抛物线C2(2) 如图1,抛物线C1与x轴正半轴交于点A,直线y=−43x+b过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标.②若PA=PQ,直接写出点P的横坐标.(3) 如图2,△MNE的顶点M,N在抛物线C2上,点M在点N右边,两条直线ME,NE与抛物线C2均有唯一公共点,ME,NE均与y轴不平行.若△MNE的面积为2,设M,N两点的横坐标分别为m,n,求m与n的数量关系.答案1. 【答案】B【解析】B选项符合相反数的定义.【知识点】相反数的定义2. 【答案】C【解析】要使√x−1有意义,∴x−1≥0,x≥1.【知识点】二次根式有意义的条件3. 【答案】B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型.【解析】解:A、3个球都是黑球是随机事件;B、3个球都是白球是不可能事件;C、3个球中有黑球是必然事件;D、3个球中有白球是随机事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【知识点】事件的分类4. 【答案】D【解析】根据轴对称图形的概念,能找到一条直线,沿这条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,如图所示.【知识点】轴对称图形5. 【答案】A【解析】从左面看易得下面一层有2个正方形,上面一层左边有1个正方形,如图所示:故选A.【知识点】由立体图形到视图6. 【答案】A【解析】∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,t表示漏水时间,y表示壶底到水面的高度,∴随t的增大而减小,符合一次函数图象【知识点】其他实际问题7. 【答案】C【解析】画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,.故选C∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为12【知识点】树状图法求概率8. 【答案】D【解析】①过点A作AC⊥x轴,C为垂足,连接OA.∵△ACO的面积为3,∴∣k∣=6,的图象分别位于第二、第四象限,∵反比例函数y=kx∴k<0,∴k=−6,正确,是真命题;② ∵反比例函数y=k的图象分别位于第二、第四象限,x∴在所在的毎一个象限y随着x的增大而增大,若x1<0<x2,则y1>0>y2,正确,是真命题;③当A,B两点关于原点对称时,x1+x2=0,则y1+y2=0,正确,是真命题,真命题有3个.【知识点】k对反比例函数的图象及性质的影响、命题的真假9. 【答案】A【解析】方法一:如图,连接EB.设OA=r.∵AB 是直径,∴∠ACB =90∘,∵E 是 △ACB 的内心,∴∠AEB =135∘,∵∠ACD =∠BCD ,∴AD =DB ,∴AD⏜=DB ⏜, ∴∠ADB =90∘,易知点 E 在以 D 为圆心 DA 为半径的圆上,运动轨迹是 GF⏜,点 C 的运动轨迹是 MN ⏜, ∵∠MON =2∠GDF ,设 ∠GDF =α,则 ∠MON =2α,∴MN⏜GF ⏜=2α⋅π⋅r 180α⋅π⋅√2r180=√2.方法二:如图所示,连接 AD ,BD ,∵ 点 E 是 ∠ACB 的平分线与 ∠BAC 的平分线的交点,∴∠ACD =∠BCD ,∠CAE =∠BAE .∵∠BAD =∠BCD ,∴∠BAD +∠BAE =∠ACD +∠CAE ,即 ∠DAE =∠AED ,∴AD =ED ,∴ 点 E 在以 D 为圆心,以 AD 为半径的圆上.又 ∵AB 是 ⊙O 的直径,CD 是 ∠ACB 的平分线,∴AD =BD ,∴AD =BD .设 ⊙ 的半径为 r ,∴AD =√2r ,∴ 点 E 的运动路径长是 90π⋅√2r 180=√22πr . ∵ 点 C 是 MN 上一动点,∴ 点 C 的运动路径长是 πr ,∴C ,E 两点的运动路径长的比是 πr:√22πr =√2:1.【知识点】弧长的计算10. 【答案】C【解析】∵2+22=23−2;2+22+23=24−2;2+22+23+24=25−2;⋯∴2+22+23+⋯+2n=2n+1−2,∴250+251+252+⋯+299+2100=(2+22+23+⋯+2100)−(2+22+23+⋯+249)=(2101−2)−(250−2),∵250=a,∴2101=(250)2⋅2=2a2,∴原式=2a2−a.【知识点】用代数式表示规律11. 【答案】4【解析】√16=4.【知识点】算术平方根的运算12. 【答案】23℃【解析】将数据重新排列为18,20,23,25,27,所以这组数据的中位数为23∘C.【知识点】中位数13. 【答案】1a+4【解析】原式=2a(a+4)(a−4)−a+4(a+4)(a−4) =2a−a+4(a+4)(a−4)=a−4(a+4)(a−4)=1a+4.【知识点】分式的加减14. 【答案】21°【解析】设∠ADE=x,∵AE=EF,∠ADF=90∘,∴∠DAE=∠ADE=x,DE=12AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD−∠BCA=63∘−x,∴2x=63∘−x,解得:x=21∘,即∠ADE=21∘.故答案为:21∘.【知识点】平行四边形及其性质15. 【答案】x1=−2,x2=5【解析】方法一:关于x的一元二次方程a(x−1)2+c=b−bx变形为a(x−1)2+b(x−1)+c=0,把抛物线y=ax2+bx+c沿x轴向右平移1个单位得到y=a(x−1)2+b(x−1)+c,∵抛物线y=ax2+bx+c经过点A(−3,0),B(4,0),∴抛物线y=a(x−1)2+b(x−1)+c与x轴的两交点坐标为(−2,0),(5,0),∴一元二方程a(x−1)2+b(x−1)+c=0的解为x1=−2,x2=5.方法二:∵抛物线y=ax2+bx+c经过A(−3,0),B(4,0)两点,∴方程ax2+bx+c=0的两个解分别是x1=−3,x2=4,∴关于x的一元二次方程a(x−1)2+c=b−bx,即a(x−1)2+b(x−1)+c=0中,x−1=−3或x−1=4,∴x1=−2,x2=5.【知识点】二次函数与方程16. 【答案】2√29【解析】(1)如图1,在BC上截取BG=PD,在△ABG和△ADP中,{AB=AD,∠B=∠D, BG=PD,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE.∵∠GAP=∠BAD=60∘,∴△AGP是等边三角形,∴AP=GP,∴PA+PC=GP+PC=GC=PE,∴PA+PC=PE.(2)如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME,连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形,∴OE=OM=ME,∠DMG=∠OME=60∘,MG=MD,∴∠GMO=∠DME,在△GMO和△DME中,{OM=ME,∠GMO=∠DME, MG=MD,∴△GMO≌△DME(SAS),∴OG=DE,∴NO+GO+MO=DE+OE+NO,∴当D,E,O,M四点共线时,NO+GO+MO值最小,∵∠NMG=75∘,∠GMD=60∘,∴∠NMD=135∘,∴∠DMF=45∘,∵MG=4√2,∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND=√NF2+DF2=√102+42=2√29,∴MO+NO+GO最小值为2√29.【知识点】有一个角是60°的等腰三角形是等边三角形17. 【答案】(2x2)3−x2⋅x4 =8x6−x6=7x6.【知识点】积的乘方18. 【答案】∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180∘−∠ACE−∠A=180∘−∠D=∠1,又∵∠E=180∘−∠ACE−∠A,∠F=180∘−∠D−∠1,∴∠E=∠F.【知识点】同位角相等19. 【答案】(1) 50;72∘(2) A类学生:50−23−12−10=5(人),条形统计图补充如下:(3) 该校表示“喜欢”的B类的学生大约有1500×2350=690(人),答:该校表示“喜欢”的B类的学生大约有690人.【解析】(1) 这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小360∘×1050=72∘.【知识点】扇形统计图、用样本估算总体、条形统计图20. 【答案】(1) 如图所示,线段AF即为所求.(2) 如图所示,点G即为所求.(3) 画图如图(2)所示.【知识点】勾股定理、垂直于同一直线的两直线平行、平行线的定义、等腰三角形“三线合一”21. 【答案】(1) 连接OC,OD,如图3所示,∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∵AM∥BN,∴∠ADE+∠BCE=180∘,∵DC切⊙O于E,∴∠ODE=12∠ADE,∠OCE=12∠BCE,∴∠ODE+∠OCE=90∘,∴∠DOC=90∘,∴∠AOD+∠COB=90∘,∵∠AOD+∠ADO=90∘,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90∘,∴△AOD∽△BCO,∴ADBO =OABC,∴OA2=AD⋅BC,∴(12AB)2=AD⋅BC,∴AB2=4AD⋅BC.(2) 连接OD,OC,如图4所示,∵∠ADE =2∠OFC ,∴∠ADO =∠OFC ,∵∠ADO =∠BOC ,∠BOC =∠FOC ,∴∠OFC =∠FOC ,∴CF =OC ,∴CD 垂直平分 OF ,∴OD =DF ,在 △COD 和 △CFD 中,{OC =CF,OD =DF,CD =CD,∴△COD ≌△CFD (SSS ),∴∠CDO =∠CDF ,∵∠ODA +∠CDO +∠CDF =180∘,∴∠ODA =60∘=∠BOC ,∴∠BOE =120∘,在 Rt △DAO ,AD =√33OA , Rt △BOC 中,BC =√3OB ,∴AD:BC =1:3,∵AD =1,∴BC =3,OB =√3,∴ 图中阴影部分的面积 =2S △OBC −S △OBE =2×12×√3×3−120π×(√3)2360=3√3−π.【知识点】切线的性质、两角分别相等、扇形面积的计算22. 【答案】(1) ① 设 y 与 x 的函数关系式为 y =kx +b (k ≠0),依题意有 {50k +b =100,60k +b =80,解得 {k =−2,b =200,所以 y 与 x 的函数关系式是 y =−2x +200.② 40;70;1800.(2) 依题意有w =(−2x +200)(x −40−m )=−2x 2+(2m +280)x −8000−200m =−2(x −m+1402)2+12m 2−60m +1800, 因为 m >0,所以对称轴 x =m+1402>70,因为−2<0,所以抛物线开口向下,因为x≤65,所以w随x的增大而增大,所以当x=65时,w有最大值(−2×65+200)(65−40−m),所以(−2×65+200)(65−40−m)=1400,所以m=5.【解析】(1) ②设该商品进价为a元,则根据表格可列(50−a)×100=1000元,解得a=40,因为w=(x−40)(−2x+200)=−2(x−70)2+1800,故当售价为70元/件时,最大利润为1800元.【知识点】利润问题23. 【答案】(1) 如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90∘,∵∠ABC=90∘,∴∠BAM+∠AMB=90∘,∠BCN+∠CMH=90∘,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90∘,∴△ABM≌△CBN(ASA),∴BM=BN.(2) ①如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90∘,∵∠BAM+∠AMB=90∘,∠CBH+∠BMP=90∘,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=90∘,∵∠ABC=90∘,∴∠ABM=∠BCH=90∘,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH∥BQ,∴PCPQ =CHBQ=BMBQ.② 1n.【解析】(2) ②如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.则BM=CM=m,CH=mn ,BH=mn√1+4n2,AM=m√1+4n2,∵12⋅AM⋅BP=12⋅AB⋅BM,∴PB=√1+4n2,∵12⋅BH⋅CN=12⋅CH⋅BC,∴CN=√1+4n2,∵CN⊥BH,PM⊥BH,∴MP∥CN,∵CM=BM,∴PN=BP=√1+4n2,∵∠BPQ=∠CPN,∴tan∠BPQ=tan∠CPN=NCPN =√1+4n22mn√1+4n2=1n.【知识点】平行线分线段成比例定理、正切、角边角24. 【答案】(1) y=(x−1)2−4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2.(2) ① y=(x−1)2−4与x轴正半轴的交点A(3,0),∵直线y=−43x+b经过点A,∴b=4,∴y=−43x+4,y =−43x +4 与 y =(x −1)2−4 的交点为 −43x +4=(x −1)2−4 的解,∴x =3 或 x =−73,∴B (−73,649),设 P (t,−43t +4),且 −73<t <3,∵PQ ∥y 轴,∴Q (t,t 2−2t −3),当 AP =AQ 时,∣∣4−43t ∣∣=∣t 2−2t −3∣, 则有 −4+43t =t 2−2t −3,∴t =13,∴P 点横坐标为 13. ② −23.(3) 设经过 M 与 N 的直线解析式为 y =k (x −m )+m 2,∴{y =x 2,y =k (x −m )+m 2,则有 x 2−kx +km −m 2=0,Δ=k 2−4km +4m 2=(k −2m )2=0,∴k =2m ,直线 ME 的解析式为 y =2mx −m 2,直线 NE 的解析式为 y =2nx −n 2,∴E (m+n 2,mn),∴12[(n 2−mn )+(m 2−mn )]×(m −n )−12(n 2−mn )×(m+n 2−n)−12(m 2−mn )×(m −m+n 2)=2,∴(m −n )2−(m−n )22=4,∴(m −n )3=8,∴m −n =2.【解析】(2) ②当 AP =PQ 时,PQ =t 2+23t +7,PA =53(3−t ),∴t2+23t+7=53(3−t),∴t=−23,∴P点横坐标为−23.【知识点】二次函数与方程、二次函数的图象变换。