风光互补系统原理图

风光互补电源系统的设计原理及应用

风光互补电源系统的设计原理及应用 现在全国都在发展新能源,储能、负载相同,发电方式不同和资源上的互补性,使风电和光电系统集成为风光互补系统电源成为必然。另外一个特点是地域性,不同地域具有不同的太阳能和风能资源。太阳能也是这样,有明显的地域性,这是它一个特点。另外一个特点是不确定性。资源不确定性,即每天的发电量受天气影响很大,会导致系统发电与用电不平衡,使蓄电池组长期处于浅充,这也是引起该系统失效的主要原因。蓄电池在该系统中承担的电的储存和供给的作用,它必须能够适应8 这种浅充,基于这样的分析我们提出设计原理,开展以蓄电池管理为核心的研究,把发电组建、控制组建、出能组建和负载设计为一个整体,实现能量的最大化利用,这就是我们提出的边远系统的设计原理。根据地域条件的不同,这个系统又可演变为光点系统、风电系统和风光互补三种形式。尽管国内有很多部门在做,但是基础方面的工作还做的不够。 系统由什么组成呢?风电和广电的发电部件、蓄电池储能部件、供电部件和控制部件,这四大部件组成。我们要做到稳定可靠,各部件及规范。首先讲系统的规范和标准,这也是我参与起草《移动通信设备风光互补电源系统》,就构成了系统种类、构成及划分,部件要求和鉴别,系统选择与设计、安装、调试,维护管理等等,都有明确的规定。 蓄电池作为我们通信行业对蓄电池很熟悉、不陌生,用于太阳能系统蓄电池不是普遍的电池,我们有专门对太阳能系统的要求和测试方法。风能发电机有一个通用的标准,我们推荐使用另外一种风机,也符合国家的标准。它的特点是和先速和过栽均采用电磁制动,同是具备叶片变形失速功能,这个大量使用在我们的基站上,重量轻、故障小,输出的电也比较稳定。因为风率的利用

风光互补发电系统现状及发展状况(可编辑修改word版)

风光互补发电系统现状及发展状况 高洁琼 (ft西大学 ft西·太原030013) 摘要:本文介绍了风光互补发电系统的结构、工作原理和优缺点,以及风光互补发电系统的发展过程及现状,同时说明其应用前景。太阳能和风能之间互补性很强, 由这两者结合而来的风光互补发电系统在资源上具有最佳的匹配性。 关键词: 风能太阳能风光互补系统 1.风光互补发电系统的结构、工作原理、基本要求以及优缺点 1.1风光互补发电系统的结构 风光互补发电系统主要由风力发电机组、太阳能光伏电池组、控制器、蓄 电池、逆变器、交流直流负载等部分组成。该系统是集风能、太阳能及蓄电池 等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。1.2风光互补发电系统的工作原理及运行模式 风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械 能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;光伏发 电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电, 通过逆变器将直流电转换为交流电对负载进行供电;逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的 220v 交流电,保证交流电负载设备的正常 使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;控制 部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行 切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多 余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的 电能送往负载,保证了整个系统工作的连续性和稳定性;蓄电池部分由多块蓄 电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系 统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。 风光互补发电系统根据风力和太阳辐射变化情况,可以在以下三种模式下 运行:风力发电机组单独向负载供电;光伏发电系统单独向负载供电;风力发 电机组和光伏发电系统联合向负载供电。 1.3风光互补发电系统的优缺点

风光互补发电系统技术方案

风光互补发电系统 技术方案

风光互补发电系统技术方案 五寨县恒鑫科技发展有限公司 04月20日

项目背景: 本项目产品小型风力发电机组是离网用户最佳的独立电源系统。 风光互补独立供电系统是当前最广泛应用独立电源系统。风光互补独立供电系统的广泛应用在于它的合理性。 太阳能是地球上一切能源的来源,太阳照射着地球的每一片土地。风能是太阳能在地球表面的另一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。因此,太阳能与风能在时间上和地域上都有很强的互补性。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。单独的风机或太阳能发电系统由于受资源条件的限制,对蓄电池组充电时间较短,蓄电池组长时间处于亏电状态而导致蓄电池组的损坏。而风光互补发电系统充电时间较均衡,能够保证蓄电池组处于浮充状态,提高蓄电池组的充电质量并延长了蓄电池组的寿命。 风力发电机和太阳能电池的充电特性不一样,风机的充电特性较硬,而光伏电池的充电特性较软,风光互补电对激活离子运动,防止蓄电池极板硫化有好处,可延长蓄电池组的寿命。 风机和太阳能电池的储能和逆变系统能够共用,且风机的单位造价只有太阳能电池的三分之一左右,因此风光互补发电系统的整体造价能够降低。同时,由于风机和太阳能电池的发电时间上互补,能够减少储能的蓄电池组

家用风光互补发电系统分析设计

1、风光互补发电技术 1.1风光互补发电系统的特点 风力发电系统利用风力发电机,将风能转换成电能,然而通过控制器对蓄电池充电,最后通过逆变器对负载供电。该系统具有日发电量较高,系统造价较低,运行维护成本低等优点。缺点是小型风力发电机可靠性低,常规水平轴风力发电机对风速的要求较高。光伏发电系统利用光电板将太阳能转换成电能,然后通过控制器对蓄电池充电,最后通过逆变器对负载供电。该系统的优点是系统供电可靠性高、资源条件好、运行维护成本低,缺点是系统造价高。发电与用电负荷的不平衡性是风电和光电系统共同存在的一个缺陷,它是由资源的不确定性造成的。风电和光电系统发出电能后都必须通过蓄电池储能才能稳定供电,但是每天的发电量受阳光、风力的影响很大,阳光、风力较弱会导致系统的蓄电池组长期处于亏电状态,这是引起蓄电池组使用寿命降低的主要原因。较风电和光电独立系统,风光互补发电系统具有以下特点:(1)风光互补发电系统弥补了风电和光电独立发电系统在资源上的缺陷,利用太阳能和风能的互补性,提供较稳定的电能; (2)在风光互补发电系统中,风电和光电系统可以共用一套蓄电池组和逆变环节,减少系统造价; (3)整个系统是两种发电系统进行互补运行,因此,在保证同等供电的情况下,可大大减少储能装置的容量; (4)风光互补发电系统可以根据用户需要合理配置系统容量,在不影响供电可靠性的情况下减少系统造价; (5)风光互补发电系统可以根据用户所在地的季节及天气变化情况优化系统设计方案,在满足用户要求的情况下节约资源。 1.2适合风光互补地区分析 太阳能和风能是最普遍的自然资源,也是取之不尽的可再生能源。图1为我国太阳能风能分部情况。

小型水风光互补系统设计全解

毕业设计(论文)题目小型水风光互补系统设计 学生姓名 学号 专业 班级 指导教师 评阅教师 完成日期:2015年10月22日

毕业设计(论文)开题报告 题目:小型水风光互补系统设计 学生姓名: 专业:电力系统及自动化 指导老师: 一、课题来源 煤、石油、天然气等不可再生能源的使用量在世界各国不断上升,能源危机将成为人类最主要,最大的危机,发展可再生能源越来越成为世界各国的主攻研发方向和竞争目标,谁能领先,谁就会成为未来新贵,新霸主。电力作为重要的二次清洁能源,它的生产将主要依托可再生能源,从而如何利用可再生能源发电将是一个重大课题。 二、研究目的及意义 1、利用水能、风能、太阳能的互补性,可以获得比较稳定的输出,系统有较高的稳定性和可靠性; 2、在保证同样供电的情况下,可大大减少储能蓄电池的容量; 3、通过合理地设计与匹配,可以基本上由水风光互补发电系统供电,很少或基本不用启动备用电源如柴油机发电机组等,可获得较好的社会效益和经济效益。 三、研究的内容、途径及技术线路 水风光互补发电系统主要由水力发电机组、风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成,系统结构图见附图。该系统是集水能、风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。 1、水力发电部分是利用水能机将水能转换为机械能,通过水力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电; 2、风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电; 3、光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电; 4、逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的220v交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量; 5、控制部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性; 6、蓄电池部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发 电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。 四、发展趋势 中国拥有世界上最多的人口,近年来经济快速增长。但中国目前的能源结构主要依赖燃煤发电,从而对环境产生了许多负面影响,特别是对空气和水资源的污染。国际能源机构(IEA)曾预测从2005年到2030年中国新增加的温室气体排放(42%)将和世界上其他国家排放总量(不包括印度,44%)相当。中国会取代美国成为世界上最大的温室气体排放国。发展可再生能源技术是减少温室气体排放和改善环境的有效措施之一。

风光互补发电系统

风光互补发电系统 第一章绪论 1.1 能源与环境问题 能源是是国民经济发展与社会文明进步的基石,能源可持续发展是人类社会可持续发展的重要保障之一。从原始社会开始,化石能源逐步成为人类所用能源的主要来源,这种状况一直延续至科技发达的现代社会。随着人类对能源需求的日益增加,化石能源的储量正日趋枯竭。此外,大量使用化石燃料己经为人类生存环境带来了严重的后果,全世界每天产生约1亿吨温室效应气体,己经造成极为严重的大气污染、温室效应、酸雨等环境影响。开发利用可再生新能源以实现能源可持续发展是人类应对能源问题的有力方法之一。 1.2 新能源发展现状 当前,世界各国普遍重视能源技术创新,技术研发与制度创新越来越受到推崇。美提出培育世界领先水平的科技人员,建设世界一流的能源科技基础设施,整合基础研究和应用研究,加快研究电力储备、智能电网、超导输电、二氧化碳捕获、先进电池、纤维素乙醇、氢燃料以及清洁煤、核能、太阳能和风能等先进发电技术。日本也提出了引导未来能源技术的战略,从2050年、2100年超长期视点出发,展望未来能源技术,制定2030年科技战略。我国也看到新能源发展的紧迫性,加快建立法律法规,积极扶持新能源发展,新能源在我国的发展速度很快。 在新能源体系中,可再生能源是自然界中可以不断再生、永续利用的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用,主要包括风能、太阳能、水能、生物质能、地热能、海洋能等。 1.3 互补发电的概念 很多可再生新能源因其资源丰富、分布广泛,而且在清洁环保方面具有常规能源所无 法比拟的优势,因而获得了快速的发展。尤其是小规模的新能源发电技术,可以很方便地就地向附近用户供电,非常近合在无电、少电地区推广普及。不过由于风能、太阳能等可再生新能源本身所具有的变化特性,所以独立运行的单一新能源发电方式很难维持整个供电系统的频率和电压稳定。 考虑到新能源发电技术的多样性,以及它们的变化规律并不相同,在大电网难以到达的边远地区或隐蔽山区,一般可以采用多种电源联合运行,让各种发电方式在个系统内互为补充,通过它们的协调配合来提供稳定可靠的、电能质量合格的电力,在明显提高可生能源可靠性的同时,还能提高能源的综合利用率。这种多种电源联合运行的方式,就称为互补发电。

风光互补发电系统方案

风光互补发电系统 方案

光伏发电系统在别墅中的应用方案 1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在别墅屋顶上,用于演示光伏发电系统在别墅中应用的情况,为日后大面积推广提供参考。 1.2光伏发电系统的要求 本项目设计一个5kWp的小型系统,平均每天发电25kWh,可供一个1kW的负载工作25小时。能够满足别墅正常见电的需要(一般家庭每天用电量在10kWh左右)。 2.系统方案 2.1现场资源和环境条件 长春北纬43 °05’~45 °15’;东经124 °18’~127 °02’。长春市年平均气温 4.8°C,最高温度39.5°C,最低温度-39.8°C,日照时间2,688小时。夏季,东南风盛行,也有渤海补充的湿气过境。年平均降水量522至615毫米,夏季降水量占全年降水量的60%以上;最热月(7月)平均气温23℃。秋季,可形成持续数日的晴朗而温暖的天气,温差较大,风速也较春季小。 2.2太阳能光伏发电系统原理 太阳能光伏发电是一种新型的发电方式, 基本原理是光生伏特

效应原理, 也就是当太阳光照射在某些特殊材料上, 会引起材料中电子的移动, 形成电势差, 从而由太阳光能直接转换为电能。这其中的特殊材料也就是光伏发电的的最基本元件被称为太阳电池半导体, 即太阳能电池(片), 它包括有单晶硅、多晶硅、非晶硅和薄膜电池等。光伏发电系统主要由太阳能电池阵列、蓄电池、逆变器、控制器等几大部分组成, 由这些电子元器件构成的系统, 安装维护简便, 运行稳定可靠。白天太阳能电池组件将太阳辐射出的光线转变为电能, 储存在蓄电池里, 在夜间或需要时, 从蓄电池里将电能释放出来, 用于照明和其它用途。太阳能电池组件是发电设备, 蓄电池是储能设备, 控制器、逆变器是充放电控制保护和直交流变换设备。 2.3太阳能光伏发电主要部件 (1) 太阳能电池板: 太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 (2) 太阳能控制器: 太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其它附加功能如光控开关、时控开关都应当是控制器的可选项。

自动化毕业设计 风光互补发电系统设计

风光互补发电系统 摘要 进入二十一世纪,人类面临着实现经济和社会可持续发展的重大挑战,而能源问题日益严重,一方面是常规能源的匮乏,另一方面石油等常规能源的开发带来一系列的问题,如环境污染、温室效应等。人类需要解决能源问题,实现可持续发展,只能依靠科技进步,大规模开发利用可再生能源和新能源。而太阳能和风能被看做是最具有代表性的新能源和可再生能源,作为这两种能源的高级利用太阳能发电和风力发电技术受到世界各国的高度重视。由于风力发电和太阳能发电系统均受到外部条件的影响,光靠独立的风力或太阳能发电系统经常会难以保证系统供电的连续性和稳定性,因此,在采用风光互补的混合发电系统来进行相互补充,实现连续、稳定地供电。风光互补发电以其独特优势成为新能源研究的热点之一。本文针对风光互补发电系统设计了一套小型模拟装置,包括太阳能电池模拟,用直流电机对风机的模拟和交错并联Buck-Boost蓄电池充电主电路,并对交错并联Buck-Boost电路和交错并联Cuk斩波电路进行了研究、仿真,以及进行了模拟风机装置的调试。系统控制全部采用Freescale公司的56F8013 DSP控制实现,给出了各部分流程图。对于软硬件的关键问题还给出了相应解决方案。 关键词:风光互补 Buck–Boost电路 DSP

Wind & Solar Hybrid Generating System ABSTRACT Entering the 21st century, human beings are facing to realize the sustainable development of economy and society, and energy problem becomes more and more serious, on the one hand, conventional energy is serious short on the other hand, the development of oil and other conventional energy brings a series of problems, such as the environmental pollution, the greenhouse effect and so on. Only by relying on the progress of science and technology and the large-scale exploitation and utilization of renewable energy and new energy can human solve the problem of energy, and realize the sustainable development. And solar and wind power are considered the most representative of new and renewable energy, The power technology of solar energy and wind attrack world’s attention. Because of wind power and solar power system under external conditions, and only by independent wind or solar power systems often hard to ensure the continuity and consistency of power system therefore, using hybrid power system of complementary scenery to complement each other, realize the continuous, stable power supply. Wind-light complementary with its unique advantages become one of new energy research hotspots. Aiming at wind-light complementary this article design a small device, including solar cells in dc motor, the simulation and interlacing of fan parallel Buck - hee, and main circuit batteries to Buck staggered shunt circuit and interlacing parallel hee - Cuk chopper were studied, and the simulation, the simulated fan unit commissioning. Control system adopt Freescale company 56F8013 DSP control chart, each part. The key question for software and hardware to the corresponding solutions. Keyword:Wind and PV hybrid Buck–Boost Circuit DSP

风光互补发电

风光互补发电系统 概述 能源是国民经济发展和人民生活必须的重要物质基础,在过去的200多年里,建立在煤炭、石油、天然气等化石燃料基础上的能源体系极大的推动了人类社会的发展。但是人类在使用化石燃料的同时,带来了严重的环境污染和生态系统破坏。近年来,世界各国逐渐认识到能源对人类的重要性,更认识到常规能源利用过程中对环境和生态系统的破坏,各国纷纷开始根据国情,治理和缓解已经恶化的环境,并把可再生、无污染的新能源的开发利用作为可持续发展的重要内容。风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统,具有很好的应用前景。 风光互补发电系统的发展过程及现状 最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。 近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。其中colorado state university和national renewable energy laboratory合作开发了hybrid2应用软件。 hybrid2本身是一个很出色的软件,它对一个风光互补系统进行非常精确的模拟运行,根据输入的互补发电系统结构、负载特性以及安装地点的风速、太阳辐射数据获得一年8760小时的模拟运行结果。但是hybrid2只是一个功能强大的仿真软件,本身不具备优化设计的功能,并且价格昂贵,需要的专业性较强。 在国外对于风光互补发电系统的设计主要有两种方法进行功率的确定:一是功率匹配的方法,即在不同辐射和风速下对应的光伏阵列的功率和风机的功率和大于负载功率,只要用于系统的优化控制;另一是能量匹配的方法,即在不同辐

风光互补发电系统技术方案

风光互补发电系统技术方案 五寨县恒鑫科技发展有限公司 2017年04月20日

项目背景: 本项目产品小型风力发电机组是离网用户最佳的独立电源系统。 风光互补独立供电系统是目前最广泛应用独立电源系统。风光互补独立供电系统的广泛应用在于它的合理性。 太阳能是地球上一切能源的来源,太阳照射着地球的每一片土地。风能是太阳能在地球表面的另一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。因此,太阳能与风能在时间上和地域上都有很强的互补性。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。单独的风机或太阳能发电系统由于受资源条件的限制,对蓄电池组充电时间较短,蓄电池组长时间处于亏电状态而导致蓄电池组的损坏。而风光互补发电系统充电时间较均衡,可以保证蓄电池组处于浮充状态,提高蓄电池组的充电质量并延长了蓄电池组的寿命。 风力发电机和太阳能电池的充电特性不一样,风机的充电特性较硬,而光伏电池的充电特性较软,风光互补电对激活离子运动,防止蓄电池极板硫化有好处,可延长蓄电池组的寿命。 风机和太阳能电池的储能和逆变系统可以共用,且风机的单位造价只有太阳能电池的三分之一左右,所以风光互补发电系统的整体造价可以降低。同时,由于风机和太阳能电池的发电时间上互补,可以减少储能的蓄电池组容量,使发电系统造价降低。经济上更趋于合理,随着我国4G通信网的开通,可实现大范围的无线传输图像资料,风光互补监控系统将在森林防火、防盗猎监控、城市乡村的防犯罪监控、古墓群的防盗墓监控、边防地区的防偷渡监控、生态保护区的防盗猎监控、旅游地区的安全监控和矿产资源的防乱开采监控等领域得到广泛的应用,这种监控系统体系不仅能大大降低管理成本,而且能实现有效及时和安全的防护体系。对降低森林火灾,减少资源破坏,提高破案率都有非常极的意义。技术的进步可以促进社会管理手段的进步,同时,新技术的广泛应用才能进一步促进新技术产业的发展。

风光互补发电系统设计

5.3.1风光互补发电系统设计 风能和太阳能都具有能量密度低、稳定性差的弱点,并受到地理分布、季节变化、昼夜交替等影响.然而太阳能与风能在时间上和地域上一般都有一定的互补性,白天太阳光最强时,风较小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强.在夏季,太阳光强度大而风小;冬季,太阳光强度小而风大。太阳能发电稳定可靠,但目前成本较高,而风力发电成本较低,随机性大,供电可靠性差。若将两者结合起来,可实现昼夜发电.在合适的气象资源条件下,风光互补发电系统能提高系统供电的连续性、稳定性和可靠性,在很多地区得到了广泛的应用.如图5.1为某地10 月份某日典型的太阳能和风资源分布,因此采用风光互补发电系统,可以弥补风能和太阳能间歇性的缺陷。 图5.1 某地10 月份典型日太阳能和风能资源分布图风光互补发电的优势: (1)利用风能和太阳能的互补性,弥补了独立风电和独立光伏发电系统的不足,可以获得比较稳定的和可靠性高的电源。 (2)充分利用土地资源。 (3)保证同样供电的情况下,可大大减少储能蓄电池的容量。 (4)对系统进行合理的设计和匹配,可以基本上基本上由风光互补发电系统供电,获得较好的经济效益。 5)大大提高经济效益。

风光互补发电系统主要组成部分(1)发电部分:由一台或者几台风力发电机和太阳能电池阵列构成风—电、光—电发电部分,发电部分输出的电能通过充电控制器与直流中心完成蓄电池组自动充电工作。 (2)蓄电部分:蓄电部分主要作用是将风电或光电储存起来,稳定的向电器供电。蓄电池组在风光互补发电系统中起到能量调节和平衡负载两大作用。 (3)控制及直流中心部分:控制及直流中心部分由风能和太阳能充电控制器、直流中心、控制柜、避雷器等组成,完成系统各部分的连接、组合及对蓄电池组充放电的自动控制。控制及直流中心具体构成参数由最大用电负荷与日平均用电量决定。 (4)供电部分:供电部分不可缺少的部分是逆变器,逆变器把蓄电池储存的直流电转换为交流电,保证交流负载的正常使用。同时,还有稳压功能,以改善风光互补系统的供电质量。 图5.2 风光互补发电系统 设计一个完善的风光互补发电系统需要考虑多种因素.如各个地区的气候条件,当地的太阳辐照量情况,太阳能方阵及风力发电机功率的选用,作为储能装置蓄电池的特性等.因此,必须选择建立一些先进的数学模型进行多种计算,确定合理的太阳能电池方阵和风力发电机容量,使系统设计最优化. 数学模型计算 1.蓄电池容量计算 蓄电池的容量C 通常按照保证连续供电的天数来计算:

风光互补发电系统简述

风光互补发电系统 摘要:风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统。本文通过对风光互补发电系统的动力来源-风能和太阳能资源的初步调研,分析了风光互补发电系统的优势,并总结了国内外风光互补发电系统的研究现状,对其基本的工作原理进行了阐述。最后对举例说明了风光互补发电系统的应用前景。 关键词:风光互补,现状,工作原理,应用前景 1.引言 能源是人类社会发展和进步的物质基础,人类社会的发展和进步离不开优质能源的开发利用和先进的能源技术的不断革新。煤和石油等矿物能源的开发和利用推动了近代工业革命的发展,极大地改变了人类的生活方式。由于煤、石油、天热气等常规能源的储量是有限的,据估计,地球上煤炭最多可用300年,石油最多可维持40多年,天然气还可以维持50多年,不断爆发的能源危机严重阻碍了人类社会的发展进步。为了缓解不断加重的能源危机,世界各国相继加大了对可再生能源的研究。可再生能源是指除常规能源外的包括风能、太阳能、生物质能、地热能、海洋能等能源资源。 为了降低能耗和解决日益突出的环境问题,全球都投入到了可再生发展能源的热潮之中,全球可再生能源发展取得了明显成效。主要表现在:成本持续下降,市场份额不断扩大,其定位也开始由补充能源向替代常规能源的方向转化。近10年来,全球风力发电市场保持了28%的年均增长速度,太阳能光伏发电的年均增长速度超过30%[1]。 进入新世纪以来,中国的可再生能源利用步入了快速发展的轨道,特别是自2006年可再生能源法实施以来,中国可再生能源已经进入快速发展时期。2009年中国可再生能源在一次性能源消费结构中所占的比例已从2008年的8%提升至9%。根据中国国家能源局制定的《新能源产业振兴发展规划》,预计到2011年,新能源在能源结构中的占到的比重达到2%(含水电为l%),新能源发电容量占总电力装机容量的比重将会达到5%(含水电为25%)。其中风电装机容量将会达到3500万千瓦(陆地风电3000万千瓦,海上风电500万千瓦),太阳能发电装机容量达到200万千瓦[2]。除此之外,根据(2008年中国风电发展报告》的预测,估计到2020年末,全国风电开发建设总规模有望达到1亿kW。到2020年全国

太阳能风光互补发电系统

太阳能风光互补发电系统 1.问题的提出 如何解决能源危机问题,已经成为全球关注的热点。节能和环保已成为当今世界的两大主题。在当前可利用的几种可再生能源中,太阳能和风能是应用比较广泛的两种。风光互补发电控制系统是为了弥补传统电力的不足而设计的独立发电设备。它是由太阳能电池组件与风力发电机配合而成的一个系统,通过微型计算机的远程控制,并实现了免维护的功能。 2.风光互补发电系统的现状 最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。 近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。 在国外对于风光互补发电系统的设计主要有两种方法进行功率的确定:一是功率匹配的方法,即在不同辐射和风速下对应的光伏阵列的功率和风机的功率和大于负载功率,只要用于系统的优化控制;另一是能量匹配的方法,即在不同辐射和风速下对应的光伏阵列的发电量和风机的发电量的和大于等于负载的耗电量,主要用于系统功率设计。 目前国内进行风光互补发电系统研究的大学,主要有中科院电工研究所、内蒙古大学、内蒙古农业大学、合肥工业大学等。各科研单位主要在以下几个方面进行研究:风光互补发电系统的优化匹配计算、系统控制等。目前中科院电工研究所的生物遗传算法的优化匹配和内蒙古大学新能源研究中推出来的小型户用风光互补发电系统匹配的计算即辅助设计,在匹配计算方面有着领先的地位,而合肥工业大学智能控制在互补发电系统的应用也处在前沿水平。 3.一个设计好的太阳能风光互补发电的设计框图结构 该系统是集风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。

风光互补发电系统-英文翻译

风光互补发电系统 在当今世界人们对电的依赖越来越强。在远离电网的地区, 独立供电系统就成为人们最需要的电源, 需要低成本、高可靠性的独立电源系统。在此种环境下风光互补供电系统较为合理, 因为现代能源服务尚不能达到的地方往往是盆藏着丰富风能和太阳能资源的地方。而且风、光互补系统本身独有的一些性质也恰好与这些地区的自然条件相吻合。因此对于满足偏远地区能源需要和中国最贫困地区的可持续发展, 风光互补发电是一项关键的能源建设技术手段。风光互补供电系统是由太阳能电池与风力发电机发电, 经蓄电池贮能, 给负载供电的一种新型电源, 目前广泛应用于徽波通信、基站、电台、野外活动、高速公路、无电山区、村庄和海岛. 偏远地区一般用电负荷都不大, 所以用电网送电就不经济, 在当地直接发电最常用的就是采用柴油发电机。但柴油的储运对偏远地区成本太高, 所以柴油发电机只能作为一种短时的应急电源。要解决长期稳定可靠的供电问题, 只能依赖当地的自然能源。太阳能和风能是最普遍的自然资源, 也是取之不尽的可再生能源。太阳能是地球上一切能源之源, 太阳照射着地球的每一片土地。风能是太阳能在地球表面的另外一种表现形式, 由于地球表面的不同形态如沙土地面、植被地面和水面对太阳光照的吸热系数不同, 在地球表面形成温差, 地表空气的温度不同形成空气对流而产生风能。我国西部地区是世界上最大也是世界上最丰富的太阳能资源地区之一, 尤其是西藏地区, 空气稀薄, 透明度高年日照时间长达3400h, 每天日照6h以上年平均天数在275~330天之间, 辐射强度大, 年均辐射总量7000MJ/m,地呈东向西递增分布,呈峰型变化, 资源优势得天独厚, 应用前景十分广阔。我国风能资源丰富储量3200GW, 可开发的装机容量约253GW, 居世界首位与可开发的水电装机容量380GW为同一级。2005年我国风电装机容量超过1GW,2020年风能发电规模预计达30GW。未来风能电能很可能成为和太阳能比肩的新能源行业。我国风能开发利用的潜力很大,属于风能资源可利用区。特别是太阳能与风能在时间上和地城上都有很强的互补性。白天太阳光最强时, 风很小, 晚上太阳落山后, 光照很弱, 但由于地表温差变化大而风能加强。在夏季太阳光强度大而风小冬季, 太阳光强度小而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性, 风光互补发电系统是一个最好的独立电源系统。 光电系统是利用光电板将太阳能转换成电能, 通过控制器对蓄电池充电, 再通过逆变器对用电设备供电的一套系统。该系统的优点是供电可靠性高, 运行维护成本低,但是系统造价高。风电系统是利用小型风力发电机, 将风能转换成电能, 通过控制器对蓄电池充电, 再通过逆变器对用电设备供电的一套系统。该系统的优点是发电较大, 系统造价较低, 运行维护成本低。缺点是小型风力发电机可靠性低。风电和光电系统都存在由于资源的不确定性导致发电与用电负荷的不平衡问题, 风电和光电系统都必须通过蓄电池储能才能稳定供电, 但每天的发电要受天气的影响很大,会导致系统的蓄电池组长期处于亏电状态, 这也是引起蓄电池组使用寿命降低的主要原因。由于太阳能与风能的互补性强, 风光互补发电系统在资源上弥补了风电和光电独立系统在资源上的缺陷。同时, 风电和光电系统在蓄电池组和逆变环节是可以通用的, 所以风光互补发电系统的造价可以降低, 系统成本趋于合理。太阳能电池可以将光能转换成电能。它将太阳能电池组件与风力发电机有机地配合组成一个系统, 可充分发挥各自的特性和优势, 最大限度的利用好大自然踢予的风能和太阳能。对于用电大、用电要求高, 而风能资源和太

风光互补供电系统的设计

1风光互补发电系统的概述 风光互补,是一套发电应用系统,该系统是利用太阳能电池方阵、风力发电机(将交流电转化为直流电)讲发出的电能储存到蓄电池中,当用户需要用电时,逆变器将蓄电池中储存的直流电转变为交流电,通过输电线路送到用户负载处。是风力发电机和太阳电池方阵两种发电设备共同发电。 在国外对于风光互补供电系统的设计主要有两种方法进行功率的确定:一是功率匹配的方法,即在不同辐射和风速下对应的光伏阵列的功率和风机的功率和大于负载功率,只要用于系统的优化控制;另一是能量匹配的方法,即在不同辐射和风速下对应的光伏阵列的发电量和风机的发电量的和大于等于负载的耗电量,主要用于系统功率设计。 2风—光互补联合发电系统的优缺点 采用风光互补系统的目的是为了更高效率的利用可再生能源,实现风力发电与太阳能发电的互补。在风力强的季节或时间内以风力发电为主,以太阳光发电为辅向负荷供电。中国西北、华北、东北地区冬、春季风力强,夏秋季风力弱,但太阳辐射强,从资源的利用上恰好可以互补;因此在电网覆盖不到的偏远地区或海岛利用风力—太阳光发电系统是一种合理的可靠的获得电力供应的方法。 2.1风光互补发电系统的优点 利用太阳能、风能的互补特性,可以获得比较稳定的总输出,提高系统供电的稳定性和可靠性; 在保证同样供电的情况下,可大大减少储能蓄电池的容量; 对混合发电系统进行合理的设计和匹配,可以基本上由风光系统供电,很少启动备用电源如柴油发电机等,并可获得较好的社会经济效益。所以综合开发利用风能、太阳能,发展风光互补联合发电有着广阔的前景受到了很多国家的重视。 2.2风光互补系统的缺点 风电和光电系统都存在一个共同的缺陷,就是资源的不确定性导致发电与用电负荷的不平衡,风电和光电系统都必须通过蓄电池储能才能稳定供电,但每天的发电量受天气的影响很大,会导致系统的蓄电池组长期处于亏电状态,这也是引起蓄电池组使用寿命降低的主要原因。 由于太阳能与风能的互补性强,风光互补发电系统在资源上弥补了风电和光电独立系统在资源上的缺陷。同时,风电和光电系统在蓄电池组和逆变环节是可以通用的,所以风光互补发电系统的造价可以降低,系统成本趋于合理。 3风光互补供电系统 风光互补发电系统主要由风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成,该系统是集风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。 3.1风光互补系统的结构组成及原理 图1风光互补系统结构图 1)风力发电部分 该部分主要有风力发电机组,利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电。 在风光互补系统中,风力发电机组的参数十分重要,主要有:切入风速与切出风速、额定风速与额定输出功率、最大输出功率与安全风速、风能利用系数、调速机构和制动系统、对环境的适应能力、安装和维护的简易性等等,在进行设计时要综合考虑。 2)光伏发电部分 光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电。 3)逆变部分 逆变器是将太阳能输出直流电转变为交流电,它是影响系统可靠性的关键因素,为了提高系统的适应工作,这就要求逆变器具有合理的电路结构,具备各种保护功能,整机效率高,输出电压波形的失真度低,直流输入电压有交款的适应范围。 4)控制部分 控制部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载;另一方面把多余的电能送往蓄电池组存储,保证了整个系统工作的连续性和稳定性。 5)蓄电池组部分 蓄电池部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。 3.2结构的设计 1)太阳能电池阵列 (1)太阳能电池阵列设计原理 太阳能电池阵列指的是安装在屋顶或地面上的太阳能电池组件的组合; 主要依据是要满足在平均的天气条件下可以满足负载的每日用电需求,蓄电池在数天恶劣的气候条件下,其荷电状态会降低很多,而设计中较好的办法是使阵列满足最恶劣的季节的负载需求,也就是保证在光照情况最差的情况下蓄电池也能够被完全充满电,从而保证较长的工作寿命和较低的维护费用。 对于太阳能电池功率的确定,首先要把它转换,如式: T=H(kw2h)/I(kw2h) H为峰值日照小时数,I为标准日幅度,T为平均峰值日照时间。 光伏阵列工作特性 在使用过程中,总是希望太阳电池输出大电流、高电压。下面是理想的PN结太阳电池I-v特性曲线。 图2太阳光电池I-V特性曲线 (2)太阳电池I-v特性曲线(下转第438页) 风光互补供电系统的设计 秦天像 (酒泉职业技术学院甘肃酒泉735000) 【摘要】风光互补发电系统近几年引起了许多专家学者的关注,也取得了一定的成果,并已经推广了日常生活中来。本文通过对风光互补发电系统的现状分析,从其技术原理入手,将重点放在了风光互补的发电部分,并通过对风光系统的逐步分析,对风光互补发电系统做了一个整体研究。 【关键词】风能;太阳能; 风光互补发电412

风光互补发电系统

风光互补发电系统 能源是国民经济发展和人民生活必须的重要物质基础。在过去的200多年里,建立在煤炭、石油、天然气等化石燃料基础上的能源体系极大的推动了人类社会的发展。但是人类在使用化石燃料的同时,也带来了严重的环境污染和生态系统破坏。近年来,世界各国逐渐认识到能源对人类的重要性,更认识到常规能源利用过程中对环境和生态系统的破坏。各国纷纷开始根据国情,治理和缓解已经恶化的环境,并把可再生、无污染的新能源的开发利用作为可持续发展的重要内容。风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统,具有很好的应用前景。 中文名称 风光互补发电系统 外文名称 Scenery complementary power generation system 拼音 fengguanhubufadianxitong 目录 1 简介 2 发展过程 3 结构 4 应用前景 5 解决方案

5.1 应用场景 5.2 对策 5.3 方案特点 6 总结 7 发电分析 8 互补控制 简介 风光互补,是一套发电应用系统,该系统是利用太阳能电池方阵、风力发电机(将交流电转化为直流电)将发出的电能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电池组中储存的直流电转变为交流电,通过输电线路送到用户负载处。是风力发电机和太阳电池方阵两种发电设备共同发电。 发展过程 最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。 近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。其中colorado state university和national renewable

离网型风光互补发电系统程序框图

离网型风光互补发电系统程序框图 主程序主要完成系统的初始化和各个子程序调用的功能。系统首先进行单片机内部寄存器的初始化,并设定系统参数和控制变量,然后采集蓄电池端电压和电流,判断蓄电池所处的状态,当蓄电池电压值达到过放电压设定值时,应自动告警并按设定值关闭负载,以避免电池损坏。当蓄电池电压值达到过充电压设定值时应自动告警并关闭太阳电池方阵及风力发电机组输入。在正常充放电阶段调用蓄电池充放电子程序进行三阶段充电。 —?、址也电电小 <羽池电电抚> 2、蓄电池充放电子程序 1过充阶段。当蓄电池端电压休高于过充电压28V时,自动关断光伏阵列和风力发电机对蓄电池的充电回路。 2)浮充阶段。当蓄电池端电压达到26V时,蓄电池端加27V电压进行浮充(常温下的最佳浮充电压约为2.25V单体)充电。 1、主程序 风光兀斗发电系统第初團

3)'恒压限流充电阶段。当蓄电池端电压高于24v而低于26v时,蓄电池端加28V恒压对蓄电池进行充电,直到电流小于规定值为止。 4)'恒流充电阶段。当蓄电池端电压小于24v时,进入大电流恒充阶段,以最大功率模式下的电流对其进行恒电流充电。 5)过放阶段。当蓄电池端电压低于22V后,'为保护蓄电池需要关断负载。 T T 書瓷二;”诵咸电迪1 ” 问旳I 1輙呷充电实删锻% ' I ' :理冋I R4-U滋电繼兗放电系址了祝序 3、太阳能MPPT子程序 車系统采用变步长扰动观蔡法来对太阳匪进行绘大功率点跟踪.首先初始化参数忙厂初.£-变步长公式= AP/AK,其中M为变歩怅;调节系数,通过采集光伏阵列的电压*电流.计靠光伏阵列的输出功率,然后迹行比较判斷,从而控制输出电压的变化方I*对犬阳能垠大功率成进行有敛跟踪? Y 1 一*/惴童) RI4-15 tSI^MPPT 7ft 序

相关文档
最新文档