比例电磁铁综述-完整版

合集下载

比例电磁铁

比例电磁铁

比例电磁铁的结构
它的工作范围较窄, 仅适用于行程较小 的电液比例压力阀。 工作特性是上图的
曲线3
增加了轭铁1, 减少了漏磁通, 稳
住了螺管力, 因而工作特性 曲线如上图的 曲线3。
锥底结构螺管电磁铁 1-轭铁 2-外壳 3-线圈 4-锥底止座
比例电磁铁的结构
电磁 吸力
盆底止座结构的比例电磁铁 1-衔铁 2-上轭铁 3-底面 4-隔磁环 5-锥面
普通电磁铁与比例电磁铁的静态吸力特性。静态吸力特性 就是在稳态过程中得到的吸力特性。
静态吸力特性只是衔铁无限缓慢移动时的一种特例。
2-比例电磁铁 可以看出:比例电磁铁的 输出电磁力在整个工作行程
内基本上保持恒定。
比例电磁铁在不同输入电流下的力—位移特性曲线, 可见电磁力与输入电流之间的关系是线性关系。
在其工作行程内的任何位置上,电磁力只取决于输入电流。
普通电磁铁的结构
电磁铁在吸合过程中,产生两个磁通:主磁通 和漏磁通L 。衔铁受到的吸力由两部
分构成:主磁通产生端面力,漏磁通产生螺管力。这两个力的方向是一致的(向左)
F螺管力 F端面力
衔铁运动时, 主气隙是不断 减小的,因而 主磁通逐渐增 加,而漏磁通 就不断减小, 也即是螺管力 与端面力之比 不断变化,在 处,漏磁通与 主磁通相比, 其值很小,螺 管力趋于零。
最大输出力为65~80N有效 行程。
力控制型比例电磁铁及其电器控制 1-比例电磁铁 2-给定电位计 3-比例电控器
在用作位置输出控制时 行程为3~5mm。
比例电磁铁的维护
比例电磁铁多数为湿式,也有干式比例电 磁铁,不同厂家的湿式比例电磁铁中耐油 压的程度也不尽相同,多数为耐35 MPa的 静压。

第二章 常用术语和比例电磁铁

第二章 常用术语和比例电磁铁

返回
液压反馈
对于比例控制系统而言,其优异的性能 和控制精度主要通过以下手段得到的:
1.阀内和系统中的液压反馈(压力反馈和流量反馈)
2.校正手段(含其采用的控制策略) 3.采用了比例电磁铁
返回
普通阀用电磁铁
阀用电磁铁根据所用电源的不同,有以下三种:①交 流电磁铁。 ②直流电磁铁。 ③本整型电磁铁。还可分为 湿式和干式电磁铁两种。
比例电磁铁的特点:
推力大、结构简单、对油质要求不高、维护方便、成 本低,衔铁腔可做成耐高压结构。
对比例电磁铁的要求:
1.水平的位移-力特性,即在比例电磁铁有效工作行程内, 当输入电流一定时,其输出力保持恒定,基本与位移无关。
2.稳态电流-力特性具有良好的线性度,死区及滞环小。
3.响应快,频宽足够宽。
比例电磁铁的使用、维护与调整
1.与先导级配合的比例电磁铁,其工作行程相当小,应限制 在比例电磁铁的有效行程内,即使它的整个工作行程处于 比例电磁铁的水平吸力区段。 2.比例电磁铁一般多为湿式直流电磁铁,要特别注意衔铁腔 是不是耐高压,耐多少高压,不耐高压的比例电磁铁一般 只能承受溢流阀、方向阀的回油压力。 3.对配用两个比电磁铁的比例方向阀,衔铁总行程包括工作 行程和空行程。当其中一个工作在工作区时,另一个运行 于非工作区(空行程区)。一般情况下,工作行程和空行 程相等,各为电磁铁总行程的一半。如衔铁行程为(3+3) mm,表示工作行程3mm,空行程3mm,即以电磁铁推杆 全部推出位置为起始点,将推杆向里面推3mm为水平吸力 工作区,再向里推3mm为非工作区。
2、行程控制型比例电磁铁
行程控制型比例电磁铁是在力控制型比例电磁 铁的基础上,将弹簧布置在阀芯的另一端得到的。 其中的弹簧是一个力-位移转换元件,电磁铁的输 出力通过弹簧转换为阀芯的位移,即行程控制型比 例电磁铁实现了电流-力-位移的线性转换。 这类比例电磁铁的工作行程比较大,用于控制 阀口开度(如比例节流阀、比例流量阀和比例方向 阀),其行程与比例阀阀口的开度相对应。行程控 制型比例电磁铁与力控制型比例电磁铁的特性基本 一致,即都具有水平的位移-力特性和线性的电流 -力特性。

比例电磁铁概述

比例电磁铁概述

比例电磁铁概述比例电磁铁作为电液比例控制元件的电一机械转换器件,其功能是将比例控制放大器输给的电流信号转换成力或位移。

比例电磁铁推力大、结构简单,对油质要求不高,维护方便,成本低廉,衔铁腔可做成耐高压结构,是电液比例控制技术中应用最广泛的电一机械转换器。

比例电磁铁的特性及工作可靠性,对电液比例控制系统和元件具有十分重要的影响,是电液比例控制技术关键部件之一。

电液比例控制技术对比例电磁铁提出了一定的要求,主要有:1)水平的位移一力特性,即在比例电磁铁有效工作行程内,当线圈电流一定时,其输出力保持恒定。

2)稳态电流一力特性具有良好的线性度,较小的死区及滞回。

3)阶跃响应快,频响高。

比例电磁铁的结构和工作原理虽然目前国内外市场中比例电磁铁的品种繁多,但其基本的结构和原理大体相同。

图1所示即为一典型的耐高压比例电磁铁的基本结构。

图1 比例电磁铁结构图图2比例电磁铁力-位移特性图由图1可知,典型的耐高压比例电磁铁主要由导套、衔铁、外壳、极靴、线圈、推杆等组成。

导套前后两段为导磁材料,中间则用一段非导磁材料(隔磁环)焊接。

导套具有足够的耐压强度(约可承受35MPa的静压力)。

导套前段和极靴组合,形成带锥型端部的盆型极靴,其相对尺寸决定了比例电磁铁稳态特性曲线的形状。

导套和壳体之间配置同心螺线管式控制线圈。

衔铁的前端装有推杆,用以输出力或位移;后端装有弹簧和调节螺钉组成的调零机构,可以在一定范围内对比例电磁铁特性曲线进行调整。

比例电磁铁一般为湿式直流控制,与普通直流电磁铁相比,由于结构上的特殊设计,使之形成特殊的磁路,从而使它获得基本的吸力特性,即水平的位移一力特性,与普通直流电磁铁的吸力特性有着本质区别。

比例电磁铁的磁路,在工作气隙附近被分成两部分Φ1和Φ2,如图3(a)所示。

其中,一条磁路中Φ1由前端盖盆型极靴底部,沿轴向工作气隙,进入衔铁,穿过导套后段和导磁外壳回到前端盖极靴,产生轴向推力(端面力)F1;而另一磁路Φ2经盆型极靴锥形周边(导套前段),径向穿过工作气隙进入衔铁,而后与Φ1汇合,产生轴向附加力F2。

比例电磁铁

比例电磁铁

比例电磁铁电液比例控制技术对比例电磁铁提出了一定的要求,主要有:a)水平的位移力特性,即在比例电磁铁有效工作行程内,当线圈电流一定时,其输出力保持恒定。

b)稳态电流——力特性具有良好的线性度,较小的死区及滞回。

c)阶跃响应快.频响高。

1.1 结构与水平吸力特性图0.1 耐高压直流比例电磁铁的结构和特性a)传统电磁铁的吸力特性;b)比例电磁铁的特性的形成——2种吸力特性的叠加;c)形成2种吸力特性的结构因素——隔磁环;d)分3个区段——用小隔磁环来消除第1区段,第2区段为水平吸力区,第3区段为辅助工作区;e)调零弹簧对输入输出特性的影响;f)电磁铁工作状态:湿式,耐高压,动铁前后通油孔改善动态特性。

1.2 稳态控制特性图0.2 不带位移反馈比例电磁铁位移——力特性图0.3 不带位移反馈比例电磁铁电流——力特性图0.4 带位移闭环的比例电磁铁的稳态特性1.3 力控制型与位置控制型:结构与特性的对比力控制型——与输入信号成比例的是输出力;位置控制型——与输入信号(电压)成比例的不是输出力!而是动铁位移(具体力的大小由负载需要定——在最大吸力之内)行程调节型——力控制性的变种(由弹簧转化为位移) 比较关系如下表:结构输入输出特性使用 力控制型 电流--- 输出力 输出力只与输入电流成正比工作区内与衔铁位移无关行程较短,用于先导级行程控制型 力控制型+负载弹簧,结构完全相同,只是使用上的区别电流--力----位移输出位移与输入电流成正比 输出行程较大,多用于直控阀 位置调节型力控制型+位移传感器,增加了动铁位置小闭环电流--- 衔铁位置衔铁位置与输入电流成正比与所受反力无关*有动铁位置反馈闭环 *用于控制精度要求较高的直控阀1.4 结构对性能的影响a) 动铁的阻尼通道; b) 反比例;c) 双向激励线圈,湿式,双向输出,无零位死区; d) 排气。

举例某电磁铁的规格如下表:电磁铁规格 035 045 060 新发展输出力 N 55 75 135 行程 mm 2+2 3+3 4+4额定电流 mA 680 810 11102500--3700常态电阻 Ω 24.6 2116.7电压V24。

比例电磁铁

比例电磁铁

比例电磁铁
比例电磁铁是一种能够按照一定的比例来产生电磁力的装置。

这种类型的电磁铁通常由绕组、铁芯和电源组成。

绕组是一个由导线制成的线圈,通常绕在一个铁芯上。

当电流通过绕组时,会产生一个磁场。

磁场的强度与电流的大小成正比。

铁芯的作用是增强磁场的强度。

铁芯通常由铁制成,因为铁具有较高的磁导率,能够有效地集中和增强磁场。

电源提供了电流给绕组,从而产生磁场。

电源可以是直流电源或交流电源,具体取决于应用需求。

比例电磁铁的原理是根据安培定律,电流通过绕组时会产生一个磁场,磁场与电流的关系为磁场强度等于电流乘以绕组的匝数。

因此,通过控制电流的大小和绕组的匝数,可以实现按照一定比例来产生电磁力。

比例电磁铁在工业和科学研究领域有广泛的应用。

例如,它可以用于控制和调节机械系统的运动,如电磁阀、电磁刹车等。

此外,比例电磁铁还可以用于制造精密仪器和设备,如电流表、磁力计等。

比例电磁铁与普通电磁铁的区别【范本模板】

比例电磁铁与普通电磁铁的区别【范本模板】

一、比例电磁铁产生一个与输入变量成比例的力或位移输出液压阀以这些输出变量力或位移作为输入信号就可成比例地输出流量或压力这些成比例输出的流量或压力输出对于液压执行机构或机器动作单元而言意味着不仅可进行方向控制而且可进行速度和压力的无级调控─同时执行机构运行的加速或减速也实现了无级可调如流量在某一时间段内的连续性变化等。

二、比例电磁铁必须具有水平吸力特性,即在工作区内,其输出力的大小只与电流有关,与衔铁位移关,若电磁铁的吸力不显水平特性,弹簧曲线与电磁力曲线族只有有限的几个交点,这意味着不能进行有效的位移控制.在工作范围内,不与弹簧曲线相交的各电磁力曲线中,对应的电流在弹簧曲线以下,不会引起衔铁位移;在弹簧曲线以上时,若输出这样的电流,电磁力将超过弹簧力,将衔铁一直拉到极限位置为止。

相反,若电磁铁具有水平特性,那么在同样的弹簧曲线下,将与电磁力曲线族产生许多交点。

在这些交点上,弹簧力与电磁力相等,就是说,逐渐加大输入电流时,衔铁能连续地停留在各个位置上。

三、比例阀,又称电液比例阀,是一种介于通断控制与伺服控制之间的新型电液控制元件。

是根据电信号连续的、按比例地控制液压系统中的压力、流量、方向,并可以防止液压冲击。

由于其结构设计、工艺性能、使用价格都介于通断控制元件和伺服控制之间,近年来得到广泛应用。

控制原理:当电信号输入其电磁系统中,便会产生与电流成比例的电磁推力,该推力控制相应元件和阀芯,导致阀芯平衡系统调定的压力,使系统压力与电信号成比例。

如输入电信号按比例或一定程序变化,则系统各参数也随着变化.比例阀一般采用两端承压面积不等的差径活塞结构。

工作原理如图12-9所示,比例阀不工作时,差径活塞2在弹簧3的作用下处于上极限位置。

此时阀门1保持开启,因而在输入控制压力P1与输出压力P2从零同步增长的初始阶段,总是P1=P2.但是压力P1的作用面积为A1=π(D2-d2)/4,压力阀的作用面积为A2=πd2/4,因而A2〉A1,故活塞上方液压作用力大于活塞下方液压作用力.在P1、P2同步增长过程中当活塞上、下两端液压作用之差超过弹簧3的预紧力时,活塞便开始下移。

什么是比例电磁铁

什么是比例电磁铁

什么是电磁铁
安阳市华阳电磁铁制造有限公司
电磁铁顾名思义就是通电能产生电磁的一种装置,内部带有铁芯的通电螺线管叫电磁铁。

当在通电螺线管内部插入铁芯后,铁芯被通电螺线管的磁场磁化。

磁化后的铁芯也变成了一个磁体,这样由于两个磁场互相叠加,从而使螺线管的磁性大大增强。

为了使电磁铁的磁性更强,通常将铁芯制成蹄形。

但要注意蹄形铁芯上线圈的绕向相反,一边顺时针,另一边必须逆时针。

如果绕向相同,两线圈对铁芯的磁化作用将相互抵消,使铁芯不显磁性。

另外,为了使电磁铁断电立即消磁,我们往往采用消磁较快的的软铁或硅钢材料来制做。

这样的电磁铁在通电时有磁性,断电后磁就随之消失。

电磁铁的铁芯不能用钢制做。

否则钢一旦被磁化后,将长期保
持磁性而不能退磁,则其磁性的强弱就不能用电流的大小来控制,而失去电磁铁应有的优点。

液压比例阀比例电磁铁的工作原理简介

液压比例阀比例电磁铁的工作原理简介

液压比例阀比例电磁铁的工作原理简介比例电磁铁前面多次提到过在比例阀中占很重要地位的驱动控制部分――将电信号转换为位移信号的电- 机械转换器。

那么此节将对它作一个详细的介绍。

液压控制系统中最主要的被控参数是压力与流量,而控制上述两个参数的最基本手段是对流阻进行控制。

一种控制流阻的技术途径是直接的电液转换。

它是利用一种对电信号有粘性敏感的流体介质一电粘性液压油,实现电液粘度转换,从而达到控制流阻、实现对系统的压力和流量控制的目的。

显然,这种流阻控制方式更为简便,它无需电-机转换元件。

但是目前这种技术还未达到实用阶段和要求。

目前生产技术上能实现的可控流阻结构形式是通过电-机械转换器实现间接的电-液转换。

将输入的电信号转换成机械量。

这种电-机械转换器是电液比例阀的关键组件之一,它的作用是把经过放大后的输入信号电流成比例的转换成机械量。

根据控制的对象或液压参数的不同,这个力或者传给压力阀的一根弹簧,对它进行预压缩,或者输出的力、力矩与弹簧力相比较,产生一个与电流成比例的小位移或转角,操纵阀芯动作,从而改变可控流阻的液阻。

可见,电一机转换器是电液比例阀的驱动装置。

它的静态,动态特性对整个比例阀的设计和性能起着重要的作用。

电- 机械转换器分类a. 按其作用原理和磁系统的特征分,主要有:电磁式、感应式、电动力式、电磁铁式、永磁式、极化式;动圈式、动铁式;直流、交流。

b. 按其结构形式和性能分,主要有:开关型电磁铁、比例电磁铁、动圈式马达、力矩马达、步进电动机等。

比例电磁铁本设计属于电液比例阀一大类,顾名思义其应用的电- 机械转换器应是比例电磁铁。

比例电磁铁的功能是将比例控制放大器输出的电信号转换成力或位移。

比例电磁铁推力大,结构简单,对油液清洁度要求不高,维护方便,成本低,衔铁腔可做成耐高压结构,是电液比例控制元件中广泛应用的电- 机械转换器件。

比例电磁铁的特性及工作可靠性,对电液比例控制系统和元件的性能具有十分重要的影响,是电液比例控制系统的关键部件之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 比例电磁铁的结构原理比例电磁铁结构主要由衔铁、导套、极靴、壳体、线圈、推杆等组成。

其工作原理是:磁力线总是具有沿着磁阻最小的路径闭合,并有力图缩短磁通路径以减小磁阻。

图1 比例电磁铁的结构动子由两种不同的材料组成,中间的是导磁材料(电磁纯铁—中间开孔),左边的推杆导磁,右边的推杆非导磁。

动子由油布轴承支承,推杆用以输出力。

为了动子可以左右运动,在左端右挡板,在右端装有弹簧组成的调零机构。

导套前后两段由导磁材料制成,中间用一段非导磁材料—隔磁环。

导套前段和极靴组合,形成带锥形端部的盆形极靴,导套和外筒间配置同心螺线管式控制线圈。

外壳采用导磁材料,以形成磁回路。

本电磁铁中因为有导套中隔磁环的特殊设计才有了输出力是准恒定的特性。

图2 隔磁环(焊铜)在一定的位移范围内,动子的输出力为一准恒定值。

根据电磁铁基本工作原理,在动子运动过程中,磁阻会越来越小,动子受力越来越大,不会出现输出力恒定的情况,为了使电磁铁能在一定位移内输出近视恒定的力,电磁铁采用结构的特殊—隔磁环就是使动子输出力恒定的原因。

当给比例电磁铁控制线圈通入一定电流时,在线圈电流控制磁势左右下,形成两条磁路,一条磁路1φ由前端盖经盆形极靴底部沿轴向工作气隙进入衔铁,穿过导套后段、导磁外壳回到前端盖极靴,产生轴向力1a F ;另一条磁路2φ经盆形极靴锥形周边(导套前段)径向穿过工作气隙,再进入衔铁,而后与1φ汇合形成附加轴向力2a F ,二者综合得到比例电磁铁输出力a F 相对于衔铁位移的水平特性。

图3 比例电磁铁的磁路分布φ产生的端面力为:1φ产生的轴向附加力为:2图4 不同时刻电磁铁内部磁力线分布2. 比例电磁铁的工作过程对工作中的电磁铁来说,在通电或断电或一定电流(电压)下动子能快速准确地到达指定位置,但实际上由于存在电感和动子质量,或负载的原因,使得动子的运动过程变得复杂。

电磁阀吸合运动过程可分为两个阶段:吸合触动时间t1和吸合运动时间t2,t1是从线圈得到电压起到电流按指数曲线增至吸合电流为止的过程,在此过程中衔铁尚未运动,这段时间是由于电与磁的惯性引起的滞后时间,取决于电磁铁的结构、材料、线圈电压、电感的大小和弹簧预紧力大小;进入t2阶段后,吸力大于预紧力,衔铁开始运动,电流变化规律就比较复杂:由于工作气隙在衔铁运动过程中逐渐减小,使线圈电感逐渐增大并产生反电势,它与线圈自感电势一起,共同阻止线圈电流的增长,致使线圈电流增大到一定程度后不仅不再增大,反而有减小趋势,直到衔铁闭合,工作气隙不再变化,反电势为零,电流按新的指数曲线上升至稳态电流。

这段时间取决于阀芯所受的各种阻力。

对于电磁阀的释放过程,如果忽略磁导体中涡流的影响,当线圈信号切除后,电流立即降为零,衔铁随即开始运动,故其释放触动时间接近于零,远较吸合触动时间短。

图5 电磁铁的电流曲线图6 (不同电流下)比例电磁铁的力——位移曲线电磁力的大小为S Ni S F M 0202)(2121μδμφ==,与线圈匝数平方成正比,与气隙间隙平方成反比。

在电磁阀其它结构参数和驱动电流以及气隙宽度大小相同时,线圈匝数越多,气隙的磁场强度就越强,则气隙磁感应强度也越大,电磁吸力也就越大。

但实际上线圈匝数不是越多越好,随着匝数的增加,会使线圈电感和线圈电阻增大,从而在衔铁吸合初始阶段限制了驱动电流的迅速增大,在释放过程中使电流衰减速度变慢。

电磁阀气隙宽度包括衔铁工作行程和残余间隙宽度两个部分。

当衔铁完全开启时,此时气隙宽度等于衔铁工作行程和残余间隙宽度之和。

当衔铁完全吸合时,气隙宽度等于残余间隙宽度。

随着气隙宽度的增大,将使电磁吸力减小。

衔铁工作过程中,气隙宽度减小,有利于电磁阀的打开。

在残余间隙不变的前提下,如果衔铁工作行程增加,则在关闭过程和重新打开过程的时间增加,电磁力增加速度平缓,电磁阀的动态特性变差。

同时,驱动电路的形式及参数直接决定线圈电流波形,并极大地影响电磁阀的响应速度。

驱动电压为24V 时,电磁阀响应时间为0.4ms ,当驱动电压为48V 时,电磁阀响应时间为0.25ms ,驱动电压的升高对电磁阀的响应速度有着明显的影响。

不过,驱动电压从48V 到100V 之间,响应时间的提高率为o.02ms/2OV ,驱动电压从100V 提高到120V ,响应时间缩减的幅度更小了,仅为0.01ms 。

图7 不同电磁铁工作特性曲线3. 比例电磁铁试验台测控系统系统主要由工业机、数据采集单元、输出制单元、传感器和比例阀测试试验台等组成。

工控机是整个测试系统的主控机它通过人机界面接收用户指令,并根据试验内容选择相应的程序进行数据采集处理、显示、打印和输出指令信号控制比例阀测试试验台的动作。

传感器单元括三个压力传感器和两个位移传感器,负责将表征被测系统的物理量转化为标电信号,送入数据采集卡进行显示或处理。

输出控制单元包括4路数字量输出1路模拟量输出,负责将工控机的指令信号进行转换和放大,最终控制比例阀验台的执行元件。

图8 试验台测控系统的组成图9 比例电磁铁测试装置4. 比例电磁铁的材料电磁阀的铁芯采用铁磁性材料,不同的铁磁性材料具有不同的磁化曲线,其磁感应强度B与磁场强度H的关系为B=μH,它对电磁阀的性能产生重大的影响,因此必须根据电磁阀的设计与性能要求进行合理的选择。

表1和表2列出一些常用软磁材料的主要特点、应用范围和主要性能参数。

比较和分析这些参数,电工纯铁的极限磁感应强度很高,磁化曲线在宽广的范围内具有较高的磁导率,并且该材料的冷加工性能良好,价格适中,所以应选用铁芯材料为电工纯铁的电磁阀用于电控泵一管一阀一嘴燃油喷射系统中。

电磁阀的锥阀阀芯部分山于在运动过程中阀芯锥形头部不断撞击阀体,因此可考虑锥阀阀芯的主体部分采用电工纯铁,而阀体头部选用硬度高,耐磨性好,抗振动冲击性能好的材料,如铁铝合金。

具有高饱和磁通密度和高电阻率的材料非常适合用于制造高速电磁阀。

高饱和磁通密度意味着材料能将更多的电能转化为磁能,而高电阻率则意味着涡流损失更小,磁场渗透速度更快,电能转化为磁能的速度越快。

另外,矫顽磁力对响应速度的影响并不明显,原因在于由于用强电能激励,产生强的外部磁场使磁材料迅速饱和,相较于外部表1 软磁材料的品种、主要特点及应用范围表2 软磁材料的主要性能参数5. 电磁阀设计方法电液比例阀是介于普通液压阀和电液伺服阀之间的一种液压阀,它可以接受电信号的指令,连续成比例地控制系统的压力、流量等参数,使之与输入电信号成比例的变化。

电液比例阀多用于开环系统中,实现对液压参数的遥控,也可作为信号转换与放大元件用于闭环控制系统。

与手动调节和通断控制的普通液压阀相比,它能大大提高液压系统的控制水平;与电液伺服阀相比,虽然它的动静态性能有些逊色,但结构简单、成本低,已能满足多数对动静态指标要求不很高的场合。

大多数比例阀的频宽为(5~50)Hz范围,而超高速比例阀达到300~450Hz滞环误差多在1%~7%之间。

设计电磁铁的一般步骤:首先根据电磁吸力的要求及衔铁结构形式估算衔铁直径,然后估算线圈的外径及长度、确定线圈的匝数、磁势等,最后是确定整个磁路结构。

电磁铁所使用的软磁材料应具有高的磁导率、高的饱和磁感应强度和低的矫顽力;静铁芯和衔铁的结构采用“大铁芯小衔铁”的原则;电磁阀的功率驱动采用双电压驱动等。

电磁线圈的直径、热扩散系数,阻抗之间相互关联,增加线圈直径可以减小电阻,但是随着线圈阻抗的降低,线圈的发热损耗会增加,造成阀内温度升高,使得阀中油液粘性降低,加剧了摩擦损耗。

同时随着线圈直径的增大,线圈的始动安匝数也减小,电感也相应减小,这样会影响到线圈其它性能参数(如出力不够等等)。

图2给出了导套和隔磁环的截面图,图中D代表导套和隔磁环的厚度,D=0.22mm,L代表隔磁环长度,L=0.3mm,a和θ分别为隔磁环和导套前、后端的倾角,a=0°,θ=48°,h 和L分别是导套后端结构尺寸,h=3mm,L=1.3mm。

当然,比例技术也存在着明显的缺陷,主要是成本较高,技术较复杂。

这也正是比例阀没有得到飞速发展的原因,同时又是研究比例阀所要解决的问题。

图1 博世伺服比例阀典型结构阀体设计国内外发展趋势是:从机理上争取采用平衡式受力,改进流道结构,改善流场分布方面入手,优化节流口的形式,使节流阀的压力、流量控制更好地服务于现场操作。

在石油工业管道输送系统中,除了长直区段外,还大量存在几何形状不规则的区段,这些区段内的流体一般都处于湍流状态,运动十分复杂,如流体在弯管、非圆管、突然缩小、突然扩大的管道真实流动,情况更为复杂,在那里可能出现如图2一1、图2一2所示的脱体流动、二次流;形成旋涡,造成局部障碍及损失。

这些漩涡的发生和发展对边界几何形状有着强烈的依赖性,其形状和强度因流道的不同而不同,是非均匀和高度各项异性的。

其中大涡对平均运动有强烈的影响,大部分质量、动量和能量的输运都是大涡引起的;二次涡的大小、位置及发生的频率会对流动系统的阻力、能量损失产生重大的作用。

流量系数值越大说明流体流过阀门时的压力损失越小。

流量系数随阀门尺寸、型式、结构而变。

对于同样结构的阀门,流体流过阀门的方向不同,流量系数值也有变化。

这种变化一般是由于压力恢复不同而造成的。

对于图2一3所示的高压锥阀IZvl,当流体的流动使阀门趋于关闭时的流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。

阀门内部的几何形状不同,流量系数的曲线也不同。

线性度、滞环的定义,按一般控制理论的定义,例如滞环大体就是在输入电流为横坐标、输出电磁力为纵坐标的图面上(控制特性),电流从零到最大、以及从最大回到零一个变化周期中,上升电流与下降电流相等点上输出电磁力的最大差值,除以最大输出力之值的百分数。

在做电磁铁控制特性滞环、线性度时,是在电磁铁一定位移下测量输出力与输入电流的关系。

不同电磁铁位移,会有所差异。

相关文档
最新文档