中考数学统计与概率专题知识易错题50题-含参考答案

合集下载

中考数学易错题系列之统计与概率

中考数学易错题系列之统计与概率

中考数学易错题系列之统计与概率统计与概率是中考数学中一个重要的章节,也是容易出现错题的部分。

掌握好统计与概率的相关知识点,能够帮助我们正确解答题目,提高数学成绩。

下面我将为大家整理一些常见的中考数学易错题,并提供解析。

1. 随机事件的概率计算在统计与概率中,我们经常需要计算随机事件的概率。

有一类常见的问题是关于两个独立事件的概率计算。

例如,某学校有60%的学生喜欢音乐,30%的学生喜欢体育。

如果从该学校随机抽取一个学生,那么这个学生既喜欢音乐又喜欢体育的概率是多少?解析:设A为喜欢音乐的事件,B为喜欢体育的事件。

题目中给出了P(A) = 0.6,P(B) = 0.3。

我们知道,对于两个独立事件的交集,其概率可以通过两个事件的概率相乘得到。

所以,P(A∩B) = P(A) * P(B) = 0.6 * 0.3 = 0.18。

因此,答案是0.18。

2. 抽样与估计在统计与概率中,我们需要了解一些基本的抽样方法和估计方法。

例如,某班级有100个学生,我们想要对他们的身高进行估计。

如果我们采取随机抽样的方法,抽取了10个学生的身高数据,并计算出平均身高为160cm,那么这个平均身高能否代表班级的平均身高呢?解析:答案是否定的。

我们知道,抽样所得的样本平均值只能作为总体平均值的估计,具有一定的误差。

为了更准确地估计总体平均值,我们需要考虑到样本的大小和抽样方式。

当样本大小较小且抽样方式不够随机时,样本平均值与总体平均值之间的偏差可能较大。

因此,我们不能仅仅根据10个学生的平均身高来估计班级的平均身高,需要更大的样本量和更随机的抽样方式。

3. 条件概率的计算在统计与概率中,还有一类常见的问题是关于条件概率的计算。

例如,有一个两位数,十位数和个位数都是1,这个数能被7整除的概率是多少?解析:设随机事件A为该数能被7整除,事件B为该数为两位数(十位数和个位数都是1)。

题目中要求的是P(A|B),即在事件B发生的条件下,事件A发生的概率。

(专题精选)初中数学概率易错题汇编含答案解析

(专题精选)初中数学概率易错题汇编含答案解析

(专题精选)初中数学概率易错题汇编含答案解析一、选择题1.下列事件是必然事件的个数为事件()事件1:三条边对应相等的两个三角形全等;事件2:相似三角形对应边成比例;事件3:任何实数都有平方根;事件4:在同一平面内,两条直线的位置关系:平行或相交.A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】事件1:三条边对应相等的两个三角形全等是三角形全等的判定定理,是必然事件;事件2:相似三角形的对应边成比例,是必然事件;件3:正数和0有平方根,负数没有平方根,所以不是必然事件;事件4:在同一平面内,两条直线的位置关系为平行或相交,所以是必然事件.所以,必然事件有3个,故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.失分的原因是对事件类型的分类未熟练掌握.2.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.3.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C 【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.5.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.6.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.7.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D . 【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.8.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A .22π- B .24π- C .28π- D .216π-【答案】A 【解析】 【分析】求得阴影部分的面积后除以正方形的面积即可求得概率. 【详解】解:如图,连接PA 、PB 、OP , 则S 半圆O =2122ππ⨯=,S △ABP =12×2×1=1, 由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP ) =4(2π﹣1)=2π﹣4, ∴米粒落在阴影部分的概率为24242ππ--=, 故选A .【点睛】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.9.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为( )A.13B.16C.19D.112【答案】C【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.10.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【答案】B【解析】【分析】根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.【详解】检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;一年有366天所以367个人中必然有2人同月同日生,B对;可能性是1%的事件在一次试验中有可能发生,故C错;3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.故选B.【点睛】区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.11.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.12.某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则下列说法正确的是 ( )A.mn一定等于12B.mn一定不等于12C.mn一定大于12D.投掷的次数很多时,mn稳定在12附近【答案】D【解析】某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则投掷的次数很多时mn稳定在12附近,故选D.点睛:本题考查了频率估计概率的知识点,根据在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近判断即可.13.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.14.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.12【答案】B【解析】【分析】【详解】试题分析:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是105 168=,故选B.考点:列表法与树状图法;绝对值.15.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()A.116B.120C.124D.125【答案】D【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,226810+=,大正方形的面积为100.所以针扎在小正方形EFGH内的概率是41=10025,答案选D.【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.16.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.310B.925C.425D.110【答案】A【解析】【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.18.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.19.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.20.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()A.227B.14C.154D.12【答案】A 【解析】【分析】用K的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有4张K,∴正好为K的概率为454=227,故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.。

专题 统计与概率模块基础题过关50题(老师版)

专题 统计与概率模块基础题过关50题(老师版)

基础过关:统计与概率模块过关50题——易错基础题过关(老师版)专题简介:本份资料包含统计与概率这两个模块在初三各次考试中出现频率较高而学生们又容易出错丢分的选择、填空题和8分级中档题,所选题目源自近四年各名校试题中的有代表性的优质试题,把每一个模块中的易错高频考题按题型进行分类汇编,立意于让学生们用较短的时间刷考试最喜欢考的题、刷最有利于提分的好题。

题型一:总体、个体、样本、样本容量1.(2021·湖南张家界)某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是()A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生的体重D.样本容量是400【详解】解:A、总体是该校4000名学生的体重,此选项正确,不符合题意;B、个体是每一个学生的体重,此选项错误,符合题意;C、样本是抽取的400名学生的体重,此选项正确,不符合题意;D、样本容量是400,此选项正确,不符合题意;故选:B.2.(2022春·广东江门)为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了80名学生,下列说法正确的是()A.此次调查属于全面调查B.1000名学生是总体C.样本容量是80D.被抽取的每一名学生称为个体【详解】解:A、此次调查属于抽样调查,故A错误;B、1000名学生的视力情况是总体,故B错误;C、样本容量是80,故C正确;D、被抽取的每一名学生的视力称为个体,故D错误;故选:C.3.(2021春·河南商丘)今年我县有8600名学生参加中考,为了了解这些学生的数学成绩,从中抽取了2000名考生的数学成绩进行统计分析,在这个问题中,总体是_____________________________;样本是________;样本容量是_______.【详解】解:我县8600名学生参加中考,为了了解这些学生的数学成绩,从中抽取了2000名考生的数学成绩进行统计分析,在这个问题中,总体是我县8600名考生的数学成绩,样本是抽取的2000名考生的数学成绩,样本容量是2000.故答案为:我县8600名考生的数学成绩,抽取的2000名考生的数学成绩,2000.题型二:全面调查与抽样调查4.(2022秋·广东深圳)下列说法中正确的是()A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式B.了解某市学生的身高情况,抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本C.为了了解全市中学生的睡眠情况,应该采用普查的方式D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200【详解】A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A错误;B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;C、∵全市中学生人数太多,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,故D正确;故选:D5.(2022·湖北黄冈)下列调查中,适宜采用全面调查方式的是()A.检测“神舟十四号”载人飞船零件的质量B.检测一批LED灯的使用寿命C.检测黄冈、孝感、咸宁三市的空气质量D.检测一批家用汽车的抗撞击能力【详解】解:A、检测“神舟十四号”载人飞船零件的质量,适宜采用全面调查的方式,故A符合题意;B、检测一批LED灯的使用寿命,适宜采用抽样调查的方式,故B不符合题意;C、检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C不符合题意;D、检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D不符合题意.故选:A.6.(2023春·湖南常德)下列调查中,适合用全面调查的方式收集数据的是()A.对某市中小学生每天完成作业时间的调查B.对全国中学生节水意识的调查C.对某班全体学生新冠疫苗接种情况的调查D.对某批次灯泡使用寿命的调查【详解】解:A.对某市中小学生每天完成作业时间的调查,适合抽样调查,故此选项不符合题意;B.对全国中学生节水意识的调查,适合抽样调查,故此选项不符合题意;C.对某班全体学生新冠疫苗接种情况的调查,适合全面调查,故此选项符合题意;D.对某批次灯泡使用寿命的调查,适合抽样调查,故此选项不符合题意.故选:C.7.(2021·辽宁盘锦·统考中考真题)下列调查中,适宜采用抽样调查的是()A.调查某班学生的身高情况B.调查亚运会100m游泳决赛运动员兴奋剂的使用情况C.调查某批汽车的抗撞击能力D.调查一架“歼10”隐形战斗机各零部件的质量题型三:平均数、中位数、众数及方差8.(2022·云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:评委1评委2评委3评委4评委59.99.79.6109.8数据9.9,9.7,9.6,10,9.8的中位数是()A.9.6B.9.7C.9.8D.9.9【详解】解:将数据按照从小到大的顺序排列为:9.6,9.7,9.8,9.9,10,则中位数为9.8.故选:C.9.(2020·江西南昌)某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是()A.25、25B.28、28C.25、28D.28、31【详解】将这组数据按从小到大的顺序排列23,25,25,28,28,28,31,在这一组数据中28是出现次数最多的,故众数是28℃.处于中间位置的那个数是28,那么由中位数的定义可知,这组数据的中位数是28℃;故选B.10.(2022·浙江宁波)开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(℃)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为()A.36.6℃,36.4℃B.36.5℃,36.5℃C.36.8℃,36.4℃D.36.8℃,36.5℃A.平均数是4.4B.中位数是4.5C.众数是4D.方差是9.2A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变【详解】解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.13.(2020·四川)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元【详解】这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.14.(2021·湖南湘西)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的() A.平均数B.中位数C.众数D.方差【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.15.(青竹湖)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的()尺码/cm 2222.52323.52424.525销售量/双46610211A.平均数B.中位数C.众数D.方差【解答】观察数据可知23.5出现次数最多,即众数为23.5.故答案为23.5.16.(雅礼)已知一组数据4,13,24的权数分别是111,,632,则这组数据的加权平均数是________。

(专题精选)初中数学概率易错题汇编附答案解析

(专题精选)初中数学概率易错题汇编附答案解析

(专题精选)初中数学概率易错题汇编附答案解析一、选择题1.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【答案】B【解析】【分析】根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.【详解】检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;一年有366天所以367个人中必然有2人同月同日生,B对;可能性是1%的事件在一次试验中有可能发生,故C错;3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.故选B.【点睛】区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.2.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112 P ;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数.3.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.5.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 =,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.136B.16C.112D.13【答案】A【解析】【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.【详解】P(a,b,c正好是直角三角形三边长)=61 21636=故选:A【点睛】本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.7.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.59B.13C.19D.38【答案】B【解析】分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.详解:∵红球、黄球、黑球的个数之比为5:3:1,∴从布袋里任意摸出一个球是黄球的概率是31=5+3+13.故选:B.点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.8.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类. 现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,画出树状图,根据概率公式,即可求解.【详解】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,∵将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶一共有12种可能,投放正确的只有一种可能,∴投放正确的概率是:1 12.故选C.【点睛】本题主要考查画树状图求简单事件的概率,根据题意,画出树状图,是解题的关键.9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.19【答案】A 【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.10.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.16B.15C.14D.13【答案】A【解析】【分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率21. 126 ==故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.11.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +< 【答案】B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )A .15B .110C .25D .225【答案】B【解析】【分析】根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案.【详解】用字母A 、B 、C 、D 、E 分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形,所以,正好抽中养老保险和医疗保险的概率P=21 2010.故选B.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.13.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A.16B.13C.23D.14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况,∴这两个球上的数字之积为奇数的概率是21= 126.故选A.【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()个.A.20 B.16 C.12 D.15【答案】C【解析】【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.【详解】解:设白球个数为x个,∵摸到红球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴41 44x=+,解得:12x=,经检验,12x=是原方程的解故白球的个数为12个.故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.15.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P ,故选C.【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.17.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()16202425【答案】D【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,10=,大正方形的面积为100.所以针扎在小正方形EFGH 内的概率是41=10025,答案选D . 【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH 内的概率是小正方形与大正方形的面积比.18.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是( ).A .2B .2πC .πD .2π【答案】D【解析】【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得.【详解】∵半径为2的圆内接正方形边长为∴圆的面积为4π,正方形的面积为8, 则石子落在此圆的内接正方形中的概率是82=4ππ, 故选D .【点睛】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.19.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )10252510【答案】A【解析】【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.20.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.。

初中数学统计与概率专题训练50题(含参考答案)

初中数学统计与概率专题训练50题(含参考答案)

初中数学统计与概率专题训练50题含答案一、单选题1.已知五个数a b c d e 、、、、满足a b c d e <<<<,则下列四组数据中方差最大的一组是( ) A .a b c 、、B .b c d 、、C .c d e 、、D .a e 、c 、2.下列事件中是必然事件的是( ) A .某射击运动员射击一次,命中靶心 B .抛掷一枚硬币,落地后正面朝上 C .三角形内角和是360°D .当x 是实数时,x 2≥03.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是( )A .抽101次也可能没有抽到一等奖B .抽100次奖必有一次抽到一等奖C .抽一次也可能抽到一等奖D .抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.一个不透明的袋子中只装有4个黄球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A .摸到红球的概率是14B .摸到红球是不可能事件C .摸到红球是随机事件D .摸到红球是必然事件5.小明同学在某学期德智体美劳的各项评价得分依次为10分、9分、8分、9分、9分,则小明同学五项评价的平均得分为( ) A .7分B .8分C .9分D .10分6.下列说法中,正确的是( ) A .雨后见彩虹是随机事件B .为了检查飞机飞行前的各项设备,应选择抽样调查C .将一枚硬币抛掷20次,一定有10次正面朝上D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是乙城市 7.下列事件为必然事件的是( ) A .打开电视,正在播放广告 B .抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉8中,随意抽取一张纸片,上面写着最简二次根式的概率是()A.16B.13C.23D.129.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,20 10.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则0a<是不可能事件;16④的平方根是4±4=±;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个11.经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰有一人直行,另一人左拐的概率为()A.19B.29C.13D.2312.下列调查中,调查方式选择正确的是()A.为了了解一批灯泡的使用寿命,选择抽样调查B.为了了解某公园全年的游客流量,选择全面调查C.为了了解某1000枚炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查13.下列事件是必然事件的是()A.若a是实数,则|a|≥0B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻14.下列事件中,是随机事件的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正方形都相似15.在某市2021年青少年航空航天模型锦标赛中,各年龄组的参赛人数情况如下表所示:若小明所在年龄组的参赛人数占全体参赛人数的38%,则小明所在的年龄组是()A.13岁B.14岁C.15岁D.16岁16.在某市举办的垂钓比赛上,6名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,6,10,8,10.则这组数据的中位数是()A.8B.7C.6D.1017.在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()A.20元B.30元C.35元D.100元18.如果一组数据a1,a2,a3…,a n方差是9,那么一组新数据a1+1,a2+1,a3+1…,a n+1的方差是()A.3B.9C.10D.8119.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4B.极差是2C.平均数是9D.众数是920.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁二、填空题21.某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,所得成绩如下:70,82,98,60,91,54,78,85,这个问题中的总体是______,个体是______,样本容量是______.22.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视,这个结论是通过___________(填“抽样调查”或“普查”)得到的.23.为了了解某市4万多名初中毕业生的中考数学成绩,任意抽取1000名学生的中考数学成绩进行统计分析,这个问题中,样本容量是______.24.夏季已到,气温渐高.要反映我市某一周每天的最高气温的变化趋势,根据你所学知识宜采用______________统计图.25.如果数据x1,x2,x3的平均数是5,那么数据x1+2,x2+2,x3+2的平均数为____.26.某十字路口有一个交通信号灯,红灯亮60秒,绿灯亮35秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为____________.27.一组数据2,4,x,﹣1的平均数为3,则x的值是___.28.在某项考核中,最终考核成绩(百分制)由研究性学习成绩与卷面成绩组成,其中研究性学习成绩占60%,卷面成绩占40%,小明的这两项成绩依次是90分和85分,则小明的最终考核成绩是___________分.29.一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.30.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是__.31.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,卷面成绩占60%,小明的这两项成绩(百分制)依次是90分,85分,则小明这学期的数学成绩是_________.32.有两个盒子,第一个盒子中装有3 个红球和4 个白球,第二个盒子中装有4 个红球和3 个白球,这些球除颜色外都相同,分别从中摸出1 个球,从第______个盒子中摸到白球的可能性大.33.为了了解某市初中生的视力情况,有关部门进行了抽样调查,数据如下表:若该市共有初中生15万人,则全市视力不良的初中生约有__________万人.34.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差s2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.35.右图是各年龄段人群收视某电视剧情况的条形统计图(统计时年龄只取整数).若某村观看此电视剧的观众人数为1400人,则其中50岁以上(含50岁)的观众约有__________人.36.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组~第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是________.37.一组数据:2,1,2,5,3,2的众数是___.38.某地区有一条长100千米,宽0.5千米的防护林.有关部门为统计该防护林的树林量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木数量如下(单位:棵):65 100,63 200,64 600,64 700,67 400.那么根据以上的数据估算这一防护林总共约有_____棵树.39.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.40.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.计算这10天日最高气温的平均值为_____℃.三、解答题41.为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为65g的鸡蛋,现有两个厂家提供货源,它们的价格相同,鸡蛋的品质相近,质检员分别从两厂的产品中抽样调查了20只鸡蛋,并将它们按质量(单位:克)分成四组(:6770A x ≤<,B :6457x ≤<,C :6164x ≤<,D :58661≤<,它们的质量(单位:g )如下:整理数据:甲厂:66,64,64,66,63,66,66,67,68,64,66,60,66,66,63,60,67,69,68,61;乙厂:65,66,67,67,68,67,66,61,64,65,69,61,62,64,63,64,60,69,65,67.甲厂鸡蛋质量频数统计表分析上述数据,得到下表:请你根据图表中的信息完成下列问题: (1)a =______;b =______;c =______;(2)如果只考虑出口鸡蛋规格,请结合表中的某个统计量,为外贸公司选购鸡蛋提供参考建议;(3)某外贸公司从甲厂采购了18000只鸡蛋,并将质量(单位:g)在6167≤<的鸡蛋x加工成优等品进行盒装售卖,已知一盒有18颗鸡蛋,每颗鸡蛋进价为0.6元,若将优等品鸡蛋全部售出,试求一盒优等品鸡蛋定价多少才能使该外贸公司这一批优等品鸡蛋的利润达到6630元?42.阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯盖和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.43.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:(1)请你填写下表:(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.44.为贯彻落实省教育厅提出的“三生教育”.在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= .(2)在扇形统计图中,B组所占圆心角的度数为.(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人.45.图℃、图℃反映是东方百货商场今年15~月份的商品销售额统计情况.来自商场财~月份的销售总额一共是370万元,观察图℃和图℃,解答下务部的报告表明,商场15面问题:(1)将图℃补充完整;(2)商场服装部5月份的销售额是多少万元?(3)李强观察图℃后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?46.某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?47.重庆演艺集团决定今年3月中旬在八中开展“高雅艺术进学校”的宣传活动,活动有A、唱歌,B、舞蹈,C、绘画,D、演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在某年级学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:a______,并将条形统计图补充完整;(1)本次抽查的学生共______人,(2)如果该年级学生有1000人,请估计该年级喜欢“唱歌”宣传方式的学生约有多少人?A B C D四项宣传方式中随机抽取两项进行展示,(3)学校采用抽签方式让每班在,,,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.48.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图.(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下;A 级成绩为优秀,B 级成绩为良好,C 级成绩为合格,D 级成绩为不合格)其中B 级成绩(单位:分)为:75,75,76,77,78,78,79,79,79,80,80,81,81,82,82,83,83,84,86,87,87,88,89 请你结合图中所给信息解答下列问题: (1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是______; (3)扇形统计图中A 级所在的扇形的圆心角度数是______; (4)九年级(1)班学生的体育测试成绩的中位数是______;(5)若该校九年级有500名学生,请你用此样本估计体育测试中达到良好及良好以上的学生人数约为多少人?49. “PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:15m<3030m<4545m<6060m<7575m<9090m<105根据图表中提供的信息解答下列问题:(1)统计表中的a= ,b= ,c= ;(2)在扇形统计图中,A类所对应的圆心角是度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?参考答案:1.D【分析】根据方差的性质判断即可.【详解】解:五个数a b c d e 、、、、满足a b c d e <<<<,由方差是反映一组数据的波动大小的一个量,方差越大、数据越不稳定可知,a c e ,,方差最大, 故选:D .【点睛】本题考查方差的性质.掌握方差越大、数据越不稳定是解答本题的关键. 2.D【分析】根据必然事件的概念的定义,即可求解.【详解】解:A 、某射击运动员射击一次,命中靶心,是随机事件,故本选项不符合题意;B 、抛掷一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;C 、三角形内角和是360°,是不可能事件,故本选项不符合题意;D 、当x 是实数时,x 2≥0,是必然事件,故本选项符合题意; 故选:D.【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键. 3.C【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖, 故选:C .【点睛】本题考查了概率的意义,理解概率的实际意义是本题的关键 4.B【分析】根据概率公式和必然事件、随机事件及不可能事件逐一判断即可得. 【详解】解:A .摸到红球的概率是0,此选项错误; B .摸到红球是不可能事件,此选项正确,C 、D 选项错误;【点睛】此题考查了概率的定义:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.C【分析】根据平均数的计算方法,五项总分除以5可得结果. 【详解】解:小明同学五项评价的平均得分为: 10989995++++=(分)故选:C .【点睛】本土题考查了求平均数;理解平均数的意义正确计算是解题的关键. 6.A【分析】根据必然事件、不可能事件、随机事件的概念,以及全面调查和抽样调查的区别,方差稳定性,判断即可.【详解】A .雨后见彩虹是随机事件,故本选项正确,符合题意B .为了检查飞机飞行前的各项设备,应选择全面调查,故本选项错误,不符合题意C .将一枚硬币抛掷20次,不一定有10次正面朝上,故本选项错误,不符合题意D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是甲城市,故本选项错误,不符合题意 故选A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,全面调查和抽样调查的区别,方差稳定性.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小越稳定. 7.D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可. 【详解】解:A 、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B 、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C 、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.8.B【分析】根据最简二次根式的定义先找出图片中的最简二次根式的个数,再根据概率公式进行计算,即可得出结论.【详解】解:==符合最简二次根式的定义,所以,随意抽取一张纸片,上面写着最简二次根式的概率是21 63 =,故选:B.【点睛】此题考查了概率的计算,掌握最简二次根式的定义是准确求出概率的关键.9.C【详解】解:由扇形统计图给出的数据可得销售20台的人数是:20×40%=8人,销售30台的人数是:20×15%=3人,销售12台的人数是:20×20%=4人,销售14台的人数是:20×25%=5人,所以这20位销售人员本月销售量的平均数是208+303+124+14520⨯⨯⨯⨯=18.4台;把这些数从小到大排列,最中间的数是第10、11个数的平均数,所以中位数是20;销售20台的人数最多,所以这组数据的众数是20.故选:C.【点睛】本题考查平均数;中位数;众数.10.B【详解】分析:根据无理数,平方根,众数,中位数,平均数的概念一一判断即可.详解:①“明天降雨的概率是50%”表示明天有50%的可能会下雨,故错误.②无理数无限不循环小数,故错误.③若a为实数,则0a<是不可能事件;正确.16④的平方根是4±,用式子表示是4=±;故错误.⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.正确.正确的有2个.故选B.点睛:考查无理数,平方根,众数,中位数,平均数的概念,熟记概念是解题的关键. 11.B【分析】画树状图展示所有9种等可能的结果数,找出恰有一人直行,另一人左拐的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中恰有一人直行,另一人左拐的结果数为2,所以恰有一人直行,另一人左拐的概率=29.故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法表示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.12.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.【详解】A.℃调查一批灯泡的使用寿命具有破坏性,℃选择抽样调查,正确;B.℃调查某公园全年的游客流量工作量大,℃选择抽样调查,故不正确;C.℃调查某1000枚炮弹的杀伤半径具有破坏性,℃选择抽样调查,故不正确;D.℃调查一批袋装食品是否有防腐剂具有破坏性,℃选择抽样调查,故不正确;故选A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.A【详解】试题分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意.考点:随机事件14.C【分析】根据随机事件,必然事件的定义一一判断即可.【详解】等边三角形,等腰直角三角形,正方形都相似,是必然事件,矩形相似是随机事件,故选:C.【点睛】本题考查相似多边形的性质,随机事件,必然事件等知识,解题的关键是掌握随机事件的定义,属于中考常考题型.15.B【分析】根据各年龄组的参赛人数情况表,算出总人数,再算出14岁年龄组人数所占的百分比,即可得到答案.【详解】解:根据各年龄组的参赛人数情况表可知:总参赛人数为:5+19+12+14=50,19÷50=38%,则小明所在的年龄组是14岁.故选:B.【点睛】本题考查了频数与频率,解决本题的关键是掌握频数与频率的关系,理清频数分布表的数据.16.B【分析】根据中位数的定义先把这组数据从小到大重新排列,找出最中间的数即可.【详解】把这数从小到大排列为:4,5,6,8,10,10,最中间的数是6,8则这组数据的中位数是6+8=72;故选B.【点睛】此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.17.A【分析】直接根据众数的概念求解可得.【详解】在这次活动中,该班同学捐款金额的众数是20元,故选:A.【点睛】本题主要考查众数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数.18.B【详解】解:设一组数据a1,a2,a3…,an平均数为a,℃一组新数据a1+1,a2+1,a3+1…,an+1的平均数为a+1,℃一组数据a1,a2,a3…,an方差是9,℃1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9,℃1n[(a1+1-a-1)2+(a2+1-a-1)2+(a3+1-a-1)2+…(an+1-a-1)2)]=1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9故选B.19.A【详解】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=110[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.20.D【详解】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】℃==x x x x >乙丁甲丙,℃从乙和丁中选择一人参加比赛,℃22S S >乙丁,℃选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 21. 该班全体同学的数学成绩 该班每个学生的数学成绩; 8【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,在这个问题中,总体是该班全体同学的数学成绩;个体是该班每个学生的数学成绩;样本是该班的8名学生的数学成绩,样本容量是8.故答案为:该班全体同学的数学成绩,该班每个学生的数学成绩,8.【点睛】本题考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 22.抽样调查【详解】由于普查得到的调查结果比较准确,但所费人力物力和时间较多,而抽样调查得到的调查结果比较近似,在这个调查中,个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查. 23.1000【分析】根据样本容量的定义(样本中个体的数目称为样本容量)即可得. 【详解】解:这个问题中,样本容量是1000, 故答案为:1000.【点睛】本题考查了样本容量,熟记样本容量的定义是解题关键,样本容量只是一个数字,不带单位.。

中考数学总复习易错题8统计与概率(含解析)

中考数学总复习易错题8统计与概率(含解析)

中考数学总复习易错题8统计与概率(含解析)易错题 8 统计与概率1.每年 4 月 23 日是“世界读书日”,为了了解某校八年级 500 名学生对“世界读书日”的知晓情况,从中随 机抽取了 10%进行调查.在这次调查中,样本容量是( )A .500B .10%C .50D .52.某班七个兴趣小组人数分别为 4,4,5,5,x ,6,7,已知这组数据的平均数是 5,则这组数据的众数 和中位数分别是( )A .4,5B .4,4C .5,4D .5,53.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数 中位数 众数 方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A .平均数B .众数C .方差D .中位数4.下列特征量不能反映一组数据集中趋势的是( )A .众数B .中位数C .方差D .平均数5.若一组数据 1、a 、2、3、4 的平均数与中位数相同,则 a 不可能是下列选项中的( )A .0B .2.5C .3D .56.下列图形:任取一个是中心对称图形的概率是( )A .14B .12C .34D .17.如图,在 5×5 的正方形网格中,从在格点上的点 A ,B ,C ,D 中任取三点,所构成的三角形恰好是直 角三角形的概率为( )A .13 B .12 C .23D .34 8.甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数 是白球个数的 2 倍;乙袋中,红球个数是白球个数的 3 倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸 出一个球,摸出红球的概率是( )A .512 B .712 C .1724D .259.如图,正方形 ABCD 内接于⊙O ,⊙O 分米,若在这个圆面上随意抛一粒豆子,则豆子落 在正方形 ABCD 内的概率是( )A .2πB .2π C .12πD10.已知一组数据x1,x2,x3,x4,x5 的平均数是5,方差是4,那么另一组数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的平均数和方差分别为()A.5,4 B.3,2 C.5,2 D.3,411.为了了解景德镇市中学生本学期的学习成绩整体情况,市教育局准备在初一年级中的语文、数学、英语三个学科和初二年级中的语文、数学、英语、物理四个学科中各抽取一个学科作为调研考试来考察,那么初一、初二年级都抽中数学的概率是()A 13B.14C.16D.112事件 A 必然事件 随机事件 m 的值 12.下列说法正确的是( )A .某市“明天降雨的概率是 75%”表示明天有 75%的时间会降雨B .400 人中一定有两人的生日在同一天C .在抽奖活动中,“中奖的概率是1100”表示抽奖 l00 次就一定会中奖 D .十五的月亮像一个弯弯的细钩13.一家鞋店在一段时间内销售某种女鞋50 双,各种尺码的销售量如表所示: 尺码(厘米) 22 22.5 23 23.5 24 24.5 25销售量(双) 1 2 31 5 7 3 1如果你是店长,为了增加销售量,你最关注哪个统计量( )A .平均数B .众数C .中位数D .方差14.x 1,x 2,…,x 10 的平均数为 a ,x 11,x 12,…,x 50 的平均数为 b ,则 x 1,x 2,…,x 50 的平均数为( )A .a+bB . 2a b +C 105060a b +D .104050a b + 15.如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知 AB=13,AC=5, BC=12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带 上,则小鸟落在花圃上的概率为 . 16.两组数据:3,5,2a ,b 与 b ,6,a 的平均数都是 6,若将这两组数据合并为 一组数据,则这组新数据的中位数和众数分别为 . 17.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测 试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最 小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于 130 次的成绩为优秀,全校共有 1200 名学 生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为 人.18.如图,随机地闭合开关 S 1,S 2,S 3,S 4,S 5 中的三个,能够使灯泡 L 1,L 2 同时发光的概率是 .19.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在偶数区域的概率是 .20.在一个不透明的袋子中装有仅颜色不同的 10 个小球,其中红球 4 个,黑球 6个.(1)先从袋子中取出 m (m >1)个红球,再从袋子中随机摸出 1 个球,将“摸出黑球”记为 事件 A .请完成下列表格:(2)先从袋子中取出 m 个红球,再放入 m 个一样的黑球并摇匀,随机摸出 1 个球是黑球的可能性大小是45,求 m 的值.21.锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有 3 个选项,第二道单选题有 4 个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15) 3 0.15第二组(15≤x<30) 6 a第三组(30≤x<45)7 0.35第四组(45≤x<60) b 0.20(1)频数分布表中a= ,b= ,并将统计图补充完整;(2)如果该校七年级共有女生 180 人,估计仰卧起坐能够一分钟完成 30 或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?23.2018 年某市学业水平体育测试即将举行,某校为了解同学们的训练情况,从九年级学生中随机抽取部分学生进行了体育测试(把成绩分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)求本次抽测的学生人数;(2)求扇形图中∠α的度数,并把条形统计图补充完整;(3)在测试中甲乙、丙、丁四名同学表现非常优秀,现决定从这四名同学中任选两名给大家介绍训练经验,求恰好选中甲、乙两名同学的概率(用树状图或列表法解答).24.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣2、l、2,它们除了数字不同外,其它都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字 l 的小球的概率为.(2)小红先从布袋中随机摸出一个小球,记下数字作为 k 的值,再把此球放回袋中搅匀,由小亮从布袋中随机摸出一个小球,记下数字作为 b 的值,请用树状图或表格列出 k、b 的所有可能的值,并求出直线 y=kx+b 不经过第四象限的概率.25.某中学决定在本校学生中开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m 名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.请你根据图中的信息,解答下列问题.(1)m= ,n= ;(2)请补全图中的条形图;(3)扇形统计图中,足球部分的圆心角是度;(4)根据抽样调查的结果,请估算全校1800 名学生中,大约有多少人喜爱踢足球.参考答案与试题解析1.【分析】根据样本容量是样本中包含的个体的数目,可得答案.【解答】解:500×10%=50,则本次调查的样本容量是50,故选:C.2.【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解.【解答】解:∵这组数据的平均数是5,∴=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7,则众数为:4,中位数为:5.故选:A.3.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.4.【分析】根据中位数、众数、平均数和方差的意义进行判断.【解答】解:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故选:C.5.【分析】首先求出这组数据的平均数是多少,再根据题意,分5 种情况:(1)将这组数据从小到大的顺序排列后为 a,1,2,3,4;(2)将这组数据从小到大的顺序排列后为 1,a,2,3,4;(3)将这组数据从小到大的顺序排列后1,2,a,3,4;(4)将这组数据从小到大的顺序排列后为1,2,3,a,4;(5)将这组数据从小到大的顺序排列为1,2,3,4,a;然后根据这组数据1、a、2、3、4 的平均数与中位数相同,求出a 的值是多少,即可判断出a 不可能是选项中的哪个数.【解答】解:这组数据1、a、2、3、4 的平均数为:(1+a+2+3+4)÷5=(a+10)÷5=0.2a+2(1)将这组数据从小到大的顺序排列后为a,1,2,3,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=2,解得a=0,符号排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,3,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(3)将这组数据从小到大的顺序排列后1,2,a,3,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,3,a,4,中位数是3,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=3,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,3,4,a,中位数是3,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=3,解得a=5;符合排列顺序;综上,可得a=0、2.5 或5.∴a 不可能是3.故选:C.6.【分析】由共有4 种等可能的结果,任取一个是中心对称图形的有3 种情况,直接利用概率公式求解即可求得答案.【解答】解:∵共有4 种等可能的结果,任取一个是中心对称图形的有3 种情况,∴任取一个是中心对称图形的概率是:.故选:C.7.【分析】从点A,B,C,D 中任取三点,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【解答】解:∵从点 A,B,C,D 中任取三点能组成三角形的一共有 4 种可能,其中△ABD,△ADC,△ABC 是直角三角形,∴所构成的三角形恰好是直角三角形的概率为.故选:D.8.【分析】首先根据每个袋子中球的倍数设出每个袋子中球的个数,然后利用概率公式求解即可.【解答】解:∵甲袋中,红球个数是白球个数的2 倍,∴设白球为4x,则红球为8x,∴两种球共有12x 个,∵乙袋中,红球个数是白球个数的3 倍,且两袋中球的数量相同,∴红球为9x,白球为3x,∴混合后摸出红球的概率为:=,故选:C.9.【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【解答】解:因为⊙O 的直径为分米,则半径为分米,⊙O 的面积为π()2=平方分米;正方形的边长为=1 分米,面积为1 平方分米;因为豆子落在圆内每一个地方是均等的,所以P(豆子落在正方形ABCD 内)== .故选:A.10.【分析】根据平均数和方差的变化规律,即可得出答案.【解答】解:∵数据x1,x2,x3,x4,x5 的平均数是5,∴数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的平均数是5﹣2=3;∵数据x1,x2,x3,x4,x5 的方差是4,∴数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的方差不变,还是4;故选:D.11.【分析】依据题意画出树状图或列表,依据共有 12 种等可能的结果,其中初一、初二年级都抽中数学的情况有1 种,即可得到初一、初二年级都抽中数学的概率.【解答】解:画树状图可得:∵共有12 种等可能的结果,其中初一、初二年级都抽中数学的情况有1 种,∴P(初一、初二年级都抽中数学)=,故选:D.12.【分析】利用概率的意义以及实际生活常识分析得出即可.【解答】解:A、某市“明天降雨的概率是75%”表示明天有75%的概率降雨,故此选项错误; B、400 人中一定有两人的生日在同一天,正确; C、在抽奖活动中,“中奖的概率是”表示抽奖l00 次就有可能中奖,故此选项错误;D、十五的月亮是圆圆的,故此选项错误.故选:B.13.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.既然是对该鞋子销量情况作调查,那么应该关注那种尺码销的最多,故值得关注的是众数.【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:B.14.【分析】先求前10 个数的和,再求后40 个数的和,然后利用平均数的定义求出50 个数的平均数.【解答】解:前10 个数的和为10a,后40 个数的和为40b,50 个数的平均数为.故选:D.15.【分析】根据AB=13,AC=5,BC=12,得出AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径,求得直角三角形的面积和圆的面积,即可得到结论.【解答】解:∵AB=13,AC=5,BC=12,∴AB2=BC2+AC2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径= =2,∴S△ABC=A C•BC=×12×5=30,S 圆=4π,∴小鸟落在花圃上的概率==;故答案为:.16.【分析】先根据平均数均为6 得出关于a、b 的方程组,解方程组求得a、b 的值后,把两组数据合并、重新排列,根据中位数和众数的定义求解可得.【解答】解:根据题意,得:,解得:,则两组数据重新排列为3、4、5、6、8、8、8,∴这组新数据的中位数为6,众数为8,故答案为:6,8.17.【分析】首先由第二小组有 10 人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260 乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.18.【分析】求出随机闭合开关 S1,S2,S3,S4,S5 中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关 S1,S2,S3,S4,S5 中的三个共有 10 种可能(任意开两个有4+3+2+1=10可能,故此得出结论),能够使灯泡L1,L2 同时发光有2 种可能(S1,S2,S4 或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5 中的三个,能够使灯泡L1,L2 同时发光的概率是=.故答案为.19.【分析】根据几何概率的求法:指针落在偶数区域的概率是就是所标数字为偶数的面积与总面积的比值.【解答】解:观察这个图可知:所标数字为偶数的面积占总面积的(+ )= ,故其概率为.20.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m 的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4 个红球时,摸到黑球是必然事件;∵m>1,当摸出2 个或3 个红球时,摸到黑球为随机事件,事件A 必然事件随机事件m 的值 4 2、3故答案为:4;2、3.(2)依题意,得,解得 m=2,所以m 的值为2.【点评】本题考查的是概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=.21.【分析】(1)锐锐两次“求助”都在第一道题中使用,第一道肯定能对,第二道对的概率为,即可得出结果;(2)由题意得出第一道题对的概率为,第二道题对的概率为,即可得出结果;(3)用树状图得出共有6 种等可能的结果,锐锐顺利通关的只有1 种情况,即可得出结果.【解答】解:(1)第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;(3)锐锐将每道题各用一次“求助”,分别用A,B 表示剩下的第一道单选题的2 个选项,a,b,c 表示剩下的第二道单选题的3 个选项,树状图如图所示:共有6 种等可能的结果,锐锐顺利通关的只有1 种情况,∴锐锐顺利通关的概率为:.22.【分析】(1)由统计图易得a 与b 的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【解答】解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30 或30 次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12 种等可能的结果,所选两人正好都是甲班学生的有3 种情况,∴所选两人正好都是甲班学生的概率是:=.23.【分析】(1)根据B 级的频数和百分比求出学生人数;(2)求出A 级的百分比,360°乘百分比即为∠α的度数,根据各组人数之和等于总数求得C 级人数即可补全图形;(3)根据列表法或树状图,运用概率计算公式即可得到恰好选中甲、乙两名同学的概率.【解答】解:(1)160÷40%=400,答:本次抽样测试的学生人数是400 人;(2)×360°=108°,答:扇形图中∠α的度数是108°;C 等级人数为:400﹣120﹣160﹣40=80(人),补全条形图如图:(3)画树状图如下:或列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣共有12 种等可能的结果,其中恰好选中甲、乙两位同学的结果有2 种,所以P(恰好选中甲、乙两位同学)==.24.【分析】(1)三个小球上分别标有数字﹣2、l、2,随机地从布袋中摸出一个小球,据此可得摸出的球为标有数字1 的小球的概率;(2)先列表或画树状图,列出k、b 的所有可能的值,进而得到直线y=kx+b 不经过第四象限的概率.【解答】解:(1)三个小球上分别标有数字﹣2、l、2,随机地从布袋中摸出一个小球,则摸出的球为标有数字1 的小球的概率=;故答案为;(2)列表:共有9 种等可能的结果数,其中符号条件的结果数为4,所以直线y=kx+b 不经过第四象限的概率=.25.【分析】(1)根据喜爱乒乓球的有10 人,占10%可以求得m 的值,从而可以求得n 的值;(2)根据题意和m 的值可以求得喜爱篮球的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以得到足球部分的百分比,即可得到足球部分的圆心角度数;(4)根据统计图中的数据可以估算出全校1800 名学生中,大约有多少人喜爱踢足球;【解答】解:(1)由题意可得,m=10÷10%=100,n%=15÷100=15%,故答案为:100,15;(2)喜爱篮球的有:100×35%=35(人),补全的条形统计图,如图所示:(3)扇形统计图中,足球部分的圆心角是360°×=144°;故答案为:144;(4)由题意可得,全校1800 名学生中,喜爱踢足球的有:1800×=720(人),答:全校1800 名学生中,大约有720 人喜爱踢足球;。

最新初中数学概率易错题汇编含答案解析

最新初中数学概率易错题汇编含答案解析

最新初中数学概率易错题汇编含答案分析一、选择题1.从一副 (54 张 )扑克牌中随意抽取一张,正好为K 的概率为()2111 A.B.C.D.274542【答案】 A【分析】【剖析】用 K 的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有 4张K,∴正好为 K的概率为4=2,54 27应选: A.【点睛】本题考察概率的求法:假如一个事件有n 种可能,并且这些事件的可能性同样,此中事件A 出现 m 种结果,那么事件 A 的概率 P(A) = m.n2.将一枚质地平均的骰子掷两次,则两次点数之和等于9的概率为()A.1111B.6C.D.3912【答案】 C【分析】【剖析】【详解】解:画树状图为:共有 36 种等可能的结果数,其点数之和是9 的结果数为4,所以其点数之和是9 的概率=4=1.369应选 C.点睛:本题考察了列表法与树状图法求概率:经过列表法或树状图法展现所有等可能的结果求出 n,再从中选出切合事件 A 的结果数目m,则事件 A 的概率 P( A)=m.n3.在一个不透明的袋中,装有 3 个红球和 1 个白球,这些球除颜色外其余都同样. 搅均后从中随机一次模出两个球.......,这两个球都是红球的概率是()1121 A.B.C.D.2334【答案】 A【分析】【剖析】列举出所有状况,看两个球都是红球的状况数占总状况数的多少即可.【详解】画树形图得:一共有 12 种状况,两个球都是红球的有 6 种状况,故这两个球都是红球同样的概率是6=1 ,122应选 A.【点睛】本题考察的是用列表法或树状图法求概率.列表法能够不重复不遗漏的列出所有可能的结果,合适于两步达成的事件;树状图法合适两步或两步以上达成的事件;解题时要注意此题是放回实验仍是不放回实验.用到的知识点为:概率=所讨状况数与总状况数之比.4.太原是我国生活垃圾分类的 46 个试点城市之一,垃圾分类的强迫实行也马上提上日程依据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其余垃圾现有投放这四类垃圾的垃圾桶各 1 个,若将用不透明垃圾袋分类打包好的两袋不一样垃圾随机投进两个不一样的垃圾桶,投放正确的概率是()1111 A.B.C.D.681216【答案】 C【分析】【剖析】依据题意,由列表法获取投放的所有结果,而后正确的只有 1 种,即可求出概率.【详解】解:由列表法,得:∴共有 12 种等可能的结果数,此中将两包垃圾随机投放到此中的两个垃圾箱中,能实现对应投放的结果为 1 种,1∴投放正确的概率为:P;12应选择: C.【点睛】本题考察了列表法与树状图法求概率,解题的重点是正确求出所有等可能的结果数.5.如图,飞镖游戏板中每一块小正方形除颜色外都同样.若某人向游戏板扔掷飞镖一次(假定飞镖落在游戏板上),则飞镖落在暗影部分的概率是()11A.B.2345C.D.99【答案】 C【分析】【剖析】依据几何概率的求法:飞镖落在暗影部分的概率就是暗影地区的面积与总面积的比值.【详解】∵总面积为3×3=9,此中暗影部分面积为4×1× 1× 2=4,24∴飞镖落在暗影部分的概率是.9故答案选: C.【点睛】本题考察了几何概率的求法,解题的重点是依据题意将代数关系用面积表示出来,一般用暗影地区表示所求事件(A);而后计算暗影地区的面积在总面积中占的比率,这个比率即事件( A)发生的概率.6.袋中有8个红球和若干个黑球,小强从袋中随意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了 50次,共有 16 次摸出红球,据此预计袋中有黑球()个.A.15B. 17C. 16D. 18【答案】 B【分析】【剖析】依据共摸球 50次,此中 16 次摸到红球,则摸到红球与摸到黑球的次数之比为8: 17,由此可预计口袋中红球和黑球个数之比为8: 17;即可计算出黑球数 .【详解】∵共摸了 50 次,此中 16 次摸到红球,∴有34 次摸到黑球,∴摸到红球与摸到黑球的次数之比为8: 17,∴口袋中红球和黑球个数之比为8: 178÷8=17(),∴黑球的个数17个,故答案选 B.【点睛】本题主要考察的是经过样本去预计整体,只要将样本 "成比率地放大”为整体是解本题的重点 .7.将三粒平均的分别标有:1,2, 3, 4, 5,6 的正六面体骰子同时掷出,出现的数字分别为a ,b,c,则a ,b,c正好是直角三角形三边长的概率是()1111A.B.C.D.366123【答案】A【分析】【剖析】本题是一个由三步才能达成的事件,共有6×6×6=216种结果,每种结果出现的时机同样,a, b, c 正好是直角三角形三边长,则它们应当是一组勾股数,在这216 组数中,是勾股数的有 3, 4,5; 3, 5,4; 4, 3, 5; 4, 5, 3; 5,3,4; 5, 4,3 共 6 种状况,即可求出 a, b, c 正好是直角三角形三边长的概率 . 【详解】61P(a, b, c 正好是直角三角形三边长)=216 36应选: A【点睛】本题考察概率的求法,概率等于所讨状况数与总状况数之比.本题属于基础题,也是常考题型.8.以下事件中,是必定事件的是( )A.随意掷一枚质地平均的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会着落C.车辆随机抵达一个路口,恰巧碰到红灯D.明日气温高达30 C ,必定能见到明朗的阳光【答案】 B【分析】【剖析】依据必定事件的观点作出判断即可解答.【详解】解: A、抛随意掷一枚质地平均的骰子,掷出的点数是奇数是随机事件,故 A 错误;B、操场上小明抛出的篮球会着落是必定事件,故 B 正确;C、车辆随机抵达一个路口,恰巧碰到红灯是随机事件,故 C 错误;D、明日气温高达30 C ,必定能见到明朗的阳光是随机事件,故 D 错误;应选: B.【点睛】本题考察了必定事件的定义,必定事件指在必定条件下必定发生的事件,娴熟掌握是解题的重点 .9.如图,在4×3长方形网格中,任选用一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()1B.111A.C.3D.6124【答案】 D【分析】【剖析】【详解】解:∵在4×3正方形网格中,任选用一个白色的小正方形并涂黑,共有8 种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有 2 种状况,以下图:∴使图中黑色部分的图形构成一个轴对称图形的概率是:2 18 4应选 D.10.一个不透明的口袋中装有 4 个完整同样的小球,把它们分别标号为1, 2, 3, 4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于 6 的概率为()1111A.B.C.D.6543【答案】 A【分析】【剖析】画树状图得出所有的状况,依据概率的求法计算概率即可.【详解】画树状图得:∵共有 12 种等可能的结果,两次摸出的小球标号之和等于 6 的有 2 种状况,∴两次摸出的小球标号之和等于621的概率 == .126应选 A.【点睛】考察概率的计算,明确概率的意义是解题的重点,概率等于所讨状况数与总状况数的比.11.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其余差异,每次摸球前先搅拌平均 .随机摸出一球,不放回;再随机摸出一球 .两次摸出的球上的汉字能构成“孔孟”的概率是()A.B.C.D.【答案】 B【分析】【剖析】依据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12 中可能,此中能构成孔孟的有 2 种,所以两次摸出的球上的汉字能构成“孔孟”的概率是.应选 B.考点:简单概率计算.12.以下说法正确的选项是()A.检测某批次灯泡的使用寿命,适合用全面检查B.“ 367人中有 2 人同月同日生”为必定事件C.可能性是1%的事件在一次试验中必定不会犮生D.数据 3, 5, 4, 1,﹣ 2 的中位数是4【答案】 B【分析】【剖析】依据可能性大小、全面检查与抽样检查的定义及中位数的观点、必定事件、不行能事件、随机事件的观点进行判断.【详解】检查某批次灯泡的使用寿命检查拥有损坏性,应采纳抽样检查, A 错;一年有366 天所以367 个人中必定有 2 人同月同日生, B 对;可能性是 1 %的事件在一次试验中有可能发生,故 C 错;3,5, 4, 1, -2 按从小到大排序为-2, 1, 3,4, 5, 3 在最中间故中位数是3,D 错.应选 B.【点睛】划分并掌握可能性、全面检查与抽样检查的定义及中位数的观点、必定事件、不行能事件、随机事件的观点.13.在平面直角坐标系中有三个点的坐标: A 0, 2 ,B 2,0 ,C( 1, 3),从、、A B C 三个点中挨次取两个点,求两点都落在抛物线y x 2x 2 上的概率是()11C.1D.2A.B.23 36【答案】 A【分析】【剖析】先画树状图展现所有 6 种等可能的结果数,再找出两点都落在抛物线y2x 2 上的结x果数,而后依据概率公式求解.【详解】解:在 A 0, 2 ,B 2,0 ,C(1, 3) 三点中,此中AB 两点在 y x 2x2上,依据题意绘图以下:共有 6 种等可能的结果数,此中两点都落在抛物线22,y x x 2 上的结果数为所以两点都落在抛物线221y x x 2 上的概率是;63应选: A.【点睛】本题考察了列表法或树状图法和函数图像上点的特点.经过列表法或树状图法展现所有等可能的结果求出n ,再从中选出切合事件 A 或B的结果数目m,而后依据概率公式求失事件 A 或B的概率.也考察了二次函数图象上点的坐标特点.14.以下事件是必定事件的是()A.翻开电视机正在播放动画片B.扔掷一枚质地平均的硬币100 次,正面向上的次数为50C.车辆在下个路口将会碰到红灯D.在平面上随意画一个三角形,其内角和是180【答案】 D【分析】【剖析】直接利用随机事件以及必定事件的定义分别判断得出答案.【详解】A、翻开电视机正在插放动画片为随机事件,故此选项错误;B、扔掷一枚质地平均的硬币 100 次,正面向上的次数为 50 为随机事件,故此选项错误;C、“车辆在下个路口将会碰到红灯”为随机事件,故此选项错误;D、在平面上随意画一个三角形,其内角和是180 °为必定事件,故此选项正确.应选: D.【点睛】本题考察随机事件以及必定事件,正确掌握有关定义是解题重点.15.在 10 盒红色的笔芯中混放了若干支黑色的笔芯,每盒20 支笔芯,每盒中混放入的黑色笔芯数以下表:黑色笔芯数01456盒数24121以下结论:①黑色笔芯一共有 16支;② 从中随机取一盒,盒中红色笔芯数不低于14 是必定事件;③ 从中随机取一盒,盒中黑色笔芯数不超出 4 的概率为 0.7;④将 10 盒笔芯混在一同,从中随机抽取一支笔芯,恰巧是黑色的概率是0.12 .此中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】 C【分析】【剖析】依据表格的信息分别考证算出黑色笔芯的数目,由每盒黑色笔芯的数目能够算出每盒红色笔芯的数目,即可考证①② 的正确性,再算出盒中黑色笔芯数不超出 4 的概率,即可判断③ ,用黑色的数目除以总的笔数,可考证④.【详解】解:① 依据表格的信息,获取黑色笔芯数 =0 2 1441526124 ,故① 错误;② 每盒笔芯的数目为20 支,∵每盒黑色笔芯的数目都≤6,∴每盒红色笔芯≥14,所以从中任取一盒,盒中红色笔芯数不低于14是必定事件,故② 正确;③ 依据图表信息,获取黑色笔芯不超出4的一共有 7 盒,所以从中随机取一盒,盒中黑色笔芯数不超出 4 的概率为 7÷10=0.7故③ 正确④10 盒笔芯一共有 10× 20=200(支),由详解①知黑色笔芯共有 24 支,将 10 盒笔芯混在一同,从中随机抽取一支笔芯,恰巧是黑色的概率是24÷200=0.12,故④ 正确;综上有三个正确结论,故答案为 C.【点睛】本题主要考察了与概率有关的知识点. 在本题中求出黑色笔芯的数目是重点,求某事件的概率时,主要求该事件的数目与总数目的比值;还需要掌握必定事件的观点,即必定事件是必定会发生的事件 .16.在一个不透明的口袋中装有 4 个红球和若干个白球,他们除颜色外其余完整同样.通过多次摸球实验后发现,摸到红球的频次稳固在25% 邻近,则口袋中白球可能有()个.A.20B. 16C. 12D. 15【答案】 C【分析】【剖析】由摸到红球的频次稳固在 25% 邻近,能够得出口袋中获取红色球的概率,从而求出白球个数即可获取答案 .【详解】解:设白球个数为x 个,∵摸到红球的频次稳固在25% 左右,∴口袋中获取红色球的概率为25% ,∴4 1 ,4x4解得: x12 ,经查验, x12是原方程的解故白球的个数为12 个.应选 C【点睛】本题主要考察了随机概率,利用频次预计概率,依据大批频频试验下频次稳固值即概率得出是解题重点,应掌握概率与频次的关系,从而更好的解题.17.某市环青云湖竞走活动中,走完整部行程的队员即可获取一次摇奖时机,摇奖机是一个圆形转盘,被平分红16 个扇形,摇中红、黄、蓝色地区,分获一、二、三等奖,奖品分别为自行车、雨伞、署名笔.小明走完了全程,能够获取一次摇奖时机,小明能获取署名笔的概率是()A.1711B.C.D.161648【答案】 C【分析】【剖析】从题目知道,小明需要获取署名笔,一定获取三等奖,即转到蓝色地区,把圆盘中蓝色的小扇形数出来,再除以总分数,即可获取答案.【详解】解:小明要获取署名笔,则一定获取三等奖,即转到蓝色地区,从转盘中找出蓝色地区的扇形有4 份,又由于转盘总的平分红了16 份,所以,获取署名笔的概率为:故答案为 C.【点睛】4 1 ,164本题主要考察了随机事件的概率,概率是对随机事件发生之可能性的胸怀;在做转盘题时,能正确找到事件发生占圆盘的比率是做对题目的重点,还需要注意,转盘是否是被平分的,才能防止错误 .18. 如图,由四个直角边分别是 6 和 8 的直角三角形拼成的 “赵爽弦图 ”,随机往大正方形ABCD 内投针一次,则针扎在小正方形 EFGH 内的概率是( )A .1 1 1 1B .20C .D .162425【答案】 D【分析】【剖析】依据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算依据直角三角形的边长求算边长再算面积.【详解】依据题意, “赵爽弦图 ”中,直角三角形的直角边分别为 6 和 8 所以小正方形的边长为: 8 6 2 ,小正方形的面积为4 ,依据勾股定理,大正方形的边长为62 8210 ,大正方形的面积为 100.所以针扎在小正方形 EFGH 内的概率是4 = 1,答案选 D .100 25【点睛】本题借助 “赵爽弦图 ”考察了几何概率,要注意针扎在小正方形EFGH 内的概率是小正方形与大正方形的面积比.19.如图,在△ABC中, AB= AC,∠ BAC=90°,直角∠ EPF的极点 P 是 BC的中点,两边PE, PF 分别交 AB,AC 于点 E,F,现给出以下四个结论:(1)AE= CF;( 2)△EPF是等腰直角三角形;( 3)S 四边形AEPF=1△ABC4EPF ABC内绕极点P旋转时一直有2S;()当∠在△EF= AP.(点 E 不与 A、 B 重合),上述结论中是正确的结论的概率是()A.1 个B.3 个13 C.D.44【答案】 D【分析】【剖析】依据题意,简单证明△AEP≌△ CFP,而后能推理获取选项A,B, C 都是正确的,当EF= AP一直相等时,可推出AP22PF2,由 AP 的长为定值,而PF 的长为变化值可知选项 D 不正确.从而求出正确的结论的概率.【详解】解:∵ AB=AC,∠ BAC= 90°,点 P 是 BC 的中点,∴ EAP1BAC 45 ,AP 1BC CP.22(1)在△AEP与△CFP中,∵∠ EAP=∠ C=45°, AP= CP,∠ APE=∠ CPF= 90°﹣∠ APF,∴△ AEP≌△ CFP∴AE= CF.( 1)正确;(2)由( 1)知,△AEP≌△ CFP,∴PE= PF,又∵∠ EPF= 90°,∴△ EPF是等腰直角三角形.( 2)正确;(3)∵△ AEP≌△ CFP,同理可证△APF≌△ BPE.∴ S1SVAEPSVAPFSVCPFSVBPESVABC.(3)正确;四边形 AEPF2(4)当 EF= AP 一直相等时,由勾股定理可得:EF 22PF 2则有:AP22PF2,∵AP 的长为定值,而 PF 的长为变化值,∴ AP2与2PF2 不行能一直相等,即 EF与 AP 不行能一直相等,(4)错误,综上所述,正确的个数有 3 个,故正确的结论的概率是3.4应选: D.【点睛】用到的知识点为:概率 =所讨状况数与总状况数之比;解决本题的重点是利用证明三角形全等的方法来获取正确结论.20.在一个不透明的布袋中,红色、黑色、白色的小球共有50 个,除颜色外其余完整相同.乐乐经过多次摸球试验后发现,摸到红色球、黑色球的频次分别稳固在27%和 43%,则口袋中白色球的个数很可能是()A.20B. 15C. 10D. 5【答案】 B【分析】【剖析】由频次获取红色球和黑色球的概率,用总数乘以白色球的概率即可获取个数.【详解】白色球的个数是50? (1 27% - 43%) = 15个,应选: B.【点睛】本题考察概率的计算公式,频次与概率的关系,正确理解频次即为概率是解题的重点.。

中考数学统计与概率专题知识易错题50题-含答案

中考数学统计与概率专题知识易错题50题-含答案

中考数学统计与概率专题知识易错题50题含答案一、单选题1.下列调查适合做普查的是()A.了解全国九年级学生身高的现状B.了解一批灯泡的平均使用寿命C.了解全球人类男女比例情况D.对患新型冠状病毒患者同一车厢的乘客进行医学检查2.下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了违禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率3.在开展“爱心捐助山区儿童”的活动中,某团小组8名团员捐款的数额分别为(单位:元):6,5,3,5,10,5,5,7.这组数据的中位数和众数分别是()A.10,3B.6,5C.7,5D.5,5 4.“命题”的英文单词为proposition,在该单词中字母o出现的频数是()A.0.3B.2C.3D.3 115.西安市今年10月11号至10月14号,每天的最高气温分别为11℃,12℃,13℃,13℃,则这几天最高气温的中位数和众数分别是()A.11℃,13℃B.12℃,12℃C.12.5℃,13℃D.13℃,12℃6.在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,其它均相同,从袋子里随机摸出一个球记下颜色不放回,再随机地摸出一个球,则两次都摸到白球的概率为()A.116B.18C.16D.127.数据2,2,4,8,9的中位数是()A.2B.3C.4D.68.在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数大于2的概率D.朝上的点数是3的倍数的概率9.深圳今年4月份某星期的最高气温如下(单位℃):26,25,27,28,27,25,25,则这个星期的最高气温的众数和中位数分别是()A.25,26B.25,26.5C.27,26D.25,28 10.下列调查中,最适合用普查方式的是()A.调查某品牌牛奶质量合格率B.调查三亚市实验中学七(1)班学生的平均身高C.调查三亚市中小学生收看2018年俄罗斯世界杯总决赛的情况D.调查海南省九年级学生一周内网络自主学习的情况11.必然事件的概率是()A.1B.0C.大于0且小于1D.大于1 12.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙、丁的成绩分析如表所示:根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁13.一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是()A.众数B.中位数C.平均数D.方差14.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数4相差2的概率是()A.12B.13C.14D.1515.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.072516.现有四张完全相同的卡片,上面分别标有数字1,4,5,7,把卡片背面朝上洗匀,两个人依次从中随机抽取一张卡片不放回,则这两个人抽取的卡片上的数字都是奇数的概率是().A.13B.12C.23D.1417.甲,乙两个班参加了学校组织的国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()A.乙班成绩优异的人数比甲班多B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲、乙两班的平均水平不相同18.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:x甲=x乙=80,s=240,s=180,则成绩较为稳定的班级是().A.甲班B.两班成绩一样稳定C.乙班D.无法确定19.为了解我市八年级学生的视力状况,从中随机抽取500名学生的视力状况进行分析,此项调查的样本为()A.500B.被抽取的500名学生C.被抽取500名学生的视力状况D.我市八年级学生的视力状况二、填空题20.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是____小时.21.甲、乙、丙、丁四人各进行20次射击测试,他们的平均成绩相同,方差分别是2222,,,,则射击成绩最稳定的是__________.====0.80.60.9 1.0s s s s乙丙甲丁22.某校学生到校方式情况的扇形统计图如图所示,若该校步行到校的学生有200人,则乘公共汽车到校的学生有___人.23.不透明布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是______.24.如图是边长为3cm的正方形健康码,为了估计图中黑色部分的总而限,在正方型区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为______2cm.25.现有两个不透明的袋子,甲袋中装有一个白球和两个红球,乙袋中装有两个白球和一个红球,两个袋子中的球除了颜色不同外其他都相同,如果从两个袋子中各摸出一个球,则摸出的球颜色相同的概率是___.26.一个袋中装有2个黄球和2个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都找到红球的概率为__________.27.现有四张正面分别标有数字1-,1,2-,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后不放回,再从余下的卡P m n在第片中随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点(),二象限的概率是______.28.某校广播台要招聘一名播音员,应聘甲听,说,读,写的成绩分别为80,78,82,90,若成绩按3:3:2:2的比例计算,则甲的综合成绩为______.29.某校组织八年级三个班学生参加数学竞赛,竞赛结果三个班总平均分为72.5,已知一班参赛人数30人,平均分75分,二班参赛人数30人,平均分为80,三班参赛人数40人,则三班的平均分为_______分.30.某校女子排球队的12名队员的身高如表:则身高178cm出现的频率是____________31.100件某种产品中有五件次品,从中任意取一件,恰好抽到次品的概率是______.32.一副52张的扑克牌(无大、小王),从中任意取出一张,抽到“Q”的可能性大小是____________.33.某学校将举行中小学生运动会,某校从甲、乙、丙、丁四名选手中选一名参加男子100米跑项目,预先对这四名选手个测试了8次,平均成绩都是12.6秒,方差如表:则这四名选手中发挥最稳定的是_______.34.一组数2,3,5,5,6,7 的中位数是_______.35.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵葡萄树,每棵葡萄树产量的平均数x (单位:千克)及方差2s (单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是______.36.“明天的降水概率为80%”的含义有以下三种不同的解释: ℃ 明天80%的地区会下雨; ℃ 80%的人认为明天会下雨; ℃ 明天下雨的可能性比较大;你认为其中合理的解释是_________.(写出序号即可)37.为了解某校学生每周课外阅读时间的情况,随机抽取该校a 名学生进行调查,获得的数据整理后绘制成统计表如下:表中46x ≤<组的频数b 满足2535b ≤<.下面有四个推断: ℃表中a 的值为100; ℃表中c 的值可以为0.31:℃这a 名学生每周课外阅读时间的中位数一定不在6~8之间: ℃这a 名学生每周课外阅读时间的平均数不会超过6. 所有合理推断的序号是___________.38.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红球的概率是 .39.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a ,b .那么22a b +为完全平方数的概率是_________.三、解答题40.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表(1)求a的值(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?41.甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.42.已知一组同学练习射击,击中靶子的环数分别为103、98、99、101、100、98、97、104,计算它们的方差.43.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).组别时间(小时)频数(人数)频率A0≤t<0.5200.05B0.5≤t<1a0.3C1≤t<1.51400.35D 1.5≤t<2800.2E2≤t<2.5400.1请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.44.为了解某种新能源汽车的性能,对这种汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)这次被抽检的新能源汽车共有辆;(2)将图1补充完整;在图2中,C等级所占的圆心角是度;(3)估计这种新能源汽车一次充电后行驶的平均里程数为多少千米?(精确到千米)45.计划在某水库建一座至多安装4台发电机的水电站,过去50年的水文资料显示,水库年入流量x(年入流量:一年内.上游来水与库区降水之和,单位:亿立方米)都在40以上.过去50年的年入流量的统计情况如下表(假设各年的年入流量不相互影响).以过去50年的年入流量的统计情况为参考依据.(1)求年入流量不低于120的概率;(2)若水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量x的限制,并有如表关系:若某台发电机运行,则该台发电机年利润为6000万元;若某台发电机未运行,则该台发电机年亏损2000万元,水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.46.上个月,某校对学生进行了一次垃圾分类的宣传活动,为了解这次宣传活动的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了下面所示的不完整的统计表和统计图.垃圾分类知识测试成绩统计表请结合统计表和统计图,回答下列问题:(1)求本次参与测试的学生人数;(2)统计表中m=__________,n=__________;(3)补全“垃圾分类知识测试成绩统计图”;(4)如果测试结果是“良好”或“优秀”为对垃圾分类知识比较了解,已知该校学生总数为3600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数.47.把分别标有数字2,3,4,5的四个小球放入A袋,把分别标有数字13,14,16的三个小球放入B袋,所有小球的形状、大小、质地均相同,A、B两个袋子不透明.(1)如果从A袋中摸出的小球上的数字为3,再从B袋中摸出一个小球,两个小球上的数字互为倒数的概率是;(2)小明分别从A,B两个袋子中各摸出一个小球,请用树状图或列表法列出所有可能出现的结果,并求这两个小球上的数字互为倒数的概率.48.某市提倡“诵读中华经典,营造书香校园”的良好诵读氛围,促进校园文化建设,进而培养学生的良好诵读习惯,使经典之风浸漫校园.某中学为了了解学生每周在校经典诵读时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:(1)表中的a=,b=;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加经典诵读时间至少有4小时的学生约为多少名?49.某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计),第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车,小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林,离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车从入口处到达塔林的时间.(2)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变).(3)若小聪在8:30至8:50之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过3分钟的概率是多少?参考答案:1.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解全国九年级学生身高的现状,但所费人力、物力和时间较多,适合抽样调查,故本选项不合题意;B、了解一批灯泡的平均使用寿命,调查具有破坏性,适合抽样调查,故本选项不合题意;C、了解全球人类男女比例情况,但所费人力、物力和时间较多,适合抽样调查,故本选项不合题意;D、对患新型冠状病毒患者同一车厢的乘客进行医学检查,特别重要,必须普查,故本选项符合题意;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.C【详解】解:A、数量较大,普查的意义或价值不大时,应选择抽样调查;B、数量较大,具有破坏性的调查,应选择抽样调查;C、事关重大的调查往往选用普查;D、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C.3.D【详解】试题分析:在这一组数据中5是出现次数最多的,故众数是5;将这组数据从小到大的顺序排列(3,5,5,5,5,6,7,10),处于中间位置的那两个数是5,则这组数据的中位数是5;故选D.考点:℃众数;℃中位数.4.C【分析】频数就是出现的次数,根据频数的定义求解即可.【详解】℃在英文单词为proposition中字母o出现的次数是3,℃在该单词中字母o出现的频数是3;故答案为C.【点睛】本题主要考查了频数的概念,熟记频数的定义是解题的关键.5.C【分析】利用中位数的定义“中位数是按顺序排列的一组数据中居于中间位置的数,且如果数据的个数是偶数,则中间那2个数据的算术平均值就是这群数据的中位数”和众数的定义“众数是在一组数据中,出现次数最多的数据”逐项判断即可解答.【详解】根据题意有4个数据,按顺序排列,处于中间的2个数据分别是12℃和13℃,所以中位数是(12℃+13℃)÷2=12.5℃;4个数据中13℃出现次数最多为2次,所以众数为13℃.故选C【点睛】本题考查中位数和众数的定义.注意数据的个数是偶数,那么中间那2个数据的算术平均值才是这群数据的中位数是本题解题关键.6.C【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果,与两次摸到白球的情况,再利用概率公式求解即可.【详解】解:画树状图得:共有12种等可能的结果,两次都摸到白球的有2种情况,;两次都摸到白球的概率为:21=126故选:C.【点睛】本题考查概率的知识点,解题关键是采用列表法与树状图法求出概率即可.7.C【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);【详解】解:中位数是按从小到大排列后第3个数,所以是4,故选:C .【点睛】本题考查中位数的定义,中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),注意先进行排序. 8.D【分析】计算出各个选项中事件的概率,根据概率即可作出判断. 【详解】A 、朝上的点数是5的概率为.%≈116676,不符合试验的结果; B 、朝上的点数是奇数的概率为%==315062,不符合试验的结果;C 、朝上的点数大于2的概率.%≈466676,不符合试验的结果; D 、朝上的点数是3的倍数的概率是.%≈233336,基本符合试验的结果. 故选:D .【点睛】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率. 9.A【分析】根据众数和中位数的定义,结合所给数据即可得出答案.【详解】将这组数据按从小到大的顺序排列为:25,25,25,26,27,27,28, 出现最多的数字为:25;故众数是25, 中位数为:26 故选:A .【点睛】此题考查众数和中未收到额定义,正确掌握众数和中位数的确定方法是解题的关键. 10.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行解答即可.【详解】调查某品牌牛奶质量合格率,适合用抽样方式,A 不合题意;调查三亚市实验中学七(1)班学生的平均身高,适合用普查方式,B 符合题意;调查三亚市中小学生收看2018年俄罗斯世界杯总决赛的情况,适合用抽样方式,C 不合题意;调查海南省九年级学生一周内网络自主学习的情况,适合用抽样方式,D 不合题意;所以B 选项是正确的【点睛】本题考查根据不同实际情况选择适合的调查方式,主要涉及抽样调查和普查知识11.A【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可解答. 【详解】℃必然事件就是一定发生的事件 ℃必然事件发生的概率是1. 故选A.【点睛】本题考查概率的意义,熟练掌握概率的意义是解题关键. 12.D【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【详解】解:℃甲,乙,丙,丁四个人中丙和丁的平均数最大且相等, 甲,乙,丙,丁四个人中丁的方差最小,℃综合平均数和方差两个方面说明丁成绩既高又稳定, ℃最合适的人选是丁. 故选D .【点睛】本题考查了方差和平均数,掌握相关知识并熟练使用,同时注意解题中需注意的事项是本题的解题关键. 13.D【分析】根据众数、中位数、平均数及方差可直接进行排除选项. 【详解】解:由题意得:原中位数为4,原众数为4,原平均数为2444645x ++++==,原方差为()()()()()2222222444444464855S ⎡⎤-+-+-+-+-⎣⎦==; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为244644x +++==,方差为()()()()222222444446424S ⎡⎤-+-+-+-⎣⎦==; ℃统计量发生变化的是方差; 故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.【分析】由将一质地均匀的正方体骰子掷一次,共有6种等可能的结果,向上一面的点数,与点数4相差2的有2与6,直接利用概率公式求解即可求得答案.【详解】℃将一质地均匀的正方体骰子掷一次,共有6种等可能的结果,向上一面的点数,与点数4相差2的有2与6,℃向上一面的点数,与点数4相差2的概率是:21=.63故选B.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.B【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.16.B【分析】画树状图展示所有12种等可能的结果数,再找出这两个人抽取的卡片上的数字都是奇数的结果数,然后根据概率公式计算.【详解】画树状图为:共有12种等可能的结果数,其中这两个人抽取的卡片上的数字都是奇数的结果数为6,所以这两个人抽取的卡片上的数字都是奇数的概率=61 122=,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.17.A【分析】由两个班的中位数得出选项A正确;由众数的定义得出选项B不正确;由方差的性质得出选项C不正确;由两个班的平均数相同得出选项D不正确;即可得出结论.【详解】解:A、由两个班的中位数得出:甲班成绩优异的人数比乙班多;故A正确;B、甲、乙两班竞赛成绩的众数不确定;故B不正确;C、乙班的成绩比甲班的成绩稳定;故C不正确;D、甲、乙两班的平均水平相同;故D不正确;故选:A.【点睛】本题考查了平均数,众数,中位数,方差;正确的理解题意是解题的关键.18.C【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【详解】℃2S甲>2S乙,℃成绩较为稳定的班级是乙班.故答案选C.【点睛】本题考查的知识点是方差,解题的关键是熟练的掌握方差.19.C【分析】从总体中取出的一部分个体叫做这个总体的一个样本,依据样本的定义进行判断即可.【详解】为了解我市八年级学生的视力状况,从中随机抽取500名学生的视力状况进行分析,此项调查的样本为被抽取500名学生的视力状况,故选C.【点睛】本题主要考查了样本的定义,把组成总体的每一个考查对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本.20.6.4【详解】解:平均体育锻炼时间=510615720856.450⨯+⨯+⨯+⨯=(小时).故答案为:6.4 21.乙【分析】方差越小,数据越稳定. 【详解】解:0.60.80.9 1.0<<< ∴乙的射击成绩最稳定故答案为:乙.【点睛】本题考查方差的实际应用,是基础考点,掌握相关知识是解题关键. 22.400.【分析】根据题意,该校步行到校的学生有200人,占总数的20%,即可求得总人数,再由乘公共汽车到校的学生占总数的40%即可求得乘公共汽车到校的学生人数. 【详解】若该校步行到校的学生有200人,则该校的学生总人数为200÷20%=1000(人),所以乘公共汽车到校的学生有1000×40%=400(人), 故答案为:400.【点睛】本题主要考查了数据统计中总体人数的求解,找准百分比与对应人数之间的关系是解决本题的关键 23.13【详解】根据概率公式可得摸出的球是白球的概率是2123++= 13.点睛:本题属于基础型题目,学生只需熟练掌握概率的求法,即可完成. 24.5.4【分析】先计算正方形的面积,再建立方程求解即可. 【详解】解:边长为3cm 正方形面积为239=, 设黑色部分的总面积为x 2cm , ℃0.69x=, ℃ 5.4x =, 故答案为:5.4.【点睛】本题考查了用频率来估计概率,解题关键是理解频率与概率的关系与概率计算公式,明确题中黑色部分的面积与正方形的面积比等于概率是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学统计与概率专题知识易错题50题含答案一、单选题1.为了了解我市2021年中考数学学科各分数段成绩分布情况,从中抽取200名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A.200B.被抽取的200名考生的中考数学成绩C.被抽取的200名考生D.我市2021年中考数学成绩2.样本数据5,7,7,x的中位数与平均数相同,则x的值是()A.9B.5或9C.7或9D.53.在一只不透明的袋子里装有1个红球和100个白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到白球是()A.随机事件B.必然事件C.不可能事件D.以上事件都有可能4.下列调查中,最适合采用全面调查(普查)方式的是()A.对全国初中学生睡眠质量情况的调查;B.对2022年元宵节期间市场上“元宵”质量情况的调查;C.对春运期间乘车旅客携带危险品情况的调查;D.对母亲河——嘉玲江水质情况的调查.5.甲、乙、丙、丁四名同学进行体温测量,他们5天的平均体温都是36.5度,方差分别是2S甲=0.02,2S乙=0.04,2S丙=0.06,2S丁=0.08,则体温最稳定的是()A.甲B.乙C.丙D.丁6.下列说法正确的个数是()①为了了解一批灯泡的使用寿命,应采用全面调查的方式①一组数据5,6,7,6,8,10的众数和中位数都是6①已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是m≥0①23≥-≠-a a且A.1B.2C.3D.47.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是()A.88B.90C.91D.928.为了估计一片树林中的麻雀的数量,爱鸟人在这个林子里随机捕捉到了30只麻雀,分别在它们的脚上做上标记后,再放归树林.一周后,再次在这片林子里捕捉到了50只麻雀,发现其中3只脚上有标记,(不考虑其他因素)则这片林子中麻雀的数量大约为()A.300只B.500只C.1000只D.1500只9.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A.15B.625C.25D.192510.下列说法正确的是()A.了解中央电视台新闻频道的收视率应采用全面调查B.了解岳池县初一年级学生的视力情况,现在我县城区甲、乙两所中学的初一年级随机地各抽取50名学生的视力情况C.反映岳池县6月份每天的最高气温的变化情况适合用折线统计图D.商家从一批粽子中抽取200个进行质量检测,200是总体11.以下调查中,最适合采用普查方式的是()A.调查某班级学生的身高情况B.调查全国中学生的视力状况C.调查山东省居民的网上购物状况D.调查一批电脑的使用寿命12.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.49B.13C.16D.1913.淘淘和丽丽是九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是()A.13B.19C.23D.2914.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表:现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权比由3①5①2变成5①3①2,成绩变化情况是()A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩都增加15.某校举行防疫知识竞赛,甲、乙两班的参加人数及成绩(满分100分)的平均数、中位数、方差如下表所示,规定成绩大于或等于96分为优异.佳佳根据上述信息得出如下结论:①甲、乙两班学生成绩的平均水平相同;①甲班的成绩比乙班的成绩稳定;①乙班成绩优异的人数比甲班多;①佳佳得94分将排在甲班的前20名.其中正确的结论是()A.①①B.①①C.①①D.①①①16.某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中()A.个体是每个学生B.样本是抽取的1200名学生的数学毕业成绩C.总体是40本试卷的数学毕业成绩D.样本是30名学生的数学毕业成绩17.下表是某同学周一至周五每天跳绳个数统计表:则表示“跳绳个数”这组数据的中位数和众数分别是()A.180,160B.170,160C.170,180D.160,20018.下列统计量中,能够刻画一组数据的离散程度的是()A.方差或标准差B.平均数或中位数C.众数或频率D.频数或众数19.甲乙二人做出拳(石头、剪刀、布)游戏,则甲赢的概率为()A.16B.13C.12D.1920.已知一组数据的方差为345,数据为:-1,0,3,5,x,那么x等于()A.-2或5.5B.2或-5.5C.4或11D.-4或-11二、填空题21.博物馆拟招聘一名优秀讲解员,张三的笔试、试讲、面试成绩分别为94分、90分、95分.综合成绩中笔试占50%、试讲占30%、面试占20%,那么张三最后的成绩为_____分.22.一组数据2,3,2,3,5的方差是__________.23.A,B,C三把外观一样的电子钥匙对应打开a,b,c三把电子锁.(1)任意取出一把钥匙,恰好可以打开a锁的概率是;(2)求随机取出A,B,C三把钥匙,一次性对应打开a,b,c三把电子锁的概率.24.掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是_____.25.小华想了解光明小区500户家庭的教育费用支出情况,随机抽查了该小区的50户家庭并做了相关统计.在这次调查中,样本容量是_____.26.若一组数据2、2、3、1、5的极差是_________27.制作频数直方图的步骤:(1)确定所给数据的最大值、最小值,求出最大值与最小值的差;(2)将数据适当________;(3)统计每组中数据出现的________;(4)绘制频数直方图.28.一组数据:1,2,2,3,3,3,4,4,4,4的平均数等于_________.29.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼_____尾.30.为做好疫情防控工作,学校南门设置了A,B两台体温快速检测设备,小成和小林随机进入学校,二人恰好均从设备A检测入校的概率是______.31.万州区九池乡盛产草莓,每年三四月正是草莓成熟的季节.某水果经销商为了更好地了解市场,分别对甲、乙、丙、丁四个市场四月份每天出售的草莓价格进行调查,通过计算发现这个月四个市场草莓的平均售价相同,方差分别为22228.1, 5.7,9.5, 6.4====s s s s,则该经销商四月份草莓价格最稳定的市场是甲乙丁丙__________.32.在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:59.569.579.599.59151289.599.5出现的频率为15%,则这一次抽样调查的容量是(1)已知最后一组()________.69.579.5的频数是________,频率是________.(2)第三小组()33.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色三角形区域的概率是_____.34.某鞋店一周内销售了某种品牌的男鞋60双,各种尺码的销售量统计如下:由此你能给这家鞋店提供的进货建议是________________________.35.有四张完全相同且不透明的的卡片,正面分别标有数字-1,-2,1,2,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为a ,放回后洗匀,再抽一张,卡片上的数字记为b ,则函数y ax =与函数by x=没有交点的概率是_______. 36.一个袋子里有6个黑球,x 个白球,它们除颜色外形状大小完全相同.随机从袋子中摸一个球是黑球的概率为13,则x =_____.37.班里有18名男生,15名女生,从中任意抽取a 人打扫卫生,若女生被抽到是必然事件,则a 的取值范围是_____.38.某校为了了解该校学生在家做家务的情况,随机调查了50名学生,得到他们在一周内做家务所用时间的情况如下表所示:这组数据的中位数是_____.39.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.40.我们把a 、b 、c 三个数的中位数记作,,Z a b c ,直线12y kx =+与函数22,1,1y Z x x x =-+-+的图象有且只有2个交点,则k 的值为______.三、解答题41.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 27 26 18 19 22 17 16 19 32 30 16 15 16 28 15 32 23 17 14 15 27 27 16 19,对这30个数据按组距3进行分组,并整理和分析如下: 频数分布表:数据分析表:请根据以上信息解答下列问题:(1)上表中=a ,b = ,c = ,d = ;(2)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由;(3)若从第六组和第七组内随机选取两名营业员在表彰会上作为代表发言,请你直接写出这两名营业员在同一组内的概率.42.体育测试即将进入中考,某校随机抽取八年级50名男生进行立定跳远测试,并把测试成绩(单位:m )绘制成如下统计表和统计图.(每组数据含前一个边界值,不含后一个边界值)八年级50名男生立定跳远测试成绩的频数表(1)求a,b的值,并把频数直方图补充完整;(2)学生立定跳远成绩在1.85m(含1.85m)以上为合格,若该年级共有600名男生,试估计有多少名男生达到合格水平?43.东京奥运会10米跳台决赛在2021年8月5日下午15:00举行,来自广东湛江的14岁小女孩全红婵让全世界记住了她的名字.下表是7名裁判对全红婵第一跳的打分情况:(1)写出7名裁判打分的众数和中位数.(2)跳水比赛计分规则规定,在7个得分中去掉1个最高分和1个最低分,剩下5个得分的平均值为这一跳的完成分,根据“最后得分=难度系数×完成分×3”,那么全红婵第一跳的最后得分多少?44.如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1)根据图中信息分别求出上午和下午四个整点时间的平均气温.(2)请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.45.西宁教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表.针对以下六个项目(每人只能选一项):.课外阅读;.家务劳动;.体育锻炼;.学科学习;.社会实践;.其他项目进行调查.根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为____________,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动.请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.46.2021年底,西安突发新冠肺炎疫情、在各方共同努力下,取得了抗击疫情的阶段性胜利.日前,新一波新冠肺炎疫情又在中国香港地区蔓延,同时深圳、呼和浩特等多地也出现散发病例.做好新冠肺炎疫情防控时刻不能放松,对中学生来说抗击疫情的最好办法是强身健体,提高免疫力.某校为了解九年级学生周末在家体育锻炼的情况,在该校九年级随机抽收了18名男生和18名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了如下数据(单位:分钟):【收集数据】男生:28,30,32,39,46,57,58,66,68,69,70,70,80,88,95,99,100,105;女生:29,35,36,48,55,56,62,69,69,72,73,78,88,88,90,98,99,109.【整理数据】【分析数据】两组数据的平均数、中位数、众数如表:根据以上信息解答下列问题:a______,b=______;(1)填空:m=______,=(2)如果该校九年级的男生有270人、女生有360人,估计该校九年级周末在家锻炼的时间在90分钟以上(不包含90分钟)同学的人数;(3)王老师看了表格数据后认为九年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持王老师观点的理由.47.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:规定:演讲答辩得分按.......“.去掉一个最高分和一个最低分再算平均分..................”.的方法确定.....;. 民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分; 综合得分=演讲答辩得分×(1-a)+民主测评得分×a (0.5≤a≤0.8); (1) 当a=0.6时,甲的综合得分是多少?(2) 如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.48.为贯彻落实全市城乡“清爽行动”暨生活垃圾分类攻坚大会精神,积极创建垃圾分类示范单位,我校举行了一次“垃圾分类”模拟活动. 我们将常见的生活垃圾分为四类:可回收垃圾、厨余垃圾、有害垃圾、其他垃圾,且应分别投放于4种不同颜色的对应垃圾桶中. 若在这次模拟活动中,某位同学将两种不同类型的垃圾先后随意投放于2种不同颜色的垃圾桶.(1)请用列表或画树状图表示所有可能的结果数; (2)求这位同学将两种不同类型的垃圾都正确投放的概率.49.我校团委举办了一次“中国梦·我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀. 这次大赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏下!”观察上表,请说明小明是哪一组学生,并说明理由;(3)如果学校准备推荐其中一个组参加县级比赛,你推荐哪一组参加?请你从两个不同的角度说明推荐理由.50.甲、乙二人做如下的游戏;从编号为1到20的卡片中任意抽出一张.(1)若抽到的数字是奇数,则甲获胜,否则乙获胜,你认为这个游戏对甲、乙双方公平吗?请从概率的角度分析你的结论.(2)若抽到的数字是3的倍数,则甲获胜;若抽到的数字是5的倍数,则乙获胜,你认为这个游戏对甲、乙双方公平吗?参考答案:1.B【分析】根据样本的定义(从总体中抽取出的一部分个体叫做这个总体的一个样本)即可得.【详解】解:由题意可知,样本是指被抽取的200名考生的中考数学成绩,故选:B.【点睛】本题考查了样本,熟记样本的定义是解题关键.2.B【详解】试题分析:由题可知,从样本数据可观察到,中位数可能为7,也有可能是6.5或者6,(1)如果是7,则x=9,(2)如果是6.5,则x=7,不可能,舍去;(3)如果是6,则x=5,综上所诉,则有5或9 ,B正确.考点:统计相关数据点评:该题较为简单,但是容易考虑不全面,考查学生对平均数和中位数的理解和计算方法的掌握.3.A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:在一只不透明的袋子里装有1个红球和100个白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到白球是随机事件,故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.对全国初中学生睡眠质量情况的调查,适合采用抽样调查方式,不符合题意;B.对2022年元宵节期间市场上“元宵”质量情况的调查,适合采用抽样调查方式,不符合题意;C.对春运期间乘车旅客携带危险品情况的调查,适合采用全面调查方式,符合题意;D.对母亲河——嘉玲江水质情况的调查,适合采用抽样调查方式,不符合题意.故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.A【分析】根据方差越小,数据越稳定,比较方差的大小即可.【详解】解:他们5天的平均体温都是36.5度,方差分别是2S甲=0.02,2S乙=0.04,2S丙=0.06,2S丁=0.08,0.020.040.060.08<<<.∴甲体温最稳定.故选A【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.6.A【分析】根据全面调查的特征、众数、中位数的定义、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件逐一判断即可.【详解】解:①为了了解一批灯泡的使用寿命,调查具有破坏性,应采用抽样调查的方式,故错误;①一组数据5,6,7,6,8,10的众数是6,中位数是(6+7)÷2=6.5,故错误;①已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是m>0,故错误;①23≥-≠-a a且,故正确.综上:正确的有1个故选A.【点睛】此题考查的是调查方式的选择、求一组数据的众数、中位数、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件,掌握全面调查的特征、众数、中位数的定义、一元二次方程根的情况、分式有意义的条件和二次根式有意义的条件是解决此题的关键. 7.C【分析】根据“平均分=总分数÷科目数”计算即可解答. 【详解】解:()919488391++÷=(分), 故小华的三科考试成绩平均分式91分; 故选:C .【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可. 8.B【分析】设这片林子中麻雀的数量为x 只,根据样本估计总体列式求解即可. 【详解】解:设这片林子中麻雀的数量为x 只, 由题意得:30:3:50x =, 解得:500x =,所以这片林子中麻雀的数量大约为500只, 故选:B .【点睛】本题主要考查了用样本估计总体,熟练掌握相关知识是解题的关键. 9.B【分析】根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案. 【详解】根据题意列树状图得:①共有25可能出现的情况,两个指针同时指在偶数上的情况有6种, ①两个指针同时指在偶数上的概率为:625, 故选B【点睛】本题考查了列表法与树状图法求概率的知识,概率=所求情况数与总情况数之比.熟练掌握列表法与树状图法及概率公式是解题关键.10.C【详解】A. ①了解中央电视台新闻频道的收视率,如果采用应采用全面调查,工作量很大,故不正确;B. ①从城区甲、乙两所中学的初一年级随机地各抽取50名学生,漏掉了农村中学的学生,不具代表性,故不正确;C. ①折线统计图能反应一个量的变化情况,①反映岳池县6月份每天的最高气温的变化情况适合用折线统计图正确;D. 商家从一批粽子中抽取200个进行质量检测,200是样本容量,故不正确;故选C.11.A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.调查某班级学生的身高情况,适合采用普查方式,故本选项符合题意B.调查全国中学生的视力状况,适合采用抽样调查,故本选项不合题意;C.调查山东省居民的网上购物状况,适合采用抽样调查,故本选项不合题意;D.调查一批电脑的使用寿命,适合采用抽样调查,故本选项不合题意.故选:A.【点睛】此题考查了普查和抽样调查的问题,解题的关键是掌握普查和抽样调查的定义以及区别.12.D【详解】解:列表如下由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故选:D.13.B【分析】根据题意列表法求概率即可. 【详解】列表如下总共有9种等可能结果,他们两人都抽到物理实验的结果有1种 ①两人都抽到物理实验的概率是19故选B【点睛】本题考查了列表法或树状图法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比. 14.B【详解】创意权重没有改变,所以可以不计算.小明原先:700.3600.5⨯+⨯=51.现在: 700.5600.353⨯+⨯=. 小亮原先:900.3750.5⨯+⨯=63.5 .现在:900.5750.3⨯+⨯=67.5. 小丽原先:600.3840.5⨯+⨯=60.现在:600.5840.3⨯+⨯=55.2. 显然小亮增加最多, 故选B . 15.D【分析】根据平均数、中位数、方差的意义逐项分析判断即可.【详解】解:①甲、乙两班学生的平均成绩相等,故成绩的平均水平相同,故①正确; ①甲班的成绩的方差比乙班的大,故乙班的成绩稳定,故①不正确,①根据中位数可得乙班的中位数大于甲班的中位数,故乙班成绩优异的人数比甲班多,故①正确;①根据甲班的中位数为93,则①佳佳得94分将排在甲班的前20名,正确故选D【点睛】本题考查了平均数、中位数、方差的意义,掌握平均数、中位数、方差的意义是解题的关键.16.B【详解】A. 个体是每份试卷,C. 总体是一万名初中毕业生的数学毕业成绩;D. 样本是抽取的1200名学生的数学毕业成绩,故B正确17.B【分析】将这些数从小到大排列起来,找出中位数,众数即可.【详解】把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170,160出现了2次,出现的次数最多,则众数是160,故选:B.【点睛】本题考查众数和中位数的概念,能够找到一组数据的众数,中位数是解决本题的关键.18.A【详解】由于方差、标准差都能反映数据的波动大小,而中位数是一组数据按大小排序后最中间一个数(或中间两个数的平均数),平均数反应的是一组数据的平均量,众数是一组数据中出现次数最多的数,而频率和频数反应的是数据的比值和数目.故选A.19.B【分析】由题意列表格,根据概率公式进行求解即可.【详解】解:由题意知,列表法表示甲、乙可能的结果如下:共有9种可能,甲赢乙共有3种情况;①甲赢的概率为3193=故选B .【点睛】本题考查了列表法求概率.解题的关键在于正确的列表格. 20.A【分析】根据平均数和方差的公式列出关于x ,m 的方程求解.【详解】解:设数据的平均数为m ,则11(1035)(7)55m x x =-++++=+①,222222134(1)(0)(3)(5)()55s m m m m x m ⎡⎤=--+-+-+-+-=⎣⎦, 整理得22514210m m mx x --++=①,把①代入①,得:221115(7)14(7)2(7)10555x x x x x ⎡⎤+-⨯+-⨯+⋅++=⎢⎥⎣⎦,化简得227220x x --= 解得:x =-2或5.5. 故选A .【点睛】本题主要考查的是方差公式,平均数公式,以及一元二次方程的解法,方程思想在初中数学的学习中极为重要,也是中考中的热点,本题思考问题的角度独特,难度较大. 21.93【分析】根据加权平均数的定义列式计算即可.【详解】解:张三最后的成绩为:9450%9030%9520%93⨯+⨯+⨯=(分), 故答案为:93.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义. 22.1.2【详解】解:先求出平均数(2+3+2+3+5)÷5=3,再根据方差公式计算方差=22222[(23(33)(23)(33)(53)]5 1.2-+-+-+-+-÷=)即可23.(1)13;(2)16【详解】试题分析:1)直接利用概率公式求解即可;(2)根据题意列表后利用概率公式求概率即可.试题解析:(1)①3把钥匙中有1把打开a锁,①任意取出一把钥匙,恰好可以打开a锁的概率是13;(2)由题意可列表如下:由上表可知共有六种方法,故刚好A能开a锁,B能开b锁,C能开c 锁的概率为:16.考点:列表法与树状图法.24.12.【分析】投掷一枚硬币,是一个随机事件,可能出现的情况有两种:反面朝上或者反面朝下,而且机会相同.据此回答.【详解】解:第10次掷硬币,出现反面朝上的机会和朝下的机会相同,都为12;故答案为:12.【点睛】此题考查概率的意义,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.25.50【分析】根据样本容量:一个样本包括的个体数量叫做样本容量可得答案.。

相关文档
最新文档