国内外无土栽培的现状与展望

国内外无土栽培的现状与展望
国内外无土栽培的现状与展望

无土栽培的现状及发展趋势

无土栽培的现状及发展趋 势

无土栽培以人工制造的作物根系环境取代了土壤环境,可有效解决传统土壤栽培中难以解决的水分、空气、养分的供应矛盾,使作物根系处于最适宜的环境条件,从而充分发挥作物的增产潜力。目前,世界上应用无土栽培技术的国家和地区已达100多个[1],由于其栽培技术的逐渐成熟和发展,应用范围和栽培面积也不断扩大,经营与技术管理水平空前提高,实现了集约化、工厂化生产,达到了优质、高产、高效和低耗的目的。 1、国外无土栽培的发展概况 在设施农业中,无土栽培正在改变着传统种植方式,成为飞速发展的新兴学科。实践证明,无土栽培具有节水、节能、省工、省肥、减少环境污染、防止连作障碍、产品无污染及高产高效等一系列特点。早在第二次世界大战期间,西方国家就应用无土栽培技术生产蔬菜供应部队。到20 世纪60 年代无土栽培技术在发达国家得到广泛应用。 70 年代后,出现了营养液膜技术(NFT),生产成本有所下降,后来又出现多种人工基质,其中岩棉的应用较广,发展迅速。美国是世界上最早进行无土栽培商业化生产的国家,主要集中在干旱、沙漠地区,主要栽培作物有黄瓜、番茄等蔬菜,无土栽培面积超过2000hm2 [2]。荷兰是无土栽培最发达的国家,其无土栽培面积达4000hm2,有64%的温室都采用无土栽培技术。日本也是无土栽培较发达的国家,其无土栽培以岩棉培和NFT 为主,无土栽培面积约300hm2。现在世界上商业性无土栽培是以基质栽培为主。 荷兰的基质栽培占无土栽培总面积的90%以上,法国占81%,加

拿大占80%,日本各种循环水栽培占80%以上,比利时基质栽培面积 占50%左右[3]。世界各国采用无土栽培主要生产蔬菜、花卉和水果。在欧盟国家温室蔬菜、水果和花卉生产中,已有80%采用无土栽培方式。欧盟规定,2010 年之前该组织所有成员国的温室必须采用无土 栽培。 产量高是无土栽培的最大特点,世界上先进的无土栽培技术其番茄产量可以达到45~55kg/m2,黄瓜产量达到50~70kg/m2 [4]。为此,发达国家已经实现了采用计算机实施自动测量和自动控制,先进的无土栽培技术可以较好的保护环境,生产出绿色食品。近年,发达国家又采用了专家系统的最新技术,应用知识工程总结专家的知识和经验,使其规范化、系统化,形成专家系统软件,它可以完成与专家水平相当的咨询工作,并可为用户提供建议和决策。 目前,世界上的无土栽培技术发展有两种趋势:一种是高投资、高技术、高效益类型,如荷兰、日本、美国、英国、法国、以色列及丹麦等发达国家,无土栽培生产实现了高度机械化,其温室环境、营养液调配、生产程序控制完全由计算机调控,实现一条龙的工厂化生产,实现了产品周年供应,产值高经济效益显著。另一种趋势是以发展中国家为主,尤其是以中国为代表,根据本国的国情和经济技术条件,就地取材搞土法上马,手工操作,采用简易的设备。这些国家发展无土栽培的目的是改造环境、节约用水和土地资源,解决人民的基本生活需要。 2、我国无土栽培的发展现状

生物质能源的开发利用及其意义

生物质能源的开发利用及其意义 N090204131 周小冬 摘要:针对生物质能源的开发利用对于中国发展的重大意义,从生物质能源的概念入手,简明概述了生物质能特点,利用及利用途径,以及开发利用生物质能对中国的意义。 关键词:生物质能源;开发;利用;意义 中国是一个人口大国,又是一个经济迅速发展的国家,21世纪将面临着经济增长和环境保护的双重压力。因此改变能源生产和消费方式,开发利用生物质能等可再生的清洁能源资源对建立可持续的能源系统,促进国民经济发展和环境保护具有重大意义。 1 生物质能源的概念 生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。它包括植物、动物和微生物。广义概念:生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。有代表性的生物质如农作物、农作物废弃物、木材、木材废弃物和动物粪便。狭义概念:生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素(简称木质素)、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。特点:可再生性。低污染性。广泛分布性。 生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。生物质能蕴藏在植物、动物和微生物等可以生长的有机物中,它是由太阳能转化而来的。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,通常包括木材、及森林废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便等。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。 2 生物质能的分类 依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。

无土栽培学复习重点

无土栽培学 1、无土栽培:是指不用天然土壤,而用营养液或固体基质加营养液栽培作物的方法。固体基质或营养液代替天然土壤向作物提供良好的水、肥、气、热等根际环境条件,使作物完成从苗期开始的整个生命周期。 2、基质栽培:固体基质无土栽培简称基质培,它是指作物根系生长在各种天然或人工合成的固体基质环境中,通过固体基质固定根系,并向作物供应营养和氧气的方法。 3、水培:植物部分根系浸润生长在营养液中,而另一部分根系裸露在潮湿空气中的一类栽培方法。 4、喷雾栽培又称气雾培或喷雾培,它是利用喷雾装置将营养液雾化为小雾滴状,直接喷射到植物根系以提供植物生长所需的水分和养分的一种无土栽培技术。雾培:植物根系生长在雾状的营养液环境中的一类无土栽培方法。分为半雾培和雾培。 半雾培:是指部分根系浸入营养液的液层中或根系短时间浸没在雾状的营养液中,而大部分根系或多数时间根系生长在雾状的营养液中。 它是所有无土栽培技术中根系的水气矛盾解决得最好的一种形式。 雾培:是根系完全裸露生长在含有营养液的雾状水汽中。(按设施不同又分为A 型雾培、移动式雾培、立柱式雾培等形式) 5、容重:是指单位体积内干燥基质的重量,用克/升表示或克/厘米3表示,反映基质的疏松、紧实程度。 6、基质气水比:是指在一定时间内,基质中容纳气、水的相对比值,通常以基质中的大孔隙度和小孔隙度之比来表示,并且以大孔隙值作为1。 7、电导度:是指基质中未加入营养液之前,本身具有的电导率,以表示各离子的总量(含盐量),一般用毫西门/厘米表示。 8、总孔隙度:是指基质中持水孔隙和通气孔隙的总和,以相对于基质体积的百分数来表示。 9、活性基质:是指具有盐基交换量或本身能供给植物养分的基质。 10、堕性基质:是指基质本身不起供应养分作用或不具有盐基交换量的基质。 11、单一基质:是指使用的基质是以一种基质作为植物生长介质的,如砂培使用的砂是单一基质。 12、复合基质:是指由两种或两种以上基质按一定比例混合制成的基质。 13、营养液:将含有植物生长发育所必需的各种营养元素的化合物和少量为使某些营养元素的有效性更为长久的辅助材料,按一定的数量和比例溶解于水中所配制而成的溶液。 14、表观吸收成分组成浓度:用n/w表示,作物吸肥量与吸水量的比值。反映了植物吸收与吸肥的关系,即植物吸收一定量的水就相应地吸收一定量的各种营养元素。 15、无土育苗:是指不用天然土壤,将种子直接播入装有营养基质的育苗穴盘内,

生物质能

生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass脂肪燃生物质能料快艇energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。 生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。生物质能蕴藏在植物、动物和微生物等可以生长的有机物中,它是由太阳能转化而来的。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,通常包括木材、及森林废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便等。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。 生物质能是人类用火以来,最早直接应用的能源。随着人类文明的发展,生物质能的应用研究开发几经波折,最终人们深刻认识到,石油、煤、天然气等化石能源的有限性,同时无节制地使用化石能源,大量增加CO2、粉尘、SO2等废弃物的排放,污染了环境,给人类赖以生存的星球,造成十分严重的后果。而使用大自然馈赠的生物质能源,几乎不产生污染,资源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用,是理想的可再生能源之一。 生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。它一直是人类赖以生存的重要能源,仅次于煤炭、石油和天然气而居于世界能源消费总量第4位,在整个能源系统中占有重要的地位。据预测,到21世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。生物质能通常包括:木材及森林工业废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便。 生物质能的优点:一是可再生性。二是低污染性。生物质的硫含量、氮含量低,生物质作为燃料时,燃烧过程中的硫化物和氮化物较少,由于它在生长时需要的二氧化碳相当于其燃烧时排放的二氧化碳量,因而对大气的二氧化碳净排放量近似于零;用新技术开发利用生物质能不仅有助于减轻温室效应,促进生态良性循环,而且可替代部分石油、煤炭等化石燃料,成为解决能源危机与环境问题的重要途径之一。三是广泛分布性。缺乏煤炭的地域可充分利用生物质能。四是具有燃烧容易,灰分低的特点]。 但由于技术和经济的原因以及可再生能源分布较为分散,能量密度、热值及热效率低等特点,目前其利用率尚不高,仅占全球能源消耗总量的22%。 中国生物质能资源现状及潜力 生物质能资源,按原料的化学性质分,主要为糖类、淀粉和木质纤维素类。按原料来源分,则主要包括以下几类:①农业生产废弃物,主要为作物秸秆;②薪柴、枝桠柴和柴草;③农林加工废弃物,木屑、谷壳和果壳;④人畜粪便和生活有机垃圾等;⑤工业有机废弃物,有机废水和废渣等;⑥能源植物,包括所有可作为能源用途的农作物、林木和水生植物资源等]。我国拥有丰富的生物质能资源,据测算,我国理论生物质能资源50亿吨左右,是我国目前总能耗的4倍左右。 目前可供利用开发的资源主要为生物质废弃物,包括农作物秸秆、禽畜粪便、工业有机废弃物和城市固体有机垃圾、林业生物质、能源作物等。 我国幅员辽阔,人口众多,生物质分布十分广泛,约有80%的人口居住在农村;太阳能资源丰富,全国各地太阳能年辐射总量在335~835kJ/cm^2之间。因此,通

生物质能发电技术现状与展望_黄英超

能源作为一种最重要的地球资源,是生产力的核心,是经济增长和发展的前提,是解决环境问题的先决条件。进入21世纪,中国经济高速发展,能源短缺、环境污染等问题日益突出。中国已成为世界上的第二大能源消费国[1],能源缺口将不断加大。过去10年里,中国电力工业高速发展,截至2004年5月,中国的发电装机容量达到4亿千瓦[2],是 1990年发电量的3倍多,但在2002年还是再度出 现大范围缺电现象,而且越来越严重,缺电的省市区由2002年的12个增加到2003年底的21个, 2004年达到24个,三季度高峰时段全国估计缺电3000万千瓦,造成严重缺电局面。同时,全国还 有约2万个村[3],约800多万农户、3000多万人口没有电力供应,远离现代文明。 近年来,世界各国对资源丰富、可再生性强、有利于改善环境和可持续发展的生物质资源的开发利用给予了极大关注。生物质资源利用中的生物质发电技术成为研究和利用的热点。生物质能发电技术就是利用生物质本身的能量[4],将其转化为可驱动发电机的能量形式,如燃气、燃油、酒精等,再按照通用的发电技术发电,然后直接提供给用户或并入电网提供电能。截至2005年底,我国发电装机总容量达到5亿千瓦[5],其中生物质能 发电装机容量200多万千瓦[6],仅占我国发电装机总容量的0.004%。本文针对生物质燃烧发电、生物质气化发电、沼气工程发电等几项生物质能发电技术及其国内外研究现状、存在问题等进行分析和论述。 1生物质燃烧发电 生物质燃烧发电是将生物质与过量的空气在锅 炉中燃烧[7],产生的热烟气和锅炉的热交换部件换热,产生的高温高压蒸汽在燃气轮机中膨胀做功发出电能。在生物质燃烧发电过程中,一般要将原料进行处理再进行燃烧以提高燃烧效率。例如,燃烧秸秆发电时,秸秆入炉有多种方式:可以将秸秆打包后输送入炉;也可以将秸秆粉碎造粒(压块)后入炉或与其他的燃料混合后一起入炉。生物质燃烧发电的技术已基本成熟,已进入推广应用阶段,这种技术大规模下效率较高,单位投资也较合理,但它要求生物质集中,数量巨大。 生物质燃烧发电技术作为一种重要的能源获取手段应用于实际的历史不长,从20世纪90年代起,丹麦、奥地利等欧洲国家开始对生物质能发电技术进行开发和研究[8]。经过多年努力,已研制出用于木屑、秸秆、谷壳等发电的锅炉。丹麦各电力组织为此进行了规划,筛选了一批研究项目,并重点对燃烧秸秆和木屑的锅炉与大型燃煤锅炉并联运行发电供热进行了研究。在BWE公司的技术支撑下,1988年诞生了世界上第一座秸秆生物燃烧发电厂。如今已有130家秸秆发电厂遍及丹麦,秸秆 生物质能发电技术现状与展望 黄英超,李文哲*,张波 (东北农业大学工程学院, 哈尔滨150030) 摘要:文章综述了物质燃烧发电、生物质气化发电、沼气工程发电等生物质能发电技术及其发展现状和存 在的问题。生物质能发电技术的加速发展,实现了大量废弃生物质能的利用。在我国电力短缺的条件下,生物质能发电将有广阔的发展前景。 关键词:生物质能;生物质燃烧发电;生物质气化发电;沼气工程发电中图分类号:TM611;Q77 文献标识码:A 收稿日期:2006-04-14 基金项目:国家自然科学基金项目(50376009);黑龙江省科技攻关 (GC03A304)作者简介:黄英超(1978-),男,黑龙江人,硕士研究生,研究方向为能源与动力工程。 *通讯作者E-mail:linwenzhe9@163.com 第38卷第2期东北农业大学学报38(2):270 ̄274 2007年4月JournalofNortheastAgriculturalUniversity April2007 文章编号 1005-9369 (2007)02-0270-05

无土栽培发展现状及趋势

无土栽培发展现状及趋势 温室作物生产的传统方法是在土壤中栽培,但土壤中种植作物的主要问题是土壤自生疾病。由于环境污染和人体健康方面的原因,在 温室中缺少可使用的熏蒸剂,或蒸气消毒剂的价格昂贵,因此人们把注意力集中到了无土栽培上。 无土栽培不用自然土壤, 而用营养液或营养液与基质栽培作物。无土栽培是在人为控制下, 充分满足作物对营养、水分、气体条件的要求, 是一种技术集约的现代农业生产方式, 具有节水、节能、省工、省肥, 减轻土壤污染、防止连作障碍、产品洁净无污染、高产高效益等优点。现在, 随着人们生活质量的提高, 对无公害无污染的蔬菜、水果的需要逐年增加。无土栽培基本杜绝了植物土传病害的发生, 化学农药的使用相对少于土壤栽培。利用高温蒸汽、紫外线、沙滤、生物膜过滤等物理方法, 可对植物病害进行防治, 对营养液和设施进行消毒, 而不污染环境。为此, 采用无土栽培技术可以较好地保护环境, 生产出绿色食品。 20 世纪后期, 无土栽培技术无论在发达国家还是发展中国家都得到迅速发展, 无土栽培技术已日益完善。 我国无土栽培技术的研究和生产应用起步较晚。而事实上,我国的科技工作者早已掌握无土栽培的原理,例如中山大学的罗宗洛(1931)研究铵硝营养的成果受到世界同行的瞩目,1965年由科学出版社翻译出版了休伊特的著作《植物营养研究的沙培和水培法》。但由于历史的原因,限制了其发展。直到20世纪70年代开始才逐渐在生产中应用无土栽培技术。它首先是在作物的营养液育苗方面开展这一工作的,例如蔬菜和水稻的无土育苗。1975年山东农业大学最早开展这方面的研究和生产应用,先后对西瓜、黄瓜、番茄、韭菜、小萝卜和小白菜等多种作物进行无土栽培试验,在1979-1984年开发出半基质培的“鲁SC-I型”番茄多层无土栽培设施,1984-1987年与胜利油田联合开发了面积为6 699平方米的生菜无土栽培基地。 1985年开始,华南农业大学根据南方热带亚热带气候条件的特点,结合国内外各种无土栽培技术的特点,研制出水泥砖结构深液流水培装置及蔗渣或其它基质的袋培和槽培营养液滴灌种植系统,并从1987年开始在广东、山东、上海、海南、广西、福建、四川等许多省市推广,累积无土栽培面积已达3 000多亩,广东省也成为我国无土栽培面积最大、发展速度最快、技术水平发展得最好的一个省份,许多种植者在取得很好的社会效益的同时,也取得了很好的经济效益。 1986年深圳格林果菜公司从美国引进了一套无土栽培设施,在以后的2-3年时间内,广东省就先后引进了美国、荷兰等国家的无土栽培设施7套。全国的其它省市如北京、上海、浙江等也引进了不少国外的无土栽培设备。这些国外无土栽培设备的引进对于开拓视野、消化吸收国外的技术有着其积极的作用,但由于引进的盲目性,国外设备不适宜我国的气候特点,特别是南方的气候特点,而且造价及日常维持成本很高,再加上有些设备设计上的不合理,因此在引进数年之后有许多已经废弃,有些设备只是利用到其温室的外壳,而其它部件均不能使用,造成了极大的浪费。在华南农业大学大学研制成功适合南方气候条件的水泥砖结构深液流水培设施之后的10来年中,广东省的无土栽培已走上了国产化的道路。但近几年来,有许多省市花费大量的资金引进一些国外的设备,形成了第二次引进国外温室设备的高潮,例如上海、北京、广东、沈阳、浙江等地在近几年来先后引进了一些包括温室在内的无土栽培成套设备,而目前来看,所有引进的

生物质能

生物质、生物质能及发展现状 韩进 5100209387 摘要:可持续发展已成为21世纪人类的共识,怎样利用可再生能源逐步取代日趋枯竭的不可再生能源是各国关注的焦点。生物质能被喻为及时利用的绿色煤炭,将成为未来能源的重要组成部分,对能源战略和环境保护具有重要意义。 关键词:生物质、生物质能、利用、现状 一、生物质 生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。它包括植物、动物和微生物。广义概念:生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。有代表性的生物质如农作物、农作物废弃物、木材、木材废弃物和动物粪便。狭义概念:生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素(简称木质素)、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。 二、生物质能 生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。 依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。在这里就不做累述。 生物质能具有以下特点: 1) 可再生性2) 低污染性3) 广泛分布性

《无土栽培》教案

《无土栽培》教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

无土栽培 一、教学目标: 1、引导学生初步掌握无土栽培技术的概念,认识其优点,了解无土栽培的各种方法。 2、指导学生进行无土栽培花草,培养学生的实践能力。 二、教学重点难点: 引导学生认识无土栽培的优点。 三、教学过程: (一)导入新课 1、谈话:同学们你们知道地球上的植物大多都生长在哪里呢?地球上绝大多数植物都生长土壤里,地球因为这些植物更加充满生机。但随着环境的变化,科学技术的发展,人类生活水平的提高,人们在不断探索新的植物种植方式。你还见过其他离开土壤也能生长的植物吗(学生交流) 2、揭题:同学们说得真好。这些植物离开了土壤也能生长,我们把植物的这种种植方式叫做无土栽培。 (二)探究知识 1、质疑提问 以前你们研究过植物的无土栽培技术吗今天想不想研究能提出一些研究的问题吗(学生提问) 问得真好!你们的每一个问题都很有价值,老师发现你们最关心的是以下几个问题。

(1)没有土壤为什么植物也能生长? (2)无土栽培有什么优点? (3)无土栽培的方法有哪些,怎样进行无土栽培? 2、分组研究 (1)提问:要知道这些问题的答案,你有什么哪些办法? (2)学生交流。 无土栽培栽培技术最早使用是300多年前英国科学家伍德华德。将植物生长所需要的物质配制成营养液,再配上其他东西,来代替土壤栽培,这就是无土栽培。 无土栽培的优点是不受环境限制,产量高、品质好,能反季节生产,减少病害。无土栽培由于其从栽培设施到环境控制都能做到根据作物生长发育的需要进行监测和调控,因而具有一般传统的土壤栽培所无法比拟的优越性。可以概括为以下面几个方面:(a)无土栽培的作物生长快,产量高。(b)免除土壤污染,可以生产出清洁卫生、少污染、无公害,品质好的产品。(c)省工、节水、省肥。由于不需要进行土壤耕作、整地、施肥、中耕除草等,田间管理工作大大减少,不仅能节省用工,同时劳动强度亦不大,能大大改善农业生产的劳动条件,有利于省力化栽培。在人工控制下,通过营养液的科学管理来确保水分和养分的供应,因而可以大大减少了土壤栽培中水肥的渗漏、流失、挥发与蒸发,所以在沙漠干旱地区进行无土栽培亦是一项很好的“节水工程”。(d)可以避免土壤连作障害:如果土壤连作频繁,会导致土传病虫害日见增长,土壤盐

中国生物质能发展现状与展望

中国生物质能发展现状与展望 在我国,生物质发电主要包括城镇生活垃圾焚烧发电、农林生物质发电、沼气发电。“十三五”以来,我国生物质发电规模逐年上涨。根据国家能源局数据,截至2019年底,全国已投运生物质发电项目1094个,累计并网装机容量2254万千瓦,其中,垃圾焚烧发电1202万千瓦,农林生物质发电973万千瓦,沼气发电79万千瓦。2019年生物质发电量为1111亿千瓦时,同比增长22.6%,占全部电源总发电量1.5%。发电年平均利用小时数达5181小时,生物质发电量显著提升,年利用小时数保持较高水平(见图1、图2)。

2019 年中国生物质发电总投资规模约508 亿元,其中农林生物质发电投资约97 亿元,生活垃圾焚烧发电投资约398 亿元,沼气发电投资约13 亿元。 农林生物质发电。开发规模:截至2019年12月,我国农林生物质发电项目374个,并网装机容量973万千瓦,年发电量468.1亿千瓦时,年上网电量406亿千瓦时,全行业平均发电小时数为4811小时。农林生物质发电行业累计投资总额达970亿元,年产值约360亿元。当前,农林生物质发电站生物质发电总装机容量的近45%,依然是我国生物质发电的主要技术方向,是农林生物质能源化利用的主要形式(见图3)。 区域分布:我国农林生物质发电主要分布在秸秆资源丰富的农业大省。累计装机容量排名前五名的省份依次是山东省、安徽省、黑龙江省、湖北省、江苏省,合计占全国装机容量的54.4%(见表1)。

主要技术:农林生物质直燃发电系统主要由直燃锅炉、汽轮机、发电机组、给料系统、除尘除渣系统等组成。生物质发电与燃煤发电系统较为类似,但生物质燃料具有高氯、高碱、高挥发份、低灰熔点等特性,燃烧时易腐蚀锅炉,容易结渣和结焦,因此生物质锅炉是生物质发电的核心设备。目前国内生物质直燃发电锅炉采用的燃烧方式主要为层燃技术和循环流化床技术,层燃技术主要为振动炉排和往复炉排。 城镇生活垃圾焚烧发电。开发规模:截至2019年12月,我国城镇生活垃圾焚烧发电项目504个,并网装机容量1202万千瓦,年发电量609.6亿千瓦时,年上网电量498.6亿千瓦时,年处理垃圾量约1.3亿吨。城镇生活垃圾焚烧发电行业累计投资总额达2600亿元,年产值约506亿元(见图4)。 区域分布:我国城镇生活垃圾焚烧发电项目主要分布在中东部地区。累计装机容量排名前五名的省份依次是广东省、浙江省、山东省、江苏省、安徽省,合计占全国装机容量的58.9%(见表2)。

无土栽培技术现状发展前景

无土栽培技术的现状及发展前景 摘要:综述了我国无土栽培的突出特点及发展现状,对我国无土栽培存在的问题进行了分析,并提出了解决的途径,就无土栽培研究的利用前景进行了展望。 关键词:无土栽培;突出特点;现状;存在问题;发展前景 abstract: in our country are reviewed the outstanding characteristic of soilless cultivation and current situation of the development of our country, the problems soilless cultivation are discussed, and some of the solution, the use of soilless cultivation research prospect. keywords: soilless cultivation; prominent characteristics; the present situation; existing problems; development prospect 中图分类号:s317文献标识码:a 文章编号: 无土栽培俗称水培或水耕,是一种不用土壤而用营养液与其他设备来栽培作物的农业技术。它是当今世界农业生产中发展较快的一项高新技术,也是农业生产向“工业化”发展的一项基础技术。 无土栽培技术目前按根系固定方式可分为液体基质和固体基质两种栽培方式。液体基质(即水培)又可分坐浴式、浅水式及喷雾式。固体基质分有机和无机基质两种。其中有机基质有锯木屑、草炭、甘蔗渣、酒糟、炭化壳谷等,无机基质有砂、陶砾、火山灰岩、

生物质能利用技术发展现状

生物质能利用技术发展现状 生物质能是一种重要的可再生能源,直接或间接来自植物的光合作用,一般取材于农林废弃物、生活垃圾及畜禽粪便等,可通过物理转换(固体成型燃料)、化学转换(直接燃烧、气化、液化)、生物转换(如发酵转换成甲烷)等形式转化为固态、液态和气态燃料。由于生物质能具有环境友好、成本低廉和碳中性等特点,迫于能源短缺与环境恶化的双重压力,各国政府高度重视生物质资源的开发和利用。近年来,全球生物质能的开发利用技术取得了飞速发展,应用成本快速下降,以生物质产业为支撑的“生物质经济”被国际学界认为是正在到来的“接棒”石化基“烃经济”的下一个经济形态。因此,系统梳理生物质能技术的发展现状及趋势,明确我国发展生物质能面临的挑战并制定未来策略,对推动我国生态文明建设、能源革命和低碳经济发展,保障美丽乡村建设、应对全球气候变化等国家重大战略实施具有重要意义。 生物质能发展现状 随着国际社会对保障能源安全、保护生态环境、应对气候变化等问题日益重视,加快开发利用生物质能等可再生能源已成为世界各国的普遍共识和一致行动,也是全球能源转型及实现应对气候变化目标的重大战略举措。生物基材料、生物质燃料、生物基化学品是涉及民生质量和国家能源与粮食安全的重大战略产品。2017年,全球生物基材料与生物质能源产业规模超过1万亿美元,美国达到4000亿美元。美国规划2020年生物基材料取代石化基材料的25%;全球经济合作与发展组织(OECD)发布的“面向2030生物经济施政纲领”战略报告预

计,2030年全球将有大约35%的化学品和其他工业产品来自生物制造;生物质能源已成为位居全球第一的可再生能源,美国规划到2030年生物质能源占运输燃料的30%,瑞典、芬兰等国规划到2040年前后生物质燃料完全替代石油基车用燃料。 目前,世界各国都提出了明确的生物质能源发展目标,制定了相关发展规划、法规和政策,促进可再生的生物质能源发展。例如,美国的玉米乙醇、巴西的甘蔗乙醇、北欧的生物质发电、德国的生物燃气等产业快速发展。 经过多年的努力,我国科学家也在生物质能源的几个研究领域中占据国际领先或者齐平的地位。在国家相关经费尤其是中国科学院战略性先导科技专项的支持下,中国科学院以具有颠覆性特色的木质纤维素原料制备生物航油联产化学品技术、支撑国家燃料乙醇和生物质燃料产业发展的农业废弃物醇烷联产技术为核心,突破关键技术并进行工业示范。针对低值生物质资源的高值利用难题,已建立了国际首套百吨级秸秆原料水相催化制备生物航油示范系统,产品质量达到?ASTM-D-7566(A2)标准,并拟于近年建成国际首套千吨级示范系统、千吨级呋喃类产品/异山梨醇的中试与工业示范、30?万吨秸秆乙醇及配套热电联产工业示范、年千万立方米生物燃气综合利用与分布式供能工业化示范工程等一批体现技术特色、区域特色和产品特色的示范工程,进一步强化保持我国以上生物质能领域技术创新的国际领先地位。 生物质能技术主要包括生物质发电、生物液体燃料、生物燃气、固体成型燃料、生物基材料及化学品等,以下将针对各个具体技术的发展现状分别进行分析。生物质发电技术

无土栽培实习报告

无土栽培实习报告 无土栽培实习报告芽苗菜无土栽培的科技实践活动 (一) 总体目标:贯彻教育方针,推进素质教育,体现先进教育理念,保护生态环境,增强环保意识,服务本地经济,多渠道培养有用人才。培养学生的科学素养和创新精神,激发学生爱科学,学科学,用科学的积极性和主动性,促进我校乃至该地区科技教育活动的普及与提高。 (二) 思想情感目标:通过本次活动,使学生养成严谨求实的科学态度,吃苦耐劳精神,勤俭节约的习惯和团结协作、友爱互助作风和热爱劳动人民的思想感情。 (三) 能力目标:通过本次活动,进一步提高学生的观察能力,动手操作能力,社会实践能力和创新能力。 (四) 知识目标:通过本次活动,使学生获得科学知识,环保知识和写作知识。 (五) 效果目标:通过本次活动,使学生获得芽苗菜无土栽培技术。 (一) 指导教师及组员 1、指导老师:XX 2、成员名单: (二) 需求分析: 1、试验设备分析:这次活动的设备大致需要:塑料育苗盘2个,废旧报纸数张,废旧矿泉水瓶2个,高锰酸钾5

克,萝卜种子250克,温度计1个。 2、实验基地的选择与确定分析:芽苗菜无土栽培无需特定的场所,选用学校暂时闲置的教室作为催芽室及育苗室,以确保活动的顺利进行。 3、芽苗菜无土栽培优势分析: 占地面积小,不占用农田可采用立体栽培。 生产周期短,单位面积产量高,一般播种后8-15天即可采收。 无需特定的场所。 不用农药无病虫污染,已达到绿色蔬菜的标准。 栽培方式新颖,生产效率高,设备简单,见效快. 我们的学校是农村中学,我们的学生大都来自农村,芽苗菜特殊的栽培方式促使我们把学校作为推广这一清洁鲜嫩,高营养,无公害无污染的绿色食品实践基地,带领学生本着废品利用节约资源的原则进行这一实践活动,希望通过这一活动能够丰富本地区蔬菜品种,提高农民的经济利益。 (一) 活动内容: 关于芽苗菜无土栽培的流程及学生观察、获取数据、分析、得出可行性实验报告 (二) 重点、难点 重点:培养学生参与意识和栽培技术及掌握活动的整个过程。难点:实践工作中各方面关系的协调和各种突发问

生物质能的开发与利用

生物质能的开发与利用 摘要:随着化石燃料的短缺和其使用时产生的污染问题的加剧,生物质能以其可再生、低污染、分布广泛等特点,日益受到世界各国的重视。本篇论文从生物质能的概念入手,综合国内外对生物质能利用现状分析其优势、利用技术及开发研究前景。 21世纪被誉为是“生物能源时代”,是生物的世纪,是科学技术飞速发展新世纪。可持续发展是当前经济发展的趋势所在,面对化石能源的枯竭和环境的污染,生物能源的开发利用为经济的可持续发展带来了曙光。 (一)新能源之生物质能研究背景 当代社会使用最广泛的能源是煤炭、石油、天然气和水力,特别是石油和天然气的消耗量增长迅速,已占全世界能源消费总量的60%左右。但是,石油和天然气的储量是有限的,许多专家预言,石油和天然气资源将在40年、最多50—60年内被耗尽,而煤炭资源虽然远比石油和天然气资源丰富,但是直接应用煤炭严重污染环境。因此,为避免能源危机的出现,以化石能源为基础的常规能源系统正逐步持久的、多样化的、可以再生的新能源系统过渡。 我国自然资源总量排世界第七位,能源资源总量约4万亿吨标准煤,居世界第三位。在能源领域面临的主要挑战是:(1)人均能源资源占有量不足,且分布不均;(2)人均能源消费量低,单位产值的能耗高;(3)能源构成以煤为主;(4)工业部门消耗能源占有很大的比重;(5)农村能源短缺,以生物质能为主;(6)从能源安全

角度考虑,我国能源面临挑战;(7)能源品种结构不合理,优质能源供应不足;(8)能源工业技术水平有待进一步提高;(9)节能提效工作亟待加强等。 为此已出台的发展可再生能源的相关方钭政策、规章制度:1992年国务院批准的《中国环境发展十大对策》中明确提出,要“因地制宜地开发利用和推广大阳能、风能、地热能、生物质能等新能源”;连续在四个国家五年计划中将生物质能利用技术的研究与应用列为 重点科技攻关项目。国家先后制定了《可再生能源法》、《可再生能源中长期发展规划》、《可再生能源发展“十一五”规划》和《可再生能源产业发展指导目录》、《生物产业发展“十一五”规划》,提出了生物质能发展的目标任务,明确了相关扶持政策。科技部将生物柴油技术列入“十一五”国家863计划和国际科技合作计划。 在众多新能源中,生物质能拥有其独特的“至美”之处——既环保、安全。可再生,在于它是可再生能源领域唯一可以转化为液体燃料的能源。如甜高粱,不仅可以通过能量转换替代化石液体燃料,保障能源安全,同时还能保障粮食安全,而且还能吸收二氧化碳,加工过程中无污染,原料得以物尽其用。 虽然现阶段生物能源的开发利用处于起步阶段,生物能源在整个能源结构中所占的比例还很小,但是其发展潜力不可估量。(二)生物质能概论 生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能

生物质能的利用现状及展望

生物质能的利用现状及展望 摘要: 在概述生物质能概念、特性及开发利用生物质能意义的基础上,重点从生物质能的直接燃烧、物化转化、生化转化、植物油技术和利用生物质合成新产品等几方面来介绍国内外生物质能利用的现状,最后展望生物质能研究的主要方向。 关键词:生物质能化石能源可持续发展展望 现今世界,石油价格居高不下,能源、电力供应趋紧,而化石能源和核能贮量有限且会对环境造成严重的后果,因此,各国政府和科学家对资源丰富、可再生性强、有利于改善环境和可持续发展的生物资源的开发利用给予了极大的关注。有许多国家都制定了相应的开发研究计划,例如,日本的新阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等。一个新兴的生物质产业正在全球范围蓬勃兴起。据专家估计,生物质能源将成为未来能源的重要组成部分,到2015年9全球总耗能将有40%来自生物质能源,主要通过生物质能发电和生物质液体燃料的产业化实现。在2004 年制定的国家中长期科技发展规划(2005-2020)中,“农林生物质工程”被列为重大专项之列,并作为国家能源战略的重要组成部分。 随着我国经济的快速发展,我国的能源消耗与日激增。现在,我国能源年消耗量占世界能总消耗量的20%以上,而且呈现上升的态势,我国2004 年进口石油1.2 亿吨。我国生物多样性丰富,据调查,我国有油料植物为151科697 属1554 种,其中种子含油量大于40%的植物有154 种。且我国的可开发生物质资源总量为7t左右标准煤,其中农作物秸秆约3.5 亿t,占50%以上。因此,加大生物质能源的开发利用,进行农业生物质能源发掘利用,不仅可解决农民的增收和“三农”问题,还可解决21 世纪中国面临的能源短缺、环境污染、食品安全等重大社会经济问题,乃至为全面建设“小康”社会目标的实现做出重大贡献,即生物质能源的开发利用直接关系到我国的可持续发展。 1 生物质能的概念及特性 1.1 生物质能的概念 生物质能是太阳能以化学能形式贮存在生物质体内的一种能量形式,它以生物质为载体,直接或间接地来源于植物的光合作用。它分布广泛、产量巨大、可

无土栽培的研究现状及发张趋势

花卉无土栽培结课论文 学院:海洋科学与工程学院 专业班级:水养1102班 姓名:徐哲 学号:20110850 1 / 4

无土栽培技术的现状及发展趋势 摘要:无土栽培是一种用营养液代替天然土壤作基质的栽培新技术,这种营养液可满足作物整个生命周期对水分、养分、氧气及温度的需求。简述了国外无土栽培的简况,介绍了中国无土栽培的发展现状,并对发展趋势进行了分析,为推进中国无土栽培技术发展提供理论依据。 关键词:无土栽培现状发展趋势 无土栽培技术 无土栽培以人工制造的作物根系环境取代了土壤环境,可有效解决传统土壤栽培中难以解决的水分、空气、养分的供应矛盾,使作物根系处于最适宜的环境条件,从而充分发挥作物的增产潜力。目前,世界上应用无土栽培技术的[1],由于其栽培技术的逐渐成熟和发展,应用范围和100多个国家和地区已达栽培面积也不断扩大,经营与技术管理水平空前提高,实现了集约化、工厂化生产,达到了优质、高产、高效和低耗的目的。 现在无土栽培的发展简况 在设施农业中,无土栽培正在改变着传统种植方式,成为飞速发展的新兴学科。实践证明,无土栽培具有节水、节能、省工、省肥、减少环境污染、防止连作障碍、产品无污染及高产高效等一系列特点。早在第二次世界大战期间,西方国家就应用无土栽培技术生产蔬菜供应部队。到20世纪60年代无土栽培技术在发达国家得到广泛应用。70年代后,出现了营养液膜技术(NFT ) ,生产成本有所下降,后来又出现多种人工基质,其中岩棉的应用较广,发展迅速。美国是世界上最早进行无土栽培商业化生产的国家,主要集中在干旱、沙漠地区,主要栽培作物有黄瓜、番茄等蔬菜,无土栽培面积超过2[2]264%,有2000hm。荷兰是无土栽培最发达的国家,其无土栽培面积达4000hm的温室都采用无土栽培技术。日本也是无土栽培较发达的国家,其无土栽培以2。现在世界上商业性无土栽培是为主,无土栽培面积约300hm岩棉培和N FT ,81%以上,法国占以基质栽培为主。荷兰的基质栽培占无土栽培总面积的90%左以上,比利时基质栽培面积占50%80%80%加拿大占,日本各种循环水栽培占[3]右。2 / 4 世界各国采用无土栽培主要生产蔬菜、花卉和水果。在欧盟国家温室蔬菜、水果和花卉生产中,已有80%采用无土栽培方式。欧盟规定,2010 年之前该组织所有成员国的温室必须采用无土栽培。产量高是无土栽培的最大特点,世界上先进的无土栽培技术其番茄产量可以达到45~55kg/ m,黄瓜产量达到2 [4]。为此,发达国家已经实现了采用计算机实施自动测量和自动控70kg/ m50~制,先进的无土栽培技术可以较好的保护环境,生产出绿色食品。近年,发达国家又采用了专家系统的最新技术,应用知识工程总结专家的知识和经验,使其规范化、系统化,形成专家系统软件,它可以完成与专家水平相当的咨询工作,并可为用户提供建议和决策。 目前,世界上的无土栽培技术发展有两种趋势:一种是高投资、高技术、高效益类型,如荷兰、日本、美国、英国、法国、以色列及丹麦等发达国家,无土栽培生产实现了高度机械化,其温室环境、营养液调配、生产程序控制完全由计算机调控,实现一条龙的工厂化生产,实现了产品周年供应,产值高经济效益显著。

生物质能源的发展现状与前景综述

生物质能源的发展现状与前景综述 曾令谦 (江西师范大学生命科学学院江西南昌 330022) 摘要生物质能源是倍受世界各国重视的可再生能源。文中介绍了生物质能源的优越性、多种类别及性能。本文综述了发展生物质能源的战略意义以及发展前景。文中列举了世界某些代表性国家或区域发展生物质能取得的成就,以及对比了我国对生物质能的发展及研究。与传统能源相比较,突出了发展生物质能能源的重要意义,以及广阔的市场前景。21世纪生物质能源必定成为世界各国争相开发利用,生物技术将有重大的进展和突破。 关键词:生物质能源 , 优越性 , 前景 , 战略意义 Abstract biomass energy is highly valued around the world renewable energy sources. This paper introduces the advantages of biomass energy, a variety of categories and performance. This paper reviews the development of biomass energy strategic significance and development prospect. This paper enumerates some typical countries in the world or the achievement of regional development of biomass energy, and compared the biomass can development and research of our country. Compared with the traditional energy, highlights the importance of developing biomass energy, and broad market prospect. Biomass energy in the 21st century must be rushed to the development and utilization of countries around the world, biotechnology will have significant progress and breakthrough. Keywords: biomass energy ,the superiority ,prospect ,strategic significance 1生物质能的优越性: 在包括太阳能、地热、风能、水能(水流、潮汐、热对流等)和生物质能的各种可再生能源中,相对来讲生物质能源的地区性限制和可控制性均比其他种类的再生能源有更多优势。凡是有阳光和水的地方均可通过人工集约培植获得生物质,并以多种形式将其转化成清洁、便于贮藏、运输的可再生能源。由于其比较优势较多,生产成本又低,所以近数十年来倍受世界各国重视。我国在2005年2月28日颁布了中国可再生能源法,其中第4条规定:国家将可再生能源的开发利用列为能源发展的优先领域。第12条又说:国家将可再生能源开发利用的科学技术研究和产业化发展列为科技发展与高技术产业发展的优先领域。这充分体现了可再生能源的开发将成为我国基本能源国策。生物质能源比其他几种再生能源有更大的群众参与性、多形式的可转换性和相对较少的开发投入性,这是在多种形式的再生能源中生物质能源被国家优先给予考虑的原因。从全世界范围看,生物质能源利用在各种形式的可再生能源利用的总份额中所占比重也最大,北欧一些国家已有大范围把生物能源转化成电力的经验[1]。

相关文档
最新文档