33解一元一次方程(二)(第1课时)教学PPT课件
合集下载
3.3解一元一次方程(二)——去括号与去分母(第1课时)优质课一等奖

探究解法
荆门市高新区· 掇刀区团林中学
【问题1】某工厂加强节能措施,去年下半年与上半年相比, 月平均用电量减少2000kW·h(千瓦·时),全年用电15万 kW·h,这个工厂去年上半年每月平均用电多少kW·h ? 解:设上半年总用电量x kw· h
总用电量 (kW·h) 月数(个) 6 6 每月平均用电量 (kW·h)
x=27
答:船在静水中的平均速度为 27 km/h.
基础训练,巩固提高
荆门市高新区· 掇刀区团林中学
归纳小结
荆门哪些收获?
人生的白纸全凭自己的笔去描绘.每个人
都用自己的经历填写人生价值的档案.
归纳总结
荆门市高新区· 掇刀区团林中学
如果括号外的因数是正数,去括号后 原括号内各项的符号与原来的符号相同. 如果括号外的因数是负数,去括号后 原括号内各项的符号与原来的符号相反.
去括号,得 3 0 . 4 x 2 0 . 2 x
去括号,得3-0.4x-2=0.2x 移项,得 -0.4x-0.2x=-3+2 合并同类项,得 -0.6x=-1
系数化为1,得 x
移项,得 0 . 4 x 0 . 2 x 3 2
合并同类项,得 0 . 2 x 5 两边同除以-0.2,得 x
返回
解:(1)去括号,得
3x-7x+7=3-2x-6
移项,得 3x-7x+2x=3-6-7
合并同类项,得 -2x=-10 系数化为1,得 x=5
熟悉解法
荆门市高新区· 掇刀区团林中学
例1 解下列方程
(1)3x-7(x-1)=3-2(x+3) (2)2x-(x+10)=5x+2(x-1)
人教版数学七年级上册_解一元一次方程(二)—去括号与去分母课件(3课时、共71张)

3.3 解一元一次方程(二)
——去括号与去分母 (第3课时)
学习目标: (1)会去分母解一元一次方程. (2)归纳一元一次方程解法的一般步骤,体会解方程中
化归和程序化的思想方法. (3)通过列方程,进一步体会模型思想.
教学重点: 建立一元一次方程模型解决实际问题以及解含有分数系
数的一元一次方程,归纳解一元一次方程的基本步骤.
根据往返路程相等,列出方程,得
2(x+3)=2.5(x-3)
去括号,得
2x+6=2.5x-7.5
移项及合并同类项,得
0.5x=13.5
系数化为1,得
x 27.
答:船在静水中的平均速度为 27 km/h.
活动3:巩固练习,拓展提高
一架飞机在两城之间航行,风速为24 km/h,顺风 飞行要2小时50分,逆风飞行要3小时,求两城距离.
移项,得
3 x-7 x+7=3-2 x-6
3 x=7 x+2 x=3-6-7
合并同类项,得
-2x=-10
系数化为1,得
x=5
活动2:巩固方法,解决问题
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.
思考: 1.行程问题涉及哪些量?它们之间的关系是什么?
例:一艘船从甲码头到乙码头顺流行驶,用了2 h;从乙码头返
回甲码头逆流行驶,用了2.5 h.已知水流的速度是3 km/h,求
船在静水中的速度.
问题中的相等
解:设船在静水中的平均速度为x km/h 关系是什么?
则顺流的速度为_(_x_+__3_)_km/h,逆流速度为_(_x_-__3_)km/h.
人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT

数转化为整数,然后再去分母.
等式性质二
先去小括号,再去中括号,最 去括号法则
后去大括号.
乘法分配律
把含有未知数的项移到方程 的一边,常数项移到方程的 等式性质一 另一边.
将未知数的系数相加,常数 合并同类项
项项加。
的法则
在方程的两边除以未知数的 等式性质二 系数.
1、不要漏乘不含分 母的项;2、分子是 多项式,去分母后应 加上括号. 1、不要漏乘括号里 的任何一项; 2、不要弄错符号. 1、移动的项要变号, 不移动的项不变号; 2、不要丢项. 字母及指数不变.
0.7 0.03
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级数学上册 第三章一元一次方程
3.3解一元一次方程(二)---去括号与去分 母(第2课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
问题 一个数,它的三分之二,它的一半,它的七分
之一,它的全部,加起来总共是33.试问这个 数是多少?
你能解决这个问题吗?
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
等式性质二
先去小括号,再去中括号,最 去括号法则
后去大括号.
乘法分配律
把含有未知数的项移到方程 的一边,常数项移到方程的 等式性质一 另一边.
将未知数的系数相加,常数 合并同类项
项项加。
的法则
在方程的两边除以未知数的 等式性质二 系数.
1、不要漏乘不含分 母的项;2、分子是 多项式,去分母后应 加上括号. 1、不要漏乘括号里 的任何一项; 2、不要弄错符号. 1、移动的项要变号, 不移动的项不变号; 2、不要丢项. 字母及指数不变.
0.7 0.03
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级数学上册 第三章一元一次方程
3.3解一元一次方程(二)---去括号与去分 母(第2课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
问题 一个数,它的三分之二,它的一半,它的七分
之一,它的全部,加起来总共是33.试问这个 数是多少?
你能解决这个问题吗?
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
《解一元一次方程》PPT课件(第1课时)

知识讲解
/kejia
小试牛n语/ 文刀
课件
/kejia
n/yu
解下列方程wen/ 数学
x 7 4课件 /kejia
n/sh
x 1 1 2
uxue
解:移项,/得 解:移项,得 英语
课件
x 3/kejia n/yin
x 1
gyu/ 美术
2
课件
/kejia
n/me
ishu/
科学
课件
18 5 x
xb a
随堂训练 1、下列移项正确的是( D )
A.由 x 5 15 得 x 15 5
B.由 7 4x 4x ,得 4x x 7
C.由3x 2x 1 得 3x 2x 1
D.由 8 4x 2 3x 得 8 2 4x 3x
随堂训练
2.解方程
(1)3x 7 32 2x
解:移项,得
x=-13
知识讲解
例2 解下列方程: (1) 5x-2 =2x-10;
解:(1) 移项,得 5x-2x=-10+2.
合并同类项,得 3x=-8.
将x的系数化为1,得
x 8. 3
(2) 1 x 2 x 1. 33
(2) 移项,得
1 x 2 x 1. 33
合并同类项,得
1 x 1. 3
合并同类项,得
2x 2.
将x的系数化为1,得
x 1.合并同类项,得
1 x 4. 2
将x的系数化为1,得
x 8.
课堂小结
1.移项法则的依据是什么?
等式的性质1.
2.移项的作用是什么?移项时要注意什么?
含有未知数的项移到方程的左边, 把常数项(不含未知数的项)移到方程的右边.
3.3解一元一次方程(二)去括号与去分母(第1课时)(课件)七年级数学上册(人教版)

分析:设上半年每月平均用电量xkW·h,
则下半年每月平均用电为(x-2000) kW·h.
上半年共用电为:6x kW·h;
上半年共用电为:6(x-2000) kW·h.
根据题意列出方程6x+6(x -2000)=150000
怎样解这个方
程呢?
探究新知
6x + 6 ( x-2000 ) = 150000系数化为1,得来自−6 = 84
=−
3
4
x=- .
3
例题讲解
(2)3 − 7( − 1) = 3 − 2( + 3)
解:去括号,得
− + = − −
移项,得
− + = − −
合并同类项,得
− = −
系数化为1,得
=
归纳总结
共得利息 0.36万元(不计利息税),求甲、乙两种存款各多少
万元?
解:解:设甲种存款 万元,乙种存款 万元.
根据题意,得1.5%x+2%(20-x)=0.36.
解得,x=8,所以20-8=12.
答:甲种存款8万元,乙种存款12万元.
中考链接
1.(2023·甘肃天水一模)解方程−2 2 + 1 = , ,以下去括号正
D. 2 6 3x 2
3.若 x 3 是一元一次方程2( + ) = 5(k 为实数)的解,则 k 的值是(
A.
1
2
1
B. 2
C.
11
2
D.
11
2
D)
分层作业
【基础达标作业】
4.去掉方程3( − 1) − 2( + 5) = 6中的括号,结果正确的是( B )
则下半年每月平均用电为(x-2000) kW·h.
上半年共用电为:6x kW·h;
上半年共用电为:6(x-2000) kW·h.
根据题意列出方程6x+6(x -2000)=150000
怎样解这个方
程呢?
探究新知
6x + 6 ( x-2000 ) = 150000系数化为1,得来自−6 = 84
=−
3
4
x=- .
3
例题讲解
(2)3 − 7( − 1) = 3 − 2( + 3)
解:去括号,得
− + = − −
移项,得
− + = − −
合并同类项,得
− = −
系数化为1,得
=
归纳总结
共得利息 0.36万元(不计利息税),求甲、乙两种存款各多少
万元?
解:解:设甲种存款 万元,乙种存款 万元.
根据题意,得1.5%x+2%(20-x)=0.36.
解得,x=8,所以20-8=12.
答:甲种存款8万元,乙种存款12万元.
中考链接
1.(2023·甘肃天水一模)解方程−2 2 + 1 = , ,以下去括号正
D. 2 6 3x 2
3.若 x 3 是一元一次方程2( + ) = 5(k 为实数)的解,则 k 的值是(
A.
1
2
1
B. 2
C.
11
2
D.
11
2
D)
分层作业
【基础达标作业】
4.去掉方程3( − 1) − 2( + 5) = 6中的括号,结果正确的是( B )
七年级数学上册教学课件《解一元一次方程(二)——去括号与去分母》(人教)

6x +6(x-2000) =150000
去括号
6x +6x-12000=150000
移项
6x +6x=150000+12000
合并同类项
12x=162000
系数化为1
x=13500
问题1 某工厂加强节能措施,前年下半年与上半年相比,月 平均用电量减少2000kW·h(千瓦·时),全年用电15万kW·h。 这个工厂去年上半年每月平均用电多少? (5)本题还有其他列方程的方法吗? 解:设下半年每月平均用电y kW· h。 根据题意,得 6y +6(y+2000) =150000 ② (6)试仿照解方程①方法解方程②。
实际问题的答案
检验
作业:教科书第91页习题3.3第1、6、7题。
随堂演练
1.方程4(a-x)-4(x+1)=60的解是x=-1,则a的值是( C ) A.-14 20 C. 14 D.-16 2.解方程5-5(x+8)=0的结果是 -7 。
3.解下列方程: (1) 5(x+8)-5=6(2x-7); (2) 4(x-1)+3(2x+1)=10(1-2x)。 4.一架飞机在两城之间飞行,风速为24km/h,顺风飞行需要 2小时50分,逆风飞行需要3h。求无风时飞机的航速和两城之 间的航程。
回顾此题和问题1的解决过程,说一说列一元一次方
程解决实际问题的方法和步骤。
回顾此题和问题1的解决过程,说一说列一元 一次方程解决实际问题的方法和步骤。 实际问题 一元一次方程
解 方 程
设未知数,列方程
实际问题的答案
检验
一元一次方程的解 (x=a)
知识归纳
1.“去括号法”解一元一次方程的步骤:
人教版数学七年级上册3.2第1课时用合并同类项的方法解一元一次方程[1]-课件
优翼 课件
七年级数学上(RJ) 教学课件
第三章 一元一次方程
3.2 解一元一次方程(一) ——合并同类项与移项
第1课时 用合并同类项的方法解一元一次方程
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 学会运用合并同类项解形如ax+bx=c类型的一元 一 次方程,进一步体会方程中的“化归”思想. (重点)
解:设所求的三个数分别是 x,3x,9x. 由三个数的和是-1701,得
x 3 x 9 x 1 7 0 1 . 合并同类项,得
7x1701.
系数化为1,得
所以
x243. 3x729.
9x2187.
答:这三个数是 -243,729,-2187.
归纳:用方程解决实际问题的过程
实际问题
设未知数 列方程
(2) 合并同类项时,把各同类项的_系__数__相加减,字 母和字母的指数_不__变__.
用合并同类项进行化简: (1) 3x -5x = __-__2_x___; (2) -3x + 7x = ___4_x____;
(3) y + 5y- 2y =___4_y____; (4) 1y2y2y___-__y__.
一元一次方程 解方程
作答
分析实际问题中的数量关系,利用其中的 相等关系列出方程,是解决实际问题的一种数 学方法.
当堂练习
1. 下列方程合并同类项正确的是
A. 由 3x-x=-1+3,得 2x =4 B. 由 2x+x=-7-4,得 3x =-3 C. 由 15-2=-2x+ x,得 3=x D. 由 6x-2-4x+2=0,得 2x=0
解:设黑色皮块有3x个,则白色皮块有5x个. 根据题意列方程 3x + 5x = 32, 解得 x = 4, 则黑色皮块有 3x = 12 (个), 白色皮块有 5x = 20 (个). 答:黑色皮块有12个,白色皮块有20个.
七年级数学上(RJ) 教学课件
第三章 一元一次方程
3.2 解一元一次方程(一) ——合并同类项与移项
第1课时 用合并同类项的方法解一元一次方程
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 学会运用合并同类项解形如ax+bx=c类型的一元 一 次方程,进一步体会方程中的“化归”思想. (重点)
解:设所求的三个数分别是 x,3x,9x. 由三个数的和是-1701,得
x 3 x 9 x 1 7 0 1 . 合并同类项,得
7x1701.
系数化为1,得
所以
x243. 3x729.
9x2187.
答:这三个数是 -243,729,-2187.
归纳:用方程解决实际问题的过程
实际问题
设未知数 列方程
(2) 合并同类项时,把各同类项的_系__数__相加减,字 母和字母的指数_不__变__.
用合并同类项进行化简: (1) 3x -5x = __-__2_x___; (2) -3x + 7x = ___4_x____;
(3) y + 5y- 2y =___4_y____; (4) 1y2y2y___-__y__.
一元一次方程 解方程
作答
分析实际问题中的数量关系,利用其中的 相等关系列出方程,是解决实际问题的一种数 学方法.
当堂练习
1. 下列方程合并同类项正确的是
A. 由 3x-x=-1+3,得 2x =4 B. 由 2x+x=-7-4,得 3x =-3 C. 由 15-2=-2x+ x,得 3=x D. 由 6x-2-4x+2=0,得 2x=0
解:设黑色皮块有3x个,则白色皮块有5x个. 根据题意列方程 3x + 5x = 32, 解得 x = 4, 则黑色皮块有 3x = 12 (个), 白色皮块有 5x = 20 (个). 答:黑色皮块有12个,白色皮块有20个.
湘教版数学七年级上册3.3 一元一次方程的解法课件(共25张PPT)
6.清人徐子云《算法大成》中有一首诗: 巍巍古寺在山林, 不知寺中几多僧. 三百六十四只碗, 众僧刚好都用尽. 三人共食一碗饭, 四人共吃一碗羹. 请问先生名算者, 算来寺内几多增?
诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月1日
去括号,得 2x +2+x-1 = 4,
去分母时,方程两边的每一项都要乘各个分母的最小公倍数.
做一做
解方程:.
去括号,得 15x -5+2x-4= 10x.
合并同类项,得 7x = 9.
移项,得 15x +2x-10x=5+4 .
例 3
例题讲解
B
解析:根据题意,得 .去分母,得 8x-10=2x-1.移项、合并同类项,得 6x=9.系数化为1,得 .
4(2x-1)=3(x+2)-12
去分母,得2(2x-1)=8-(3-x) =8-3+x
D
2.将方程=1-去分母后,正确的结果是( )A.2x-1=1-(3-x) B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3-x D.2(2x-1)=8-3+x
5.已知方程与关于y的方程y+的解相同,求a的值.
6.火车用 26 s 的时间通过一个长 256 m 的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 s 的时间通过了长 96 m 的隧道,求火车的长度.
解:设火车的长度为x m,列方程:
解得 x =160. 答:火车的长度为160 m.
新课导入
诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月1日
去括号,得 2x +2+x-1 = 4,
去分母时,方程两边的每一项都要乘各个分母的最小公倍数.
做一做
解方程:.
去括号,得 15x -5+2x-4= 10x.
合并同类项,得 7x = 9.
移项,得 15x +2x-10x=5+4 .
例 3
例题讲解
B
解析:根据题意,得 .去分母,得 8x-10=2x-1.移项、合并同类项,得 6x=9.系数化为1,得 .
4(2x-1)=3(x+2)-12
去分母,得2(2x-1)=8-(3-x) =8-3+x
D
2.将方程=1-去分母后,正确的结果是( )A.2x-1=1-(3-x) B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3-x D.2(2x-1)=8-3+x
5.已知方程与关于y的方程y+的解相同,求a的值.
6.火车用 26 s 的时间通过一个长 256 m 的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 s 的时间通过了长 96 m 的隧道,求火车的长度.
解:设火车的长度为x m,列方程:
解得 x =160. 答:火车的长度为160 m.
新课导入
3.3解一元一次方程(二)---去括号与去分母(2)PPT课件
“去括号法则”
5.系数化为1.
思考2:这一转化过程主要依据是什么?
汶上县郭仓镇- 中学
10
例题讲解
去括号,得 移项,得
2(x+1)-4=8+(2-x) 2x+2-4=8+2-x 2x+x=8+2-2+4
汶上县郭仓镇- 中学
11
例题讲解
2(x+1)-4=8+(2-x)
去括号,得 移项,得
2x+2-4=8+2-x.
②整数项不要漏乘各分母的最小公倍数,特别是 整数1;
③分母中含有小数时,一般先利用分数的性质 将其转化为整数,再去分母.
汶上县郭仓镇- 中学
16
例题讲解
例2 某中学组织团员到校外参加义务植树活 动,一部分团员骑自行车先走,速度为 9 km/h, 40分钟后其余团员乘汽车出发,速度为 45 km/h, 结果他们同时到达目的地,则目的地距学校多少千 米?
汶汶上上县县郭郭仓仓镇镇- 中中学学
3
学习目标
(1)会通过去分母解一元一次方程;
(2)归纳解一元一次方程的一般步骤,体会把“复 杂”转化为“简单”,把“新”转化为“旧”的化 归思想.
学习重点
通过解有分数系数的一元一次方程,归纳解一元 一次方程的基本步骤.
学习难点
去分母的方法及步骤.
汶上县郭仓镇- 中学
②整数项不要漏乘各分母的最小公倍数,特别是 整数1;
③分母中含有小数时,一般先利用分数的性质 将其转化为整数,再去分母.
汶上县郭仓镇- 中学
19
随堂演练
B
A.10
B.12
C.24
D.6
D
5.系数化为1.
思考2:这一转化过程主要依据是什么?
汶上县郭仓镇- 中学
10
例题讲解
去括号,得 移项,得
2(x+1)-4=8+(2-x) 2x+2-4=8+2-x 2x+x=8+2-2+4
汶上县郭仓镇- 中学
11
例题讲解
2(x+1)-4=8+(2-x)
去括号,得 移项,得
2x+2-4=8+2-x.
②整数项不要漏乘各分母的最小公倍数,特别是 整数1;
③分母中含有小数时,一般先利用分数的性质 将其转化为整数,再去分母.
汶上县郭仓镇- 中学
16
例题讲解
例2 某中学组织团员到校外参加义务植树活 动,一部分团员骑自行车先走,速度为 9 km/h, 40分钟后其余团员乘汽车出发,速度为 45 km/h, 结果他们同时到达目的地,则目的地距学校多少千 米?
汶汶上上县县郭郭仓仓镇镇- 中中学学
3
学习目标
(1)会通过去分母解一元一次方程;
(2)归纳解一元一次方程的一般步骤,体会把“复 杂”转化为“简单”,把“新”转化为“旧”的化 归思想.
学习重点
通过解有分数系数的一元一次方程,归纳解一元 一次方程的基本步骤.
学习难点
去分母的方法及步骤.
汶上县郭仓镇- 中学
②整数项不要漏乘各分母的最小公倍数,特别是 整数1;
③分母中含有小数时,一般先利用分数的性质 将其转化为整数,再去分母.
汶上县郭仓镇- 中学
19
随堂演练
B
A.10
B.12
C.24
D.6
D
解一元一次方程(二)——去括号与去分母(第1课时32张)课件人教版数学七年级上册
号与本来的符号相反.
巩固新知
解方程:4x+2(4x-3) =2-3(x+1).
解:去括号,得 4x+8x-6=2-3x-3.
移项,得 4x+8x+3x=2-3+6.
合并同类项,得15x=5.
1
3
系数化为1,得 x= .
符号有何变化?
根据是?
这里符号
是如何变
化的呢?
课堂练习
1.方程 3x+2(1-x) =4的解是( C )
B.3(x+30)=4(30-x)
C.3(x-30)=4(x+30)
D.3(30-x)=4(30+x)
7.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的
汽车是乙车队的汽车的两倍,则需要从乙车队调( D )辆汽车到甲车队.
A.36
B.18
C.16
D.12
8.甲、乙二人同时从相距30千米的两地相向而行,2小时相遇.
12
移项、合并同类项,得 15x=36,系数化为 1,得 x= .
5
17.A,B两地相距720千米,一列慢车从A地开出,每小时行80千米,
一列快车从B地开出,每小时行100千米.
(1)两车同时开出,相向而行,x小时相遇,
80x+100x=720
则可列方程为_____________________;
人教版· 数学· 七年级(上)
第三章 一元一次方程
3.2 解一元一次方程(一)
——去括号与去分母
第1课时 利用去括号解一元一次方程
学习目标
1.了解“去括号”是解方程的重要步骤。(重点)
2.熟练地运用去括号法则解带有括号的一元一次方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17(x+24)=3(x-24) 6
x=840.
两城市的距离: 3(8 4 0 - 2 4)= 24 4 8 .
答:两城市之间的距离为2 448 km.
13
【变式备选】一个两位数,十位上的数字比个位 上的数字小4,如果把十位上的数字与个位上的 数字对调,那么所得的两位数比原两位数的2倍 少12,求原两位数.
3
问题1:某工厂加强节能措施,去年下半年与上半 年相比,月平均用电量减少2 000 kW·h(千瓦·时),
全年用电15 万 kW·h.这个工厂去年上半年每月平 均用电是多少?
温馨提示:1 kW·h的电量是指1 kW的电器1 h的用电量.
思考:1.题目中涉及了哪些量? 2.题目中的相等关系是什么?
月平均用电量×n(月数)=n个月用电量
x 27.
答:船在静水中的平均速度为 27 km4 km/h,顺 风飞行要2小时50分,逆风飞行要3小时,求两城 距离.
解:设飞机在无风时的速度为x km/h, 则在顺风中的速度为(x+24) km/h , 在逆风中的速度为(x-24) km/h.
根据题意,得 解得
5
6x+6(x-2 000)=150 000 去括号
6x+6x-12 000=150 000
移项
6x+6x=150 000+12 000 合并同类项
12x=162 000 系数化为1
x=13 500
复习去括号法则: 去括号,看符号; 是“十”,不变号; 是“-”,全变号。 解一元一次方程的 步骤:
1.本节课你有哪些收获? 2.你觉得自己掌握这些知识困难吗? 3.在解决问题时应该注意些什么呢?
15
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
去括号
移项
学科网
合并同类项
系数化为1 6
例1 解下列方程:
(1)2 x - (x + 1 0 )= 5 x + 2 (x - 1 ) 解:去括号,得 2 x - x - 1 0 = 5 x + 2 x - 2 .
移项,得 2 x - x - 5 x - 2 x = - 2 + 1 0 .
合并同类项,得
上半年的用电量+下半年的用电量=全年的用电量
4
分析: 设上半年每月平均用电量列出方程xkW·h,
则下半年每月平均用电为(x-2000) kW·h. 上半年共用电为:6x kW·h; 上半年共用电为:6(x-2000) kW·h.
根据题意列出方程
6x+6(x -2 000)=150 000
怎样解这个方程?使方程向x=a的形式转化? 这个方程与我们前面研究过的方程有什么不同?
16
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX
时 间:XX年XX月XX日
17
6x=8.
系数化为1,得
x= - 4 . 3
7
(2) 3 x-7( x-1)=3-2( x+3)
8
【想一想错在哪?】解方程:3(x-7)-2(9-2x)=18.
提示:去括号时不要漏乘;括号外是“-”号时, 注意括号内每一项都变号.
(1) 2(x+3)=5x (2) 4x+3(2x-3)=12-(x+4) (3) 2-3(x+1)=1-2(1+0.5x) (4) 6(2x-4)+2x=7-(3x-1)
3.3 解一元一次方程(二) ——去括号与去分母 第1课时
1.掌握去括号解一元一次方程的方法.(重点) 2.能熟练求解一元一次方程.(重点、难点)
1. 解一元一次方程中的“合并同类项”与 “移项”分别依据的是什么?又起到了什么 作用?
2.解下列列方程 2x+5x=3x-12
2.7y=12-3.3y
10
例2 一艘船从甲码头到乙码头顺流行驶, 用了2 h;从乙码头返回甲码头逆流行驶, 用了2.5 h.已知水流的速度是3 km/h,求 船在静水中的平均速度.
思考:
1、问题中涉及到顺、逆流因素,这类问题中有 哪些基本相等关系?
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
2.一般情况下可以认为这艘船往返的路程相等, 则 顺流速度___顺流时间___逆流速度 ___逆流时间
11
解:设船在静水中的平均速度为x km/h,则顺流 的速度为(x+3) km/h,逆流速度为(x-3) km/h.
根据往返路程相等,列出方程,得 2 ( x + 3 ) = 2 .5 ( x - 3 )
去括号,得
2x+ 6= 2.5x- 7.5
移项及合并同类项,得
0.5x=13.5
系数化为1,得