Matlab实现小波变换
(完整word版)MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,’wname’) 使用指定的小波基函数’wname’ 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,’wname’) 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname’为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R)用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,’wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L)指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能—-————---—--—---——---—---—-—---—-——----——-----—————dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换—-----—-—-—-—-—-—--—-—-------—-——-—-————-———-—-——-——-—-----(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL)返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row’ ,按行编码OPT='col' ,按列编码OPT=’mat’ ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为’1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname’)使用指定的小波基函数'wname’ 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
matlab iq采样的离散小波变换

在MATLAB中进行IQ采样的离散小波变换,可以按照以下步骤进行:
1. 导入IQ采样信号:首先,需要将IQ采样信号导入MATLAB中。
可以使用MATLAB的导入数据功能,将IQ采样信号转换为MATLAB中的矩阵或向量。
2. 定义小波基函数:离散小波变换需要使用小波基函数。
在MATLAB中,可以使用内置的小波基函数,如'haar'、'db'、'sym'等。
也可以自定义小波基函数。
3. 执行离散小波变换:使用MATLAB中的dwt函数对IQ采样信号进行离散小波变换。
该函数的输入参数包括待变换的信号以及小波函数的名称和尺度。
输出结果包括低频部分和高频部分的系数。
4. 分析变换结果:对离散小波变换的结果进行分析,包括低频部分和高频部分的系数。
可以根据需要对低频部分和高频部分进行重构,以获得不同频率分辨率的子信号。
需要注意的是,离散小波变换是一种基于小波函数的变换方法,它将信号分解成低频和高频部分。
在小波变换中,低频部分表示信号的大致趋势,而高频部分则表示信号的细节信息。
离散小波变换可以通过滤波和下采样的方式实现。
同步挤压小波变换matlab

同步挤压小波变换matlab在MATLAB中进行同步挤压小波变换(SWPT)可以通过使用相关的工具箱或者自定义算法来实现。
SWPT是一种用于信号处理和数据压缩的小波变换方法,它可以同时处理时频域上的信号特征,并且在处理非平稳信号时表现出良好的性能。
首先,如果你使用的是MATLAB的Wavelet Toolbox,可以使用`swt`函数来进行同步挤压小波变换。
`swt`函数可以接受信号、小波基函数和分解层数作为输入参数,并返回SWPT的系数矩阵。
你可以根据需要对返回的系数矩阵进行处理,比如滤波、重构等操作。
如果你想自定义算法实现SWPT,可以按照以下步骤进行:1. 设计同步挤压小波变换的算法。
SWPT算法通常涉及到信号的分解、滤波、重构等步骤,需要根据具体的需求设计相应的算法流程。
2. 在MATLAB中实现算法。
你可以使用MATLAB的信号处理工具和矩阵运算功能来实现SWPT算法。
确保你的算法能够正确地处理信号的分解和重构过程,并且能够得到预期的结果。
3. 对算法进行验证和调试。
在实现算法之后,需要对算法进行验证和调试,确保它能够正确地处理各种类型的信号,并且在运行时没有出现错误。
4. 应用算法进行同步挤压小波变换。
一旦算法通过验证和调试,你就可以将其应用到实际的信号处理任务中,进行同步挤压小波变换并分析处理结果。
总之,无论是使用MATLAB的Wavelet Toolbox还是自定义算法实现,都可以在MATLAB中进行同步挤压小波变换。
关键是根据具体的需求选择合适的方法,并且确保算法能够正确地处理信号并得到预期的结果。
希望这些信息能够帮助到你。
小波变换matlab

小波变换是一种在信号和图像处理中广泛应用的工具。
在Matlab 中,你可以使用内置的函数来进行小波变换。
以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。
接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。
最后,我们使用`wave2gray`函数显示小波分解的结果。
这只是使用Matlab进行小波变换的一个基本示例。
实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。
同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。
完整版)小波变换图像去噪MATLAB实现

完整版)小波变换图像去噪MATLAB实现本论文旨在研究数字图像的滤波去噪问题,以提高图像质量。
数字图像处理(Digital Image Processing。
DIP)是指用计算机辅助技术对图像信号进行处理的过程。
DIP技术在医疗、艺术、军事、航天等图像处理领域都有着十分广泛的应用。
然而,图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。
如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。
因此,通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。
小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。
小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数Ψ(x)来构造,Ψ(x)称为母小波,或者叫做基本小波。
一组小波基函数,{Ψa,b(x)},可以通过缩放和平移基本小波来生成。
当a=2j和b=ia的情况下,一维小波基函数序列定义为Ψi,j(x)=2-j2Ψ2-jx-1.函数f(x)以小波Ψ(x)为基的连续小波变换定义为函数f(x)和Ψa,b(x)的内积。
在频域上有Ψa,b(x)=ae-jωΨ(aω)。
因此,本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。
当绝对值|a|减小时,小波函数在时域的宽度会减小,但在频域的宽度会增大,同时窗口中心会向|ω|增大的方向移动。
这说明连续小波的局部变化是不同的,高频时分辨率高,低频时分辨率低,这是小波变换相对于___变换的优势之一。
总的来说,小波变换具有更好的时频窗口特性。
噪声是指妨碍人或相关传感器理解或分析图像信息的各种因素。
噪声通常是不可预测的随机信号。
由于噪声在图像输入、采集、处理和输出的各个环节中都会影响,特别是在输入和采集中,噪声会影响整个图像处理过程,因此抑制噪声已成为图像处理中非常重要的一步。
matlab 曲线降噪 小波变换

【引言】1. 背景介绍:在实际工程和科研中,数据经常受到各种噪声的干扰,因此需要对数据进行降噪处理。
2. 目的和意义:降噪处理可以使得数据更加真实可靠,有利于后续的分析和应用。
【matlab 曲线降噪的方法】3. 小波变换简介:小波变换是一种时频分析的方法,可以将信号分解为不同尺度的成分,对于曲线降噪具有很好的效果。
4. matlab中的小波变换函数:matlab提供了丰富的小波变换函数,包括连续小波变换和离散小波变换,用户可以根据具体需求选择合适的函数进行数据处理。
【matlab 曲线降噪的实现步骤】5. 数据准备:首先需要准备需要处理的数据,可以是实验采集的曲线数据,也可以是从其他渠道获取的曲线信息。
6. 选择小波函数:根据数据的特点和需求,选择合适的小波函数进行变换,常用的小波函数包括Daubechies小波、Haar小波等。
7. 对数据进行小波变换:利用matlab提供的小波变换函数,对数据进行小波分解,得到不同尺度的小波系数。
8. 降噪处理:根据小波系数的大小和分布,可以采用阈值处理、软硬阈值处理等方法对小波系数进行滤波,实现曲线的降噪处理。
9. 重构数据:经过降噪处理后,需要利用小波系数重构原始数据,得到降噪后的曲线信息。
【matlab 曲线降噪的应用实例】10. 实验数据:以某地震波形数据为例,介绍如何利用matlab的小波变换函数进行曲线降噪处理。
11. 数据分析:对比降噪前后的波形数据,分析降噪处理的效果和优势。
12. 结果展示:通过图表展示降噪前后的数据对比,直观地展现曲线降噪的效果。
【matlab 曲线降噪的注意事项】13. 参数选择:在进行小波变换和降噪处理时,需要合理选择小波函数和参数,以及阈值处理的方式和大小。
14. 原理理解:对小波变换的原理和数据特点有一定的理解,有利于选择合适的方法和优化参数。
15. 实时调试:在实际应用中,可以通过反复调试和对比分析来确定最佳的处理方案,实现最佳的降噪效果。
小波变换 matlab

小波变换 matlab
沃兹·费莱特斯(Wavelet Toolbox)是MATLAB中常用的小波变换工具箱之一。
小波变换是一种基于信号分解和逼近的方法,它可以将信号分解成不同频率的小波系数。
这种变换在信号处理、数据分析和图像处理等领域具有广泛的应用。
MATLAB中的小波变换工具箱提供了丰富的函数和工具,可以进行小波分析、小波变换、小波重构等操作。
通过使用这些函数,我们可以实现信号的变换、滤波、降噪以及频域分析等操作。
同时,工具箱还提供了可视化界面,帮助用户更直观地进行小波分析和处理。
要进行小波变换,我们需要先将信号进行小波分解,得到小波系数。
然后,可以对这些小波系数进行进一步的处理,如滤波、阈值处理等。
最后,通过小波重构,我们可以将处理后的小波系数合成为重构信号。
MATLAB中的小波变换工具
箱提供了方便的函数和工具,帮助用户完成这些操作。
使用MATLAB进行小波变换,首先需要安装Wavelet Toolbox。
安装完成后,
我们可以使用相关函数,比如wavemngr、wavelet、wfilters等,来管理小波和滤波器,选择适合我们应用场景的小波基函数和滤波器。
在小波变换的过程中,我们还可以对小波系数进行阈值处理,用于信号降噪。
具体可以使用函数wden和wdencmp来实现具体的阈值处理方法,如Hard、Soft
和Rigour等。
总之,通过MATLAB中的小波变换工具箱,我们能够方便地进行小波分析和
处理,实现信号的变换、分析和降噪等操作。
这为我们在信号处理领域带来了很
大的便利和效益。
matlab morlet小波变换

在MATLAB中,Morlet小波变换可以通过使用内置的cwt函数来实现。
cwt函数用于执行连续小波变换,它支持多种小波类型,包括Morlet小波。
以下是一个示例代码,演示如何在MATLAB中执行Morlet小波变换:
matlab复制代码
% 创建一个信号
x = sin(2 * pi * 10 * (0:0.01:1)) + randn(size(0:0.01:1));
% 定义Morlet小波的参数
scales = logspace(-1, 2, 128); % 尺度范围
waveletName = 'morl'; % 小波名称
% 执行Morlet小波变换
[cwtmatr, freqs] = cwt(x, scales, waveletName);
% 绘制结果
imagesc(freqs, 1:length(x), abs(cwtmatr));
colormap(jet);
xlabel('Frequency (Hz)');
ylabel('Time (s)');
title('Morlet Wavelet Transform');
在上述示例中,首先创建了一个包含噪声的正弦波信号。
然后,定义了Morlet小波的参数,包括尺度范围和小波名称。
接下来,使用cwt函数执行Morlet小波变换,并将结果存储在cwtmatr和freqs变量中。
最后,使用imagesc函数绘制了变换结果的图像。
请注意,cwt函数的参数可以根据需要进行调整,例如可以更改尺度范围、小波类型等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab实现小波变换本文来自: 高校自动化网() 详细出处参考(转载请保留本链接):/html/matlab/7709.htmlMATLAB 小波变换2010-01-11 20:513. 图像小波变换的Matlab 实现函数fft、fft2 和fftn 分析3.1 一维小波变换的Matlab 实现(1) dwt 函数Matlab功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数fft、fft2 和fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量cA 和细节分量cD 经小波反变换重构原始信号X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器Lo_R 和Hi_R 经小波反变换重构原始信号X 。
X=idwt(cA,cD,'wname',L) 和X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号X 中心附近的L 个点。
1. 离散傅立叶变换的Matlab实现3.2 二维小波变换的Matlab 实现二维小波变换的函数别可以实现一维、二维和N 维DFT-------------------------------------------------函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换Matlabwaverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量 1. 离散傅立叶变换的Matlab实现detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构1. 离散傅立叶变换的Matlab实现dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换-------------------------------------------------------------函数fft、fft2 和fftn 分(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数fft、fft2 和fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为0~NB,缺省值NB=16;OPT 指定了编码的方式(缺省值为'mat'),即:别可以实现一维、二维和N 维DFT OPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数fft、fft2 和fftn 分ABSOL 是函数的控制参数(缺省值为'1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值ABS(X)1. 离散傅立叶变换的Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器Lo_D 和Hi_D 分解信号X 。
1. 离散傅立叶变换的Matlab实现(3) wavedec2 函数功能:二维信号的多层小波分解1. 离散傅立叶变换的Matlab实现格式:[C,S]=wavedec2(X,N,'wname')[C,S]=wavedec2(X,N,Lo_D,Hi_D)说明:[C,S]=wavedec2(X,N,'wname') 使用小波基函数'wname' 对二维信号X 进行N 层分解;[C,S]=wavedec2(X,N,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器Lo_D 和Hi_D 分解信号X 。
别可以实现一维、二维和N 维DFT(4) idwt2 函数功能:二维离散小波反变换函数fft、fft2 和fftn 分格式:X=idwt2(cA,cH,cV,cD,'wname')X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)X=idwt2(cA,cH,cV,cD,'wname',S)别可以实现一维、二维和N 维DFTX=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)说明:X=idwt2(cA,cH,cV,cD,'wname') 由信号小波分解的近似信号cA 和细节信号cH、cH、cV、cD 经小波反变换重构原信号X ;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) 使用指定的重构低通和高通滤波器Lo_R 和Hi_R 重构原信号X ;X=idwt2(cA,cH,cV,cD,'wname',S) 和X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) 返回中心附近的S 个数据点。
(5) waverec2 函数说明:二维信号的多层小波重构格式:X=waverec2(C,S,'wname')X=waverec2(C,S,Lo_R,Hi_R)说明:X=waverec2(C,S,'wname') 由多层二维小波分解的结果C、S 重构原始信号X ,'wname' 为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R) 使用重构低通和高通滤波器Lo_R 和Hi_R 重构原信号。
Allnodes 计算树结点函数fft、fft2 和fftn 分appcoef 提取一维小波变换低频系数appcoef2 提取二维小波分解低频系数bestlevt 计算完整最佳小波包树别可以实现一维、二维和N 维DFTbesttree 计算最佳(优)树*biorfilt 双正交样条小波滤波器组biorwavf 双正交样条小波滤波器Matlab*centfrq 求小波中心频率cgauwavf Complex Gaussian小波cmorwavf coiflets小波滤波器1. 离散傅立叶变换的Matlab实现cwt 一维连续小波变换dbaux Daubechies小波滤波器计算dbwavf Daubechies小波滤波器dbwavf(W) W='dbN' N=1,2,3,...,50 别可以实现一维、二维和N 维DFTddencmp 获取默认值阈值(软或硬)熵标准depo2ind 将深度-位置结点形式转化成索引结点形式detcoef 提取一维小波变换高频系数Matlabdetcoef2 提取二维小波分解高频系数disp 显示文本或矩阵drawtree 画小波包分解树(GUI) 别可以实现一维、二维和N 维DFTdtree 构造DTREE类dwt 单尺度一维离散小波变换dwt2 单尺度二维离散小波变换别可以实现一维、二维和N 维DFTdwtmode 离散小波变换拓展模式*dyaddown 二元取样*dyadup 二元插值1. 离散傅立叶变换的Matlab实现entrupd 更新小波包的熵值fbspwavf B样条小波gauswavf Gaussian小波Matlabget 获取对象属性值idwt 单尺度一维离散小波逆变换idwt2 单尺度二维离散小波逆变换ind2depo 将索引结点形式转化成深度—位置结点形式*intwave 积分小波数isnode 判断结点是否存在Matlabistnode 判断结点是否是终结点并返回排列值iswt 一维逆SWT(Stationary Wavelet Transform)变换iswt2 二维逆SWT变换Matlableaves Determine terminal nodesmexihat 墨西哥帽小波meyer Meyer小波别可以实现一维、二维和N 维DFTmeyeraux Meyer小波辅助函数morlet Morlet小波nodease 计算上溯结点nodedesc 计算下溯结点(子结点)nodejoin 重组结点nodepar 寻找父结点别可以实现一维、二维和N 维DFT nodesplt 分割(分解)结点noleaves Determine nonterminal nodesntnode Number of terminal nodes函数fft、fft2 和fftn 分ntree Constructor for the class NTREE*orthfilt 正交小波滤波器组plot 绘制向量或矩阵的图形*qmf 镜像二次滤波器rbiowavf Reverse biorthogonal spline wavelet filtersread 读取二进制数据函数fft、fft2 和fftn 分readtree 读取小波包分解树*scal2frq Scale to frequencyset Matlabshanwavf Shannon waveletsswt 一维SWT(Stationary Wavelet Transform)变换swt2 二维SWT变换symaux Symlet wavelet filter computation.symwavf Symlets小波滤波器thselect 信号消噪的阈值选择thodes Referencestreedpth 求树的深度treeord 求树结构的叉数函数fft、fft2 和fftn 分upcoef 一维小波分解系数的直接重构upcoef2 二维小波分解系数的直接重构upwlev 单尺度一维小波分解的重构函数fft、fft2 和fftn 分upwlev2 单尺度二维小波分解的重构wavedec 单尺度一维小波分解wavedec2 多尺度二维小波分解Matlabwavedemo 小波工具箱函数demo*wavefun 小波函数和尺度函数*wavefun2 二维小波函数和尺度函数别可以实现一维、二维和N 维DFT wavemenu 小波工具箱函数menu图形界面调用函数*wavemngr 小波管理函数waverec 多尺度一维小波重构 1. 离散傅立叶变换的Matlab实现waverec2 多尺度二维小波重构wbmpen Penalized threshold for wavelet 1-D or 2-D de-noisingwcodemat 对矩阵进行量化编码1. 离散傅立叶变换的Matlab实现wdcbm Thresholds for wavelet 1-D using Birge-Massart strategywdcbm2 Thresholds for wavelet 2-D using Birge-Massart strategywden 用小波进行一维信号的消噪或压缩wdencmp De-noising or compression using waveletswentropy 计算小波包的熵wextend Extend a vector or a matrix*wfilters 小波滤波器wkeep 提取向量或矩阵中的一部分*wmaxlev 计算小波分解的最大尺度1. 离散傅立叶变换的Matlab实现wnoise 产生含噪声的测试函数数据wnoisest 估计一维小波的系数的标准偏差wp2wtree 从小波包树中提取小波树 1. 离散傅立叶变换的Matlab实现wpcoef 计算小波包系数wpcutree 剪切小波包分解树wpdec 一维小波包的分解函数fft、fft2 和fftn 分wpdec2 二维小波包的分解wpdencmp 用小波包进行信号的消噪或压缩wpfun 小波包函数函数fft、fft2 和fftn 分wpjoin 重组小波包wprcoef 小波包分解系数的重构wprec 一维小波包分解的重构 1. 离散傅立叶变换的Matlab实现wprec2 二维小波包分解的重构wpsplt 分割(分解)小波包wpthcoef 进行小波包分解系数的阈值处理函数fft、fft2 和fftn 分wptree 显示小波包树结构wpviewcf Plot the colored wavelet packet coefficients.wrcoef 对一维小波系数进行单支重构别可以实现一维、二维和N 维DFT wrcoef2 对二维小波系数进行单支重构wrev 向量逆序write 向缓冲区内存写进数据wtbo Constructor for the class WTBOwthcoef 一维信号的小波系数阈值处理wthcoef2 二维信号的小波系数阈值处理1. 离散傅立叶变换的Matlab实现wthresh 进行软阈值或硬阈值处理wthrmngr 阈值设置管理wtreemgr 管理树结构Matlab本文来自: 高校自动化网() 详细出处参考(转载请保留本链接):/html/matlab/7709.html。