铅黄铜熔炼除渣工艺改进
窑渣—还原熔炼铅冰铜新工艺研究

文 章 编 号 :1005-7854(2016)03—0058-03
矿 冶
MINING & METALLURGY
V o1.25 . NO.3 June 2016
窑 渣 ቤተ መጻሕፍቲ ባይዱ 还 原 熔 炼 铅 冰 铜 新 工 艺研 究
黄 超 沈 强 华 张 弦 李 枫 应 国 民
ABSTRA CT :A novel technology of kiln slag— Cu—Pb matte reduction sm elting is put forward according to the characteristics of Cu-Pb matte with low copper and high lead content. The Cu·Pb matte was reductively sm eh at high tem perature,producing crude lead, matte and slag. The experim ents tested the impact of the kiln slag input on the recovery of lead. The result showed that the recovery of lead reached to 95.1 2% , copper in the matte reached to 1 8.65% . The slag output had good liquidity and low density that did not mixed with m enta1. K EY W O RD S: Cu—Pb m atte; matte;kiln slag;slag;reduction smelting
浅谈铅冶炼常见的技术及其改进措施

浅谈铅冶炼常见的技术及其改进措施摘要:铅冶炼技术是确保铅金属产量的重要载体,随着低碳环保概念的深入,如何在确保达到节能目标的同时保证铅产量的需要,是铅冶炼企业的重要工作内容,基于此,本文阐述了铅的性质特征,对铅冶炼技术及其改进措施进行了探讨分析。
关键词:铅;性质特征;铅冶炼技术;改进;措施一、铅的性质特征铅具有熔点低、密度大、展性好、易加工、延性差以及对电和热的传导性能不好与高温下易挥发等特征,使其在制酸工业、蓄电池、电缆包皮及冶金工业设备的防腐衬里等许多领域中得到应用。
但铅和其化合物对人体各组织均有毒性,中毒途径可由呼吸道吸入其蒸气或粉尘,然后呼吸道中吞噬细胞将其迅速带至血液,或经消化道吸收,进入血循环而发生中毒。
铅冶炼过程中导致环境污染事故频发、污染纠纷不断,成为影响所在区域社会稳定的重要因素,二、常见的铅冶炼技术分析1、常见的铅冶炼技术。
在我国常见的铅冶炼技术主要有:一是利用烧结—鼓风炉进行铅冶炼;二是卡尔多炉铅冶炼技术;三是澳斯麦特铅冶炼技术;四是氧气底吹熔池铅冶炼技术;五是水口山铅冶炼技术;六是基夫赛特铅冶炼技术;七是HUAS闪速铅冶炼技术。
其中,烧结—鼓风炉铅冶炼技术最为落后,且能耗大,但由于经济性强,因而目前仍广泛应用,而基夫赛特铅冶炼技术和HUAS闪速铅冶炼技术是最为先进的铅冶炼技术。
以下简要分析几种铅冶炼技术。
2、粗铅火法冶炼分析。
其主要是通过铅精矿和熔剂、返料配料、制粒后,送氧气底吹熔炼炉进行氧化熔炼,产出一次粗铅和铅氧化渣,一次粗铅铸锭后送电解精炼车间,铅氧化渣经铸渣机铸块后,由链斗输送机送至鼓风炉车间的铅氧化渣仓。
熔炼炉产出的烟气经余热锅炉回收余热、电收尘器收尘后,送硫酸车间制酸。
铅烟尘送烟尘仓返回熔炼配料。
鼓风炉还原所需焦炭筛分后和块状熔剂分别送入鼓风炉车间的焦炭仓和熔剂仓。
铅氧化渣块、焦炭块、熔剂块计量后采用电动加料小车从鼓风炉两侧加入鼓风炉内。
鼓风炉产出的粗铅铸锭后送精炼车间,炉渣进入电热前床沉淀保温,然后放入渣包吊运至烟化炉工段。
一种除铜新工艺在粗铅精炼中应用研究

第31卷第4期2006年8月 昆明理工大学学报(理工版)Jour nal ofK un m ing Un i versity of Sci ence a nd Technology (S cience and Technolo gy )V o.l 31 N o .4 A ug .2006收稿日期:2005-09-26.第一作者简介:班丽丽(1980-),女,在读博士生.主要研究方向:冶金新工艺及钢铁功能材料.E -ma il :banlili @to 一种除铜新工艺在粗铅精炼中应用研究班丽丽1,2,刘中华1,雍歧龙2,陈雯1,孙保华1,顾晓明1(1.昆明理工大学材料与冶金工程学院,云南昆明650093;2.钢铁研究总院结构材料研究所,北京100081)摘要:针对西北铅锌厂粗铅火法精炼过程中,直接加单质硫进行除铜而出现硫损过大的问题,对除铜工艺中硫的利用方式进行了研究,提出一种除铜新工艺,即利用硫化铅代替单质硫进行除铜.在本实验中,对硫加入过量率、加热温度、加热时间等制备PbS 的工艺条件进行了研究,并确定了加PbS 除铜工艺的最佳硫化铅用量,最佳搅拌时间等技术条件.实验结果表明,粗铅中含铜量由0.814%下降至0.011%,除铜效率高达98.65%,且在除铜过程中,硫的利用率达92%以上.关键词:粗铅;火法精炼;硫化铅;除铜中图分类号:TF111.1文献标识码:A 文章编号:1007-855X (2006)04-0010-03Study on the Applicati on of a New D ecopper i n gT echni que i n R efi n i ng of Lead BullionBAN L i -li 1,2,LI U Zhong -hua 1,YONG Q i -l o ng 2,CHENG Wen 1,SUN Bao -hua 1,GU X i a o -m i n g 1(1.Facult y ofM aterials andM etall urgical Eng i neering ,Kun m ing U ni versit y of Science and Techno l ogy ,Kun m ing 650093,China ;2.Instit ute for S truc t ura lM aterials ,Centra l Iron &Stee l Research Instit ute ,Beiji ng 100081,Chi na )Abst ract :There is a b i g pr oble m t h at too m uch su l p hu r is w asted in lead bullion py r o -refining p r ocess by add i n g sulphur d irectl y i n no rthwestm e tallur gy of lead and zinc factory .A s to the pr oble m ,a ne w m e t h od to de -copper fro m lead billion t h r ough c hang ing sulphur to PbS is i n vented .The i m pac t of su l p hur overchar ge pe rcen t -age ,heati n g te m perature and heating ti m e on percent for m ati o n of PbS are st u died ,and t h e PbS overcharge pe r -centage ,hea ting ti m e and agita tion ti m e for decoppe ring fr o m l e ad bullion are investigated too .The results of t h e experi m ent show tha t the percentage of Cu in lead bu llion is reduced fr o m 0.814%to 0.011%,t h e 98.65%coppe r in lead bu llion is successf u ll y d r o w n off and t h e 92%o rm o r e su l p hu r is used efficientl y .K ey w ords :lead bulli o n ;py r o -refining ;PbS ;decoppering0引言铅是最常用的有色金属之一.由于火法精炼比电解精炼有着能耗低、占地少、设备简单、投资较少、生产周期短和最终产品的成分容易控制等诸多优点[1],目前,火法精炼粗铅的精铅产量约占精铅总产量的80%[2,3].在粗铅火法精炼的除铜工艺中,大多数工厂采用加单质硫除铜,其主要化学反应如下: S +Pb =PbS (1) PbS +2Cu =Cu 2S +Pb(2)除铜原理是利用S 对Cu 的亲合力大于Pb ,即化学反应(2),生成的Cu 2S 密度比Pb 小,而形成浮渣,通过撇渣得到精铅[4].这两个化学反应在同一个过程中完成,由于反应温度较高,反应过程很难控制,容DOI 牶牨牥牣牨牰牨牨牪牤j 牣cn ki 牣牭牫牠牨牪牪牫牤n 牣牪牥牥牰牣牥牬牣牥牥牫易造成硫单质的燃烧,生成SO 2释放到大气中,这样既污染空气,也导致硫的用量大、利用率较低(利用率不足80%)、粗铅精炼成本增加.为了解决这一生产难题,我们考虑将这两个反应分开进行:第一步,用硫和铅反应制备硫化铅,将单质硫转化为化合态的硫,使硫元素得到固定;第二步再进行加硫(硫化铅)除铜.为此,通过对S 和Pb 反应生成PbS 的热力学及动力学的研究,提出了PbS 的制备工艺,并对除铜时硫化铅加入量、搅拌时间等工艺条件进行了研究.这种加硫(硫化铅)除铜新工艺,对减少冶金企业造成的大气污染,提高S 的利用率,降低生产成本,有着十分重要的意义.1实验部分1.1PbS 的制备将云锡公司提供的粗铅锭(其化学组成如表1所示)切割成小块,加工成铅屑,把铅屑与硫磺颗粒(商品,含S 量≥98%)混匀,在150MPa 压力下,用压片机压成块状样品.把样品放入刚玉坩埚中加热,考察加热温度、加热时间、S 加入过量率这三个因素对PbS 生成率的影响.加热设备为温控电炉,用XRD 和能谱分析对生成的硫化铅进行定量和定性分析.表1 粗铅化学组成Tab .1 Ch e m i cal co mposition of l ead bu llion 元素Pb CuSn A s Sb B i 含量/%93.740.8140.6021.133.590.07021.2加PbS 除Cu 实验称量一定量粗铅(小块状),放入坩埚内,在340℃温度下,用温控电炉将粗铅熔化,按计算值加入PbS (元素硫的加入量按形成Cu 2S 理论需求量的1.20~1.35倍计),电磁搅拌,加木屑造渣,连续搅拌适当时间后,经过自然冷却得到除Cu 的铅锭.通过XRD 和能谱分析对得到的铅产品组分进行定性和定量分析,最后计算其除铜率.2结果与讨论2.1S 加入过量率、加热时间、加热温度对PbS 生成率的影响S 加入过量率与PbS 生成率的关系如图1所示.由图1可看出,在加热温度和加热时间不变条件下,随着S 过量率增加,PbS 的生成率呈先增加后减少的趋势;当S 过量率处于22%~30%范围内时,PbS 的生成率均大于92%,其中,当硫的过量率为25%时,其生成率达到最大值95.5%.研究结果初步表明,此种PbS 的制备工艺是可行的.加热时间与PbS 生成率关系如图2所示.由图2可以看出,在硫加入量和加热温度均不变的条件下,随着加热时间增加,PbS 的生成率呈先增加后减少的趋势.造成这种现象的原因可能是在反应刚开始时,随着时间的增加,S 与Pb 的反应变得充分,故PbS 的生成率增加;经过一段时间后,反应(1)达平衡状态,这时继续加热会引起PbS 与空气及铅中其它组分发生反应,致使PbS 生成率的测量和计算值变小.但我们可以发现,加热时间在6.5~8.5h 的范围内,PbS 生成率都大于93%,当加热到8h 左右时,PbS 的生成率11第4期 班丽丽,刘中华,雍歧龙,等:一种除铜新工艺在粗铅精炼中应用研究达最大值.加热时间控制在7~8h的范围,效果较佳.加热温度与PbS的生成率的关系如图3所示.由图3可以看出,在硫加入量和加热时间都不变条件下,随着加热温度的增加,PbS的生成率呈先增加后减少的趋势.因为温度的增加使物料的活性增强,有利于化学反应正向进行,故随着温度的增加,PbS的生成率先增加;但温度过高,会造成S的燃烧,致使PbS的生成率下降.我们发现,加热温度范围在350~400℃时,PbS生成率都大于96%,且当温度为380℃左右时,PbS的生成率可高达98.7%,所以,制备PbS时的加热温度若控制在360~380℃范围内较佳.2.2PbS的加入量、搅拌时间对Pb中Cu残留量的的影响粗铅(除Cu后)中Cu含量与加入PbS过量率的关系如图4所示.由图4可知,在搅拌时间不变的条件下,随着PbS过量率的增加,铅中的铜含量呈先减少后增加的趋势.这是因为开始时随着PbS加入量的增加,粗铅中的C u被除去的几率也就增加,故Cu的残留率降低;随着PbS加入量的继续增加,粗铅中的铜几乎完全参加反应,而这时加入的PbS中仍含有少量Cu,这部分Cu导致粗铅中C u含量的测量值呈上升趋势.但总体来看,当PbS的过量率处在10%~25%范围时,铅中的铜含量均小于0.02%,而且当PbS 过量率为20%~25%时,铜含量更可低达0.01%.这些数据表明,加PbS除Cu的效果非常理想.粗铅(除Cu后)中Cu含量与搅拌时间的关系如图5所示.由图5可知,在PbS加入量不变的条件下,随着搅拌时间不断增加,铅中Cu含量先呈下降趋势,后基本保持不变.这是因为随着搅拌时间的增加,根据相似相溶原理,PbS在Pb中分布混合得更加均匀、充分,Cu与PbS更易于接触并发生反应,故铅中Cu含量降低;但当搅拌时间超过30m in后,铅中的Cu几乎完全参加反应,这时即使继续增加搅拌时间,铅中的铜含量的也不会再发生变化[7].(下转第22页)1)从计算的电子云密度图可以看出,α-A l2O3是典型的离子晶体,电子密度高的区域集中在O2-周围,而A l3+周围的电子密度则较低,电子密度局域性强.即α-A l2O3与基体相结合时,结合主要取决于O2-周围的电子态密度,依靠O2-与基体成键来达到相互结合的目的.2)计算出α-A l2O3的Fer m i能级以上的导带分布于6.7~17.5e V,禁带能量区间为-15~-20e V和-8.4~0e V,带隙宽为8.4e V.A l和O对分态密度的贡献主要是O的2s轨道,其次为2p轨道,A l的3s和3p 轨道贡献很小;0~-8.4e V间的态密度主要来自于O的2p轨道,部分来自于2s轨道以及A l的3s和3p轨道,导带中的态密度是由A l的3s和3p以及O的2s和2p电子层贡献而形成.3)布居分析表明在氧原子和铝原子之间存在强烈的电子的转移,成键前后,原子价电子分布发生了变化,更多的电子集中在氧原子周围,进一步证实了α-A l2O3离子晶体的特点.参考文献:[1]曹礼群.材料物性的多尺度关联与数值模拟[J].世界科技与发展,2003,24(6):23-31.[2]杨春,李言荣,薛卫东,等.α-A l2O3(0001)基片表面结构与能量研究[J].物理学报,2003,52(9):2268-2274.[3]尹衍升.A l2O3陶瓷及其复合材料[M].北京:化学工业出版社,2003:101-105.[4]杨春,余毅,李言荣,等.α-A l2O3(0001)表面驰预及其对表面电子态的影响[J].化学物理学报,2004,17(5):537-542.[5]T akeo Sasak i,K atsuyukiM ats unaga,et a.l A to m ic s nd e lectronic structures o f Cu/a-A l2O3int e rface prepa red by pu lsed-l ase rdepoli on[J].Science and Techno l ogy of A dvancedM a t e ri a ls,,2003,21(4):575-584.[6]熊志华,孙振辉,雷敏生.基于密度泛函理论的第一性原理赝势法[J].江西科学,2005,23(1):1-4.[7]W u Y ong.F irst-P rinci p l es Study on E l ec tronic S truct ure and Che m i ca l bong i ng o f the N e w Supe rconduc t o rM gB2[J].Journal ofC apital N or m al Un i versity(N atura l Science Edition),2002,23(1):23-27.[8]肖奇,邱冠周,覃文庆,等.FeS2(py rite)电子结构与光学性质的密度泛函计算[J].光学学报,2002,22(12):1501-1507. [9]A nh J,Rabe lais JW.Loss o f Sy lvain fiss ure asymme try i n sch izoph renic audit o ry hall ucra t o rs usi ng s ouctura l[J].Su rf Sci,1997,24(4):156-174.[10]Bax t e r R,R einhardt P,Lopez N,e t a.l The ex t ent of relaxa tion of t hea-A l2O3(0001)s u rface and the reliabilit y of e m pirjcal po-ten tials[J].Surf Sci,2001,20(1):448-460.(上接第12页)3结论1)S加入的过量率、加热时间、加热温度三个单因素对PbS生成率的影响:当S加入过量率处于22%~30%范围时,PbS的生成率均大于92%,且当硫的过量率为25%时,其生成率达到最大值95.5%;加热时间在6.5~8.5h范围内,PbS生成率都大于93%;加热时间为8h左右时,PbS的生成率达最大值;加热温度在340~400℃范围时,PbS生成率都大于96%,且当温度为380℃左右时,PbS的生成率达到最大值98.7%.2)PbS的加入量、搅拌时间对Pb中Cu含量的的影响:当PbS的加入量为理论加入量的1.10~1.25倍[7]时,铅中铜含量都小于0.02%;当PbS加入过量率在20%~25%的范围时,铅中铜含量可降到0.01%;此外,当搅拌时间控制在30m i n左右时,Cu含量可降为0.011%.结果表明,PbS的过量率为20%~25%,搅拌时间为30m in时,除Cu效果非常好.参考文献:[1]王积瑶.粗铅火法精炼工业实践[J].甘肃有色金属,2000(3):1-6.[2]陈友强.浅谈粗铅火法精炼工艺[J].有色金属设计与研究,2005,26(2):8-11.[3]周坚林.粗铅火法精炼过程中杂质控制的生产实践[J].湖南有色金属,2005,21(2):17-20.[4]迟有高.粗铅火法精炼除杂工艺实践[J].江苏冶金,1999(6):8-9.。
铜矿工艺流程优化改进

铜矿石破碎:将铜矿石破碎至一定粒度,便于后续处理
铜矿石浮选:利用浮选药剂将铜矿石中的铜与其他矿物分离
铜矿石磨矿:将破碎后的铜矿石磨成细粉,提高铜的回收率
当前流程存在的问题
效率低下:部分环节耗时过长,影响整体效率
成本较高:部分环节消耗大量资源,导致成本上升
采用环保型材料,减少污染
优化工艺流程,减少废水、废气、废渣的产生
加强环保监测,确保环保措施的有效实施
铜矿工艺流程改进措施
设备更新与改造
更新设备:采用先进的设备和技术,提高生产效率和质量
改造设备:对现有设备进行改造,提高设备的性能和稳定性
优化工艺:通过优化工艺流程,降低生产成本和提高生产效率
加强维护:定期对设备进行维护和保养,确保设备的正常运行和延长使用寿命
铜矿工艺流程优化方案
采矿工艺优化
效果评估:通过对比优化前后的采矿效率和成本,评估优化效果
具体措施:优化采矿工艺参数,提高设备利用率
优化方案:采用先进的采矿技术和设备
优化目标:提高采矿效率,降低成本
选矿工艺优化
浓缩工艺:采用高效浓缩设备,提高浓缩效率
过滤工艺:采用高效过滤设备,提高过滤效率
干燥工艺:采用高效干燥设备,提高干燥效率
汇报人:
铜矿工艺流程优化改进
汇报人:
目录
01
添加目录标题
02
铜矿工艺流程概述
03
铜矿工艺流程优化方案
04
铜矿工艺流程改进措施
05
铜矿工艺流程优化效益分析
06
铜矿工艺流程优化实施建议
添加章节标题
铜矿工艺流程概述
铜矿工艺流程简介
铜铅合金冶炼改进方法

研究重点与方向
新型冶炼工艺研究
针对现有冶炼工艺的不足,开展新型冶炼工艺研究,提高铜铅合 金的冶炼效率和产品质量。
环保技术研发
加强环保技术研发,降低铜铅合金冶炼过程中的污染物排放,提高 环保水平。
智能化控制技术应用研究
开展智能化控制技术在铜铅合金冶炼过程中的应用研究,提高生产 自动化水平。
对行业的贡献与影响
设备升级与改造
1 2
大型化设备
采用大型化冶炼设备,提高生产规模和效率。
自动化控制
引入先进的自动化控制系统,实现生产过程的智 能化和连续化。
3
余热回收
对生产过程中产生的余热进行回收利用,降低能 耗。
CHAPTER 03
改进方法的实施与效果
实施步骤与计划
步骤一
调研现有铜铅合金冶炼工艺流 程,找出存在的问题和瓶颈。
铜铅合金冶炼改进方法
汇报人:可编辑
2024-01-06
CONTENTS 目录
• 铜铅合金冶炼现状 • 铜铅合金冶炼改进方法 • 改进方法的实施与效果 • 经济效益与社会效益分析 • 未来展望与研究方向
CHAPTER 01
铜铅合金冶炼现状
当前铜铅合金冶炼技术
01
02
03
传统熔炼法
通过高温熔化铜和铅原料 ,再经过冷却、浇注得到 铜铅合金。
CHAPTER 04
经济效益与社会效益分析
经济效益分析
降低能耗
01
通过改进冶炼方法,可以显著降低铜铅合金冶炼过程中的能耗
,从而节约生产成本。
提高产量
02
改进后的冶炼方法可以提高铜铅合金的产量,增加企业的产出
,提高经济效益。
减少环境污染
硫酸铅渣直接还原熔炼的生产实践及改进

硫酸铅渣直接还原熔炼的生产实践及改进黎开金【摘要】文章以云南省某冶炼单位生产实践为实例,介绍了铜冶炼烟尘滤渣(以下称硫酸铅渣)的综合回收的工艺情况,并介绍了在节能降耗及环保要求日趋严格的背景下,该厂工艺的后续改进情况,实现了环境友好的冶炼生产模式.【期刊名称】《世界有色金属》【年(卷),期】2019(000)005【总页数】2页(P12,14)【关键词】铜冶炼烟尘;综合回收;还原熔炼;富氧强化熔炼;铅铋合金【作者】黎开金【作者单位】富民薪冶工贸有限公司,云南昆明 650400【正文语种】中文【中图分类】X758中国铜业西南铜业分公司铜主体冶炼工艺采用艾萨炉熔池熔炼和转炉吹炼技术,产出的艾萨烟尘和转炉烟尘主要以挥发元素铅、砷、铋、锌等金属为主,且铜含量较低,烟尘率总体<1.5%,产出烟尘通过高温酸浸和压滤后,滤液进行铜、锌和砷的湿法综合回收,滤渣则进行火法回收处理[1]。
针对铜烟尘滤渣主要以硫酸铅为主的性质,某公司在生产实践中不断改进生产工艺,实现了环境友好的硫酸铅渣直接还原熔炼生产模式。
1 冶炼原理1.1 原料成分表1 入炉物料主要元素含量成分 Cu Pb Zn As Bi Sn Ag In S含量(%) 2 25 3 8 4 0.5 0.03 0.02 6表1中列出了入炉物料物相,硫酸铅渣主要以PbSO4为主,并含有较高价值的Bi,可看作铅物料的还原熔炼。
1.2 熔炼机理(1)主要金属铅在冶炼过程中的行为在还原炉熔炼过程中,温度在550℃~630℃时硫酸铅在还原气氛中反应生成硫化铅:PbSO4+4CO=PbS+4CO2;PbSO4+4C=PbS+4CO硫酸铅渣在还原熔炼过程中,绝大部分PbSO4被还原成PbS,只有少部分按下列式离解:PbSO4=PbO+SO2+1/2O2硫酸铅开始分解的温度为850℃,而激烈分解的温度为905℃,石英、石灰等造渣成分能促进硫酸铅的分解,其反应为:PbSO4+SiO2=PbO·SiO2+SO2+1/2O2;PbSO4+Fe2O3=PbO·Fe2O3+SO2+1/2O;PbSO4+CaO=PbS+CaSO4PbSO4和反应产出的PbO均能与PbS反应生成金属铅:2 生产实践PbSO4+PbS=2Pb+2SO2;2PbO+PbS=3Pb+SO2在熔炼区,所有炉料均融化成液体,CaO、FeO等将硅酸铅中的PbO置换出来,进而被CO还原成铅,其反应为:2PbO·SiO2+CaO+2CO=2Pb+CaO·SiO2+2CO2;2PbO·SiO2+2FeO+2CO=2Pb+2FeO·SiO2+2CO2;2PbO·SiO2+CaO+FeO+2CO=2Pb+CaO·FeO·SiO2+2CO2同时,因硫酸铅的还原反应生成较多硫化铅,在生产中加入部分铁屑置换,以降低铅冰铜含铅。
铜冶炼选矿工艺流程的优化与改进研究

铜冶炼选矿工艺流程的优化与改进研究摘要:铜冶炼选矿工艺流程的优化与改进研究是为了提高铜冶炼效率、降低成本、减少环境污染等目标而展开的工作。
随着技术的不断发展和需求的增加,寻求更加高效、环保的选矿工艺流程变得尤为重要。
本文将探讨铜冶炼选矿工艺流程的优化与改进研究的重要性和可行性,并介绍一些常见的优化和改进方法。
结束语:关键词:铜冶炼选矿;工艺流程;优化;改进引言铜是一种重要的金属资源,广泛应用于电力、电子、建筑等领域。
然而,铜矿资源的储量日益减少,矿石品位也在逐渐降低,这使得铜冶炼工艺流程的优化与改进变得尤为重要。
总之,铜冶炼选矿工艺流程的优化与改进研究具有重要的意义和广阔的前景。
通过持续不断的技术创新和工艺改进,可以有效提高铜冶炼行业的竞争力和可持续发展能力。
1铜冶炼选矿工艺流程铜冶炼选矿工艺流程一般包括以下几个主要步骤:(1)破碎和磨矿:将原料矿石经过破碎和磨矿后,使其达到适合后续处理的粒度。
通常需要使用破碎机、球磨机等设备进行操作。
(2)浮选:将磨矿后的矿石进行浮选处理,将铜矿石与其他杂质进行分离。
浮选通常采用药剂进行,通过调整药剂配比和PH值等条件,将铜矿石浮于上层泡沫中,而杂质沉于底层,实现分离。
常用的浮选机械设备有浮选机和浮选槽。
(3)脱水:对于浮选后获得的泡沫浓缩液或浆料,需要进行脱水处理,以提高含铜固体的浓度。
脱水一般通过离心机或压滤机进行,将多余的水分去除。
(4)精矿处理:经过脱水的含铜固体称为精矿,对精矿进行进一步处理。
常见的方法包括熔炼、电解等。
熔炼是将精矿加热至高温,以溶解铜的方法进行分离,而电解则是通过电流将铜从精矿中析出到阴极上。
(5)精炼:精矿处理后得到的粗铜需要经过精炼,以提高纯度和质量。
常用的精炼方法有火法精炼和电解精炼。
火法精炼通过高温加热,将冶炼炉中的铜与氧化剂反应,去除杂质。
电解精炼则是通过电解过程将粗铜溶液中的杂质在阳极上析出,得到纯铜。
(6)铜产品制造:经过精炼后得到的纯铜可用于制造各种铜合金和铜制品,如铜管、铜线、铜板等。
铅锌冶炼技术的改进与优化

07
参考文献
参考文献
总结词:详细描述 总结词:详细描述 总结词:详细描述
THANKS
感谢观看
随着环保要求的提高和资源的日益枯 竭,传统的铅锌冶炼技术面临诸多挑 战,如能耗高、污染重、资源利用率 低等。
目的与意义
目的
通过对传统铅锌冶炼技术的改进 与优化,降低能耗和污染,提高 资源利用率和经济效益。
意义
有利于实现铅锌冶炼行业的可持 续发展,推动产业升级和转型, 为全球环保事业做出贡献。
02
研发新型冶炼技术
改进现有冶炼设备
投入研发力量,开发具有更高能源效率和 更低污染排放的新型冶炼技术。
对现有冶炼设备进行技术升级和改造,提 高设备效率和稳定性。
优化冶炼工艺参数
加强金属回收与利用
通过实验和数据分析,优化冶炼过程中的 各项工艺参数,实现能耗和排放的最优化 。
研究金属回收新技术,提高有价金属的回 收率,降低资源消耗。
传统铅锌冶炼技术
传统技术的特点
01
02
03
历史悠久
传统铅锌冶炼技术经过长 时间的发展和改进,具有 深厚的历史底蕴。
技术成熟
经过实践检验,传统技术 具有可靠性和稳定性,能 够保证铅锌冶炼的质量和 产量。
成本较低
传统技术通常采用较为简 单的设备和工艺,因此初 始投资和运营成本相对较 低。
传统技术的限制
树立环保意识,将环境保护纳入企业发展的重要 议程,实现经济效益和生态效益的双重提升。
06
结论与展望
研究结论
01
铅锌冶炼技术经过不断改进和 优化,提高了金属的回收率和 冶炼效率,降低了能耗和环境 污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铅黄铜熔炼除渣工艺改进
发表时间:2019-05-07T10:55:19.227Z 来源:《建筑学研究前沿》2019年1期作者:刘坤[导读] 如何有效的去除铅黄铜炉水中非金属夹杂物的含量是水平连铸铅黄铜铸锭重点解决的问题。
本文主要介绍如何有效地去除炉水中含有的夹渣。
铜陵有色股份铜冠黄铜棒材有限公司
摘要:铅黄铜铸锭中非金属夹杂物的含量和分布是反映铅黄铜熔体冶金质量的一个重要标志,夹杂物的存在会破坏铅黄铜基体的连续性,降低铅黄铜材料的塑性和韧性,恶化产品表面质量和工艺性能。
如何有效的去除铅黄铜炉水中非金属夹杂物的含量是水平连铸铅黄铜铸锭重点解决的问题。
本文主要介绍如何有效地去除炉水中含有的夹渣。
关键词:工频感应熔炼炉;比重差作用;浮选法;造渣剂
德国OTTO-JUNKER工频无芯感应炉熔炼金属原理是:感应线圈通交变电流时产生交变磁通,此磁通交链着无芯炉坩埚中的金属炉料,于是在炉料中引起感应电动势,由于炉料是导体,呈闭合回路,在该电动势下产生很强的电流,又由于电流的趋表效应,强大的电流沿炉料表层流过,产生大量的焦耳热,从而使炉料熔化,无芯炉发热源感应线圈在热能传递时由炉壁四周向中间传递,整个炉体都受热传递,同时无芯炉通电时产生的电磁场具有搅拌作用,适合加入黄铜屑等细小废料。
铅黄铜在原料配料时要求竟可能的使用黄铜屑和返回料,从而降低成本。
返回料中含有大量的油污和杂质,在熔化过程中易产生气体以及大量炉渣,铜水在保温状态下温度约为950℃,此温度下铜水粘稠度很高,铜水内的炉渣与铜水混合在一起难以析出,转注前将温度升高至喷火温度(1030—1100℃)时,铜水的粘稠度降低,绝大部分炉渣将会夹杂着铜水析出表面,但剩余部分细小炉渣仍然夹杂在铜水中,细小炉渣夹杂于铜水中不易分离出来,导致后续生产铅黄铜铸锭时,铸锭中可能夹渣;同时由于铜水的粘稠性,炉渣内包裹着一定量的铜水,炉渣含铜量高,一方面造成原料很大的浪费,另一方面炉渣含铜量高、炉渣比重大,增加工人的劳动强度。
如何能够有效的去除铜水中含有的细小杂质,将细小杂质与铜水分离开成为水平连铸铅黄铜铸锭重点解决的问题。
改进前铅黄铜除渣工艺采用浮选法,在炉料熔化完成后,进行升功率升温搅拌,铜水表面有一定量的炉渣浮出,继续升温达到铅黄铜喷火温度,待喷火3次后静置10分钟左右,观察铜水颜色为深红色,进行扒渣、转注。
此工艺依据的原理是:铅黄铜溶液中杂渣的密度小于铅黄铜溶液,升温后上浮,固体夹杂颗粒在液体中上浮速度服从Stokes定律:v=[2(ρ—ρ0)r2/9η]·g。
式中v为粒子的沉降速度,p和p0分别为球形粒子与介质的密度,r为粒子的半径,η为介质的黏度,g为重力加速度。
由该定律可知炉渣上浮速度与炉水黏度有关,铅黄铜铜液温度低时,黄铜炉水黏度大,夹渣不易上浮,升温能够降低炉内铜水黏度,使炉渣容易上浮;升温到喷火温度,大量的锌蒸汽从炉水内部蒸发出来,蒸发的锌蒸同时将铜液中的Cu2O等氧化物给还原,同时,锌蒸汽既带走了炉水内的气体,也吸附炉水中的夹渣将夹渣带出;静置使炉内铜水在电磁力的作用下不停地进行搅拌,在搅拌过程中伴随着炉渣和气体上浮,起到除渣作用。
但炉内铜水仍然有一小部分细微杂渣,由于铜水的粘稠性,这部分细微杂渣溶解在铜水中难以通过上述的铅黄铜除渣工艺升温、静置法除去,这一小部分细小杂物溶解与铜水中,可能导致铸锭中含有分散的细微夹杂,从而影响铅黄铜铸锭质量。
改进后工艺在炉料熔化后加入造渣剂,用捞渣瓢对造渣剂进行搅拌,再进行升功率升温搅拌,铜水表面有一定量的炉渣浮出,继续升温达到铅黄铜喷火温度,待喷火3次后静置10分钟左右,观察铜水颜色为深红色,进行扒渣、转注。
造渣剂溶剂在熔炼温度下的密度小于金属液而浮在金属液上层,造渣剂溶剂加在熔池表面时,上层的夹渣与造渣剂接触,发生吸附、溶解或化合作用而进入溶剂中。
这时与造渣剂接触的薄层铜水较纯,其密度比含夹渣的铜水密度大而向下运动。
与此同时,含夹渣较多的下层铜水上升与造渣剂接触,其中的夹渣不断地与溶剂发生吸附、溶解或化合作用而进入溶剂中。
这一过程一直进行到整个熔池内铜水中的夹渣几乎被溶剂吸收为止。
同时,造渣剂中含有的微量元素与铜水反映,促进铜水生核和改变晶体生长、细化基体相、改善其形态和分布状况,发生变质作用。
造渣剂后能够有效地对黄铜液进行充分的提炼、除气、除渣、吸附以及除去Fe、Al、Sn、Ni、S等在铸锭中形成的硬脆相和夹渣物,洁净了铅黄铜铜液。
造渣剂内成份能够抑制晶粒长大,晶粒细化作用明显,以便于溶液在进入保温炉后铸造铸锭时中心部分等轴晶区更可能的增大,而外部激冷晶、柱状晶区面积减小,有利于铸锭的加工变形,提高了铅黄铜铸锭的机械性能和表面质量,改善了铸锭内部的金相组织结构。
加入造渣剂的炉渣和未加入造渣剂的炉渣进行对比发现:
1、未加入造渣剂炉渣中含有有块状炉渣,捻出待冷却后,用锤将块状炉渣敲碎,发现炉渣内包裹着粗大的铜颗粒,粉末状的炉渣颗粒比较大,炉渣比重比较大,
2、加入造渣剂后,炉渣大部分成灰白色粉末状,颗粒比较细小,小部分凝结在一起的块状炉渣,用锥子敲时很容易敲碎,成粉末状,炉渣中几乎不含有未熔化的铜颗粒,炉渣比重比较小,
上述说明加入造渣剂后发现,溶液中含有的杂质明显减少,铸锭内部含有的细小夹杂基本消除,铜水表面的浮渣松散、比重轻、容易扒渣,减少炉渣中的含铜量,降低金属损耗,提高经济价值,同时也减轻了工人的劳动强度。
对铜液进行分析检测,未发现带入任何铅黄铜限制的杂质。
参考文献
[1]、陈存中,有色金属熔炼与铸锭【M】.北京:冶金工业出版社,2008。