方程的根与函数的零点练习题及答案解析
函数的零点个数问题-含答案

【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.学科@网【例2】(2017全国高考新课标I理科数学)已知函数2()(2)x xf x ae a e x=+--.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.(2) ①若0,a≤由(1)知()f x至多有一个零点.②若0a>,由(1)知当lnx a=-时,()f x取得最小值,1(ln)1lnf a aa-=-+.(i)当1a=时,(ln)f a-=0,故()f x只有一个零点.(ii)当(1,)a∈+∞时,由于11ln aa-+>0,即(ln)0f a->,故()f x没有零点.(iii)当0,1a∈()时,11ln0aa-+<,即(ln)0f a-<.422(2)(2)2220,f ae a e e----=+-+>-+>故()f x在(,ln)a-∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln,()n n n nn n f n e ae a n e n naa f xa>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a∈()时,要先判断(,ln)a-∞的零点的个数,此时考查了函数的零点定理,(ln)0f a-<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e----=+-+>-+>要说明(2)0f->,这里利用了放缩法,丢掉了42ae ae--+.(3) 当0,1a∈()时,要判断(ln,)a-+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.方法三 方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x =,重新构造方程()()g x h x =,再画函数(),()y g x y h x ==的图像分析解答.【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个【点评】(1)本题主要考察零点的个数,但是方程f(x)lg cos 0x x =-=也不好解,直接研究函数的单调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln ,1,02f x x m xg x x m x m =-=-+>. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1)2,15(,12+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1)+∞;【反馈检测3答案】(1)单调递增区间是(),m+∞, 单调递减区间是()0,m;(2)1.学科@网【反馈检测3详细解析】(1)函数()f x的定义域为()()()()0,,'x m x mf xx+-+∞=.当0x m<<时,()'0f x<,函数()f x单调递减,当x m>时,()'0f x>函数()f x单调递增,综上,函数()f x的单调递增区间是(),m+∞, 单调递减区间是()0,m.(2)令()()()()211ln,02F x f x g x x m x m x x=-=-++->,问题等价于求函数()F x的零点个数,()()()1'x x mF xx--=-,当1m=时,()'0F x≤,函数()F x为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。
高中数学课时分层作业二十三方程的根与函数的零点含解析必修1

课时分层作业二十三方程的根与函数的零点(30分钟60分)一、选择题(每小题5分,共30分)1。
已知函数f(x)=若f(f(0))=4a,则实数a等于()A。
B. C.2D。
9【解析】选C。
由题知f(0)=2,f(2)=4+2a,由4+2a=4a,解得a=2。
2.设函数f(x)=,若f(m)=3,则实数m的值为()A。
—2 B。
8 C.1 D.2【解析】选D。
因为当0<x〈2时,log2x<1,所以由f(m)=3得m ≥2,所以m2-1=3,解得m=2。
3.函数y=f(x)在区间[1,4]上的图象是连续不断的曲线,且f(1)·f(4)〈0,则函数y=f(x)()A。
在(1, 4)内至少有一个零点B.在(1,4)内至多有一个零点C。
在(1,4)内有且只有一个零点D.在(1, 4)内不一定有零点【解析】选A。
由已知y=f(x)的图象在区间[1,4]上是连续不断的曲线,且f(1)·f(4)〈0,故在(1,4)内至少有一零点.4。
函数f(x)=—x3—3x+5的零点所在的大致区间是()A.(-2,0)B。
(0,1) C.(1,2)D。
(2,3)【解析】选C。
因为函数f(x)=—x3-3x+5是单调递减函数,又因为f(1)=—13—3×1+5=1>0,f(2)=—23-3×2+5=-9〈0,所以函数f(x)的零点必在区间(1,2)上,故必存在零点的区间是(1,2).5.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则有()A.f(x1)〈0,f(x2)<0B.f(x1)〈0,f(x2)>0C.f(x1)〉0,f(x2)<0D.f(x1)>0,f(x2)〉0【解析】选B。
因为x〉1时,y=2x,y=都是增函数,所以f(x)=2x+在(1,+∞)上是增函数,所以有且只有一个零点x0,根据零点存在性定理及函数增减性知,f(x1)<0,f(x2)〉0。
(必修第一册)函数的零点与方程的解(同步练习)(含解析)

4.5.1函数的零点与方程的解一、单选题1.以下函数在区间(0,12)上必有零点的是( ) A .y =12xB .y =143x -C .y =ln (x +45)D .y =2x +12.若曲线224,43,x x ay x x x a ⎧->=⎨-+≤⎩与x 轴有且只有2个交点,则实数a 的取值范围是( )A .12a ≤≤B .3a ≥C .12a ≤≤或3a ≥D .12a ≤<或3a ≥3.函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩,若f (a )=f (b )=f (c )且a ,b ,c 互不相等,则abc 的取值范围是( )A .(1,10)B .(10,12)C .(5,6)D .(20,24)4.设f (x )=0.8x -1,g (x )=ln x ,则函数h (x )=f (x )-g (x )存在的零点一定位于下列哪个区间( ) A .(0,1)B .(1,2)C .(2,e )D .(e ,3)5.定义在R 上的奇函数()f x 满足:当0x >时,()20212021log xf x x =+,则在R 上方程()0f x =的实根个数为( ) A .1B .3C .2D .2021二、多选题 6.在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是( ) A .y =﹣2xB .y =x ﹣6C .y =3xD .y =x 2﹣3x +47.已知函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,则( ) A .122x x << B .12111x x += C .124x x <D.1223+≥+x x 8.已知函数2ln ,0,()=4,0.x x f x x x x >⎧⎨--≤⎩关于x 的方程()0f x t -=的实数解个数,下列说法正确的是( )A .当0t ≤时,方程有两个实数解B .当4t >时,方程无实数解C .当04t <<时,方程有三个实数解D .当4t =时,方程有两个实数解 三、填空题9.若函数f (x )=x 2-ax +1在区间1(,3)2上有零点,则实数a 的取值范围是________.10.已知函数()y f x =在区间[]16,上的图像是一段连续的曲线,且有如下的对应值表:设函数y f x =在区间16,上零点的个数为,则的最小值为________. 11.方程22x x +=的根为a ,方程2log 2x x +=的根为b ,则a b +=__________四、解答题12.已知函数()|1|||f x x x a =+-+.若方程()f x x =有三个不同的解,求实数a 的取值范围.13.已知函数1122()log (2)log f x x x =-+.(1)求函数()f x 的定义域; (2)求函数()f x 的零点.14.若函数()221,1log ,1x x f x x x ⎧-+≤=⎨>⎩.(1)在所给的坐标系内画出函数()f x 图像;(2)求方程()f x m =恰有三个不同实根时的实数m 的取值范围.参考答案1.C 【分析】根据题意,依次分析选项中函数在区间(0,12)上有没有零点,综合即可得答案. 【详解】根据题意,依次分析选项:对于A :,y =12x 0,12)单调递增,且y >0恒成立,在区间(0,12)上没有零点,不符对于B ,y =143x -x 0,12)单调递增,且有y >0恒成立,在区间(0,12)上没有零点,不符合题意;对于C ,y =ln (x +45),当x =15时,y =ln1=0,区间(0,12)上有零点,符合题意;对于D ,y =2x +1,在区间(0,12)单调递增,且y >0恒成立,在区间(0,12)上没有零点,不符合题意. 故选:C . 2.D 【分析】作出函数24x y =-与243y x x =-+的图象,对参数分类讨论,得出结论.【详解】作出函数24x y =-与243y xx =-+的图象,令240x y =-=,即2x =,故()2,0B ,令2430y x x =-+=,即1x =或3x =,故1,0A 或()3,0C ,当1a <时,只有B 一个零点;当12a ≤<时,有A ,B 两个零点;当23a ≤<时, 有A 一个零点;当3a ≥时,有A,C 两个零点;综上,实数a 的取值范围是:12a ≤<或3a ≥, 故选:D.【分析】先画出分段函数的图象,根据图象确定字母a 、b 、c 的取值范围,再利用函数解析式证明ab =1,最后数形结合写出其取值范围即可 【详解】解:函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩的图象如图:∵f (a )=f (b )=f (c )且a ,b ,c 互不相等 ∵a ∵(0,1),b ∵(1,10),c ∵(10,12)∵由f (a )=f (b )得|lg a |=|lg b |,即﹣lg a =lg b ,即ab =1 ∵abc =c由函数图象得abc 的取值范围是(10,12) 故选:B .4.A 【分析】通过等价转化,把函数的零点转化为函数y =f (x )与y =g (x )图象交点的横坐标,然后画出函数的图象,通过图象即可判断出零点所在的区间. 【详解】函数h (x )=f (x )-g (x )的零点等价于方程f (x )-g (x )=0的根,即为函数y =f (x )与y =g (x )图象交点的横坐标, 画出函数y =f (x )与y =g (x )的图象,从图象可知它们仅有一个交点A ,且交点横坐标的范围为()0,1.故选:A.【分析】当0x >时,作出函数2021x y =,2021log y x =-的示意图,由图象交点个数得到方程根的个数,再根据奇函数图象的对称性以及(0)0f =,即可求出方程所有根的个数. 【详解】①当0x >时,令()0f x =,即20212021log xx =-,在同一坐标系中作出函数12021xy =,22021log y x =-的示意图,如下图:函数12021xy =为单调增函数,22021log y x =-为单调减函数,可知两个图象有且只有一个交点P ,横坐标记为0x . 即0x >时方程()0f x =有且只有一个实根0x , ②因为函数()f x 是定义在R 上的奇函数, 所以当0x <时,方程()0f x =也有一个实根0x -,③又∵()f x 是R 上的奇函数,(0)0f =,∵即0也是方程()0f x =的根, 综上所述,方程()0f x =有3个实根. 故选:B. 6.AC 【分析】横纵坐标相等的函数即y x =,与y x =有交点即存在完美点,依次计算即可. 【详解】横纵坐标相等的函数即y x =,与y x =有交点即存在完美点,对于A,2y x y x =⎧⎨=-⎩,解得00x y =⎧⎨=⎩,即存在完美点()0,0,对于B,6y x y x =⎧⎨=-⎩,无解,即不存在完美点,对于C,3y x y x =⎧⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩,(对于D,234y x y x x =⎧⎨=-+⎩, 24x x x -+=,即2240x x -+=,解得2(2)44120∆=--⨯=-<,即不存在完美点, 故选:AC. 7.ABD 【分析】函数2()log (1)(0)=-->f x x m m 即为函数函数2log (1)y x =-,y m =,交点的横坐标,作出函数图像,根据图像,易判断A ;根据()12()0f x f x ==,化简整理即可判断B ; 结合基本不等式将和化为积的形式即可判断C ; 利用整体代换结合基本不等式即可判断D. 【详解】解:令2()log (1)0f x x m =--=,()1x >则2log (1)x m -=, 令2log (1)y x =-,y m =,则函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,即为函数2log (1)y x =-,y m =交点的横坐标,作图如下图所示:故1212x x <<<,故A 正确;根据题意得()12()0f x f x ==,即2122log (1)log (1)x x -=-, 因为1212x x <<<,所以2122log (1)0,log (1)0x x -<->, 故2122log (1)log (1)0x x -+-=,即212log (1)(1)0x x --=, 所以12(1)(1)1x x --=,即()12120x x x x -+=, 所以12111x x +=,故B 正确;因为12x x +≥,所以()121212x x x x x x -+≤-120x x -≥, 所以124x x ≥,当且仅当12x x =时取等号, 又因1212x x <<<,所以124x x >,故C 错误; ()21121212122112233x xx x x x x x x x ⎛⎫+++=+++ ≥⎪⎝⎭=当且仅当21122x x x x =,即21x 时,取等号,故D 正确. 故选:ABD. 8.CD 【分析】方程()0f x t -=即()f x t =,作出函数()f x 的简图,数形结合可得结果. 【详解】方程()0f x t -=即()f x t =,作出函数()f x 的简图,由图可知:当0t <时,函数()y f x =的图象与直线y t =有2个交点,即方程()0f x t -=有2个实数解;当0t =时,函数()y f x =的图象与直线y t =有3个交点,即方程()0f x t -=有3个实数解,故A 错误;当4t >时,函数()y f x =的图象与直线y t =有1个交点,即方程()0f x t -=有1个实数解,故B 错误; 当04t <<时,函数()y f x =的图象与直线y t =有3个交点,即方程()0f x t -=有3个实数解,故C 正确; 当4t =时,函数()y f x =的图象与直线y t =有2个交点,即方程()0f x t -=有2个实数解,故D 正确. 故选:CD.9.102,3⎡⎫⎪⎢⎣⎭【分析】通过参变分离,转化为1a x x =+在1(,3)2上有解,转化为求函数t =x +1x ,x ∵1(,3)2的值域. 【详解】由题意知方程ax =x 2+1在1(,3)2上有解,即1a x x =+在1(,3)2上有解.设t =x +1x ,x ∵1(,3)2,则t 的取值范围是102,3⎡⎫⎪⎢⎣⎭,所以实数a 的取值范围是102,3⎡⎫⎪⎢⎣⎭.故答案为:102,3⎡⎫⎪⎢⎣⎭.10.3 【分析】根据函数零点存在定理,判断函数值的符号,即可判断函数零点个数. 【详解】解:由题意,因为()()230f f <,()()450f f <,()()560f f <,所以根据函数零点存在性定理,在区间(2,3)和(4,5)及(5,6)内至少有一个零点,故函数()y f x =在区间[]16,上的零点至少有3个,即n 的最小值为3, 故答案为:3. 11.2 【分析】利用方程的根于函数图象的交点之间的关系,结合指数函数和对数函数互为反函数的关系,作出图象即可求解【详解】a 是方程22x x +=的根,就是2x y =和2y x =-图象交点的横坐标;b 是方程2log 2x x +=的根,就是2log y x =和2y x =-图象交点的横坐标;在同一坐标系中画出函数2x y =,2log y x =,2y x =-的图象,如图所示:由图可知,a 是2x y =和2y x =-图象交点A 的横坐标,b 是2log y x =和2y x =-图象交点B 的横坐标,因为2x y =与2log y x =互为反函数, 所以图象关于直线y x =对称, 故点A ,B 也关于直线y x =对称, 所以点A ,B 为(),A a b ,(),B b a , 而点A ,B 又在2y x =-上, 所以2b a =-,2a b =-, 即2a b +=, 所以2a b +=, 故答案为:2 12.10a -<<. 【分析】用分离参数法变形方程为1a x x x =-++,引入函数()1g x x x x =-++,作出函数()g x 的图象,由图象与直线y a =有三个交点可得结论. 【详解】方程()f x x =可化为1a x x x =-++,设()1g x x x x =-++,则1,0()1,101,1x x g x x x x x -≥⎧⎪=---≤<⎨⎪+<-⎩,函数图象如下:由图象知()y g x =的图象与直线y a =有三个交点时,10a -<<. 13.(1)(0,2);(2)1. 【分析】(1)根据真数大于0即可. (2)令()0f x =即可. 【详解】(1)由已知可得200x x ->⎧⎨>⎩,解得02,()x f x <<∴的定义域为(0,2).(2)()()()212log 20,2f x x x x =-+∈,,由()0f x =得221x x -+=,即2210x x -+=,解得1x =, ()f x ∴的零点是1.14.(1)图象见解析;(2)01m <<. 【分析】(1)结合二次函数的图象与性质,对数函数的图象与性质利用描点法作函数的图象,(2)观察()f x 图象,根据()y f x =的图象与y m =的图象有三个交点确定m 的范围.【详解】 (1)作图如下:11(2)方程()f x m =有3个解等价于函数()y f x =的图象与y m =的图象有三个交点, 观察图象可得01m <<.。
2022版新高考数学总复习真题专题--函数的零点与方程的根(解析版)

2022版新高考数学总复习--§2.6 函数的零点与方程的根— 五年高考 —考点 函数的零点1.(2020天津,9,5分)已知函数f (x )={x 3,x ≥0,-x ,x <0.若函数g (x )=f (x )-|kx 2-2x |(k ∈R )恰有4个零点,则k 的取值范围是( )A.(-∞,-12)∪(2√2,+∞) B.(-∞,-12)∪(0,2√2) C.(-∞,0)∪(0,2√2) D.(-∞,0)∪(2√2,+∞) 答案 D2.(2019天津文,8,5分)已知函数f (x )={2√x ,0≤x ≤1,1x , x >1.若关于x 的方程f (x )=-14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为 ( )A.[54,94] B.(54,94]C.(54,94]∪{1} D.[54,94]∪{1} 答案 D3.(2019浙江,9,4分)设a ,b ∈R ,函数f (x )={x , x <0,13x 3-12(a +1)x 2+ax , x ≥0.若函数y =f (x )-ax -b 恰有3个零点,则 ( )A.a <-1,b <0B.a <-1,b >0C.a >-1,b <0D.a >-1,b >0 答案 C4.(2017山东理,10,5分)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =√x +m 的图象有且只有一个交点,则正实数m 的取值范围是 ( )A.(0,1]∪[2√3,+∞)B.(0,1]∪[3,+∞)C.(0,√2]∪[2√3,+∞)D.(0,√2]∪[3,+∞)答案B5.(2017课标Ⅲ,文12,理11,5分)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a= ()A.-12B.13C.12D.1答案C6.(2021北京,15,5分)已知f(x)=|lg x|-kx-2,给出下列四个结论:①若k=0,则f(x)有两个零点;②∃k<0,使得f(x)有一个零点;③∃k<0,使得f(x)有三个零点;④∃k>0,使得f(x)有三个零点.以上正确结论的序号是.答案①②④7.(2019江苏,14,5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=√1-(x-1)2,g(x)={k(x+2),0<x≤1,-12,1<x≤2,其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.答案[13,√2 4)以下为教师用书专用(1—8)1.(2015天津文,8,5分)已知函数f(x)={2-|x|,x≤2,(x-2)2,x>2,函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为()A.2B.3C.4D.5答案 A 由已知条件可得g (x )=3-f (2-x )={|x -2|+1,x ≥0,3-x 2, x <0.函数y =f (x )-g (x )的零点个数即为函数y =f (x )与y =g (x )图象的交点个数,在平面直角坐标系内作出函数y =f (x )与y =g (x )的图象如图所示.由图可知函数y =f (x )与y =g (x )的图象有2个交点,所以函数y =f (x )-g (x )的零点个数为2,选A . 2.(2014北京文,6,5分)已知函数f (x )=6x -log 2x.在下列区间中,包含f (x )零点的区间是 ( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)答案 C ∵f (1)=6-log 21=6>0, f (2)=3-log 22=2>0,f (4)=64-log 24=32-2<0,∴包含f (x )零点的区间是(2,4),故选C . 3.(2011课标,10,5分)在下列区间中,函数f (x )=e x+4x -3的零点所在的区间为 ( )A.(-14,0)B.(0,14)C.(14,12)D.(12,34)答案 C 显然f (x )为定义域R 上的连续函数.如图作出y =e x与y =3-4x 的图象,由图象知函数f (x )=e x+4x -3的零点一定落在区间(0,34)内,又f (14)=√e 4-2<0, f (12)=√e -1>0.故选C .评析 本题考查函数零点的概念及求解方法,考查学生分析问题、解决问题的能力,属中等难度试题. 4.(2016山东文,15,5分)已知函数f (x )={|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是 .答案 (3,+∞)解析 f (x )的图象如图所示,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,只需4m -m 2<m ,解之得m >3或m <0,又m >0,所以m >3.方法总结 分段函数问题、函数零点个数问题或方程根的个数问题通常采用数形结合的思想方法来解决. 评析 本题考查基本初等函数及分段函数的图象,考查数形结合的思想方法,属于难题. 5.(2016天津文,14,5分)已知函数f (x )= {x 2+(4a -3)x +3a ,x <0,log a (x +1)+1, x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x3恰有两个不相等的实数解,则a 的取值范围是 . 答案 [13,23)解析 ∵函数f (x )在R 上单调递减,∴{-4a -32≥0,0<a <1,3a ≥1,解得13≤a ≤34.在同一直角坐标系下作出函数y =|f (x )|与y =2-x3的图象,如图所示.方程|f (x )|=2-x3恰有两个不相等的实数解等价于y =|f (x )|的图象与y =2-x3的图象恰有两个交点,则需满足3a <2,得a <23,综上可知,13≤a <23.易错警示 (1)f (x )在R 上单调递减,需满足{-4a -32≥0,0<a <1,3a ≥1,缺少条件是失分的一个原因;(2)由方程解的个数求参数范围往往利用数形结合思想将问题转化为两个函数图象交点个数的问题是解决这类问题常用的方法.评析 本题主要考查分段函数的单调性及函数与方程,利用数形结合思想,将方程解的个数问题转化为两个函数图象交点个数的问题是求解这类问题的常用方法.6.(2015湖南理,15,5分)已知函数f (x )={x 3,x ≤a ,x 2,x >a .若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是 . 答案 (-∞,0)∪(1,+∞)解析 当a <0时,若x ∈(a ,+∞),则f (x )=x 2,当b ∈(0,a 2)时,函数g (x )=f (x )-b 有两个零点,分别是x 1=-√b ,x 2=√b .当0≤a ≤1时,f (x )的图象如图所示,易知函数y =f (x )-b 最多有一个零点. 当a >1时, f (x )的图象如图所示,当b ∈(a 2,a 3]时,函数g (x )=f (x )-b 有两个零点,分别是x 1=√b 3,x 2=√b .综上,a ∈(-∞,0)∪(1,+∞).7.(2015北京理,14,5分)设函数f (x )={2x -a , x <1,4(x -a )(x -2a ), x ≥1.①若a =1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .答案 ①-1 ②[12,1)∪[2,+∞)解析 ①当a =1时, f (x )={2x -1,x <1,4(x -1)(x -2),x ≥1,其大致图象如图所示:由图可知f (x )的最小值为-1. ②当a ≤0时,显然函数f (x )无零点;当0<a <1时,易知f (x )在(-∞,1)上有一个零点,要使f (x )恰有2个零点,则当x ≥1时, f (x )有且只有一个零点,结合图象可知,2a ≥1,即a ≥12,则12≤a <1;当a ≥1时,2a >1,由二次函数的性质可知,当x ≥1时, f (x )有2个零点, 则要使f (x )恰有2个零点,则需要f (x )在(-∞,1)上无零点,则2-a ≤0,即a ≥2. 综上可知,满足条件的a 的取值范围是[12,1)∪[2,+∞).8.(2015湖北文,13,5分)函数f (x )=2sin x sin (x +π2)-x 2的零点个数为 .答案 2解析 f (x )=2sin x cos x -x 2=sin 2x -x 2,函数f (x )的零点个数可转化为函数y 1=sin 2x 与y 2=x 2图象的交点个数,在同一坐标系中画出y 1=sin 2x 与y 2=x 2的图象如图所示:由图可知两函数图象有2个交点,则f (x )的零点个数为2.— 三年模拟 — A 组 考点基础题组考点 函数的零点1.(2019广东汕头达濠华侨中学,东厦中学第二次联考,12)设函数f (x )是定义在R 上周期为2的函数,且对任意的实数x ,恒有f (x )-f (-x )=0.当x ∈[-1,0]时, f (x )=x 2,若g (x )=f (x )-log a x 在x ∈(0,+∞)上有且仅有三个零点,则a的取值范围为 ( )A.[3,5]B.[4,6]C.(3,5)D.(4,6) 答案 C2.(2020湖南长沙明德中学3月月考,10)已知定义在R 上的函数f (x )满足f (2-x )=f (2+x ),当x ≤2时, f (x )=x e x,若关于x 的方程f (x )=k (x -2)+2有三个不相等的实数根,则实数k 的取值范围是 ( ) A.(-1,0)∪(0,1) B.(-1,0)∪(1,+∞) C.(-e ,0)∪(0,e ) D.(-e ,0)∪(e ,+∞) 答案 A3.(多选题)(2021辽宁沈阳市郊联体一模,12)已知函数f (x )={2x +2,-2≤x ≤1,lnx -1,1<x ≤e ,若关于x 的方程f (x )=m 恰有两个不同解x 1,x 2(x 1<x 2),则(x 2-x 1)f (x 2)的取值可能是 ( ) A.-3 B.-1 C.0 D.2 答案 BC4.(2021福建三明三模,15)函数f (x )=ln x +2x -6零点的一个近似值为 .(误差不超过0.25,自然对数的底数e ≈2.72)答案 2.45(可填(2.36,2.54)中的任一实数)5.(2021湖北九师联盟2月质量检测,15)若函数f (x )={x 3-3x +1-a ,x >0,x 3+3x 2-a ,x ≤0恰有3个零点,则实数a 的取值范围为 . 答案 (-1,0)∪[1,4)B 组 综合应用题组时间:30分钟 分值:35分一、单项选择题(每小题5分,共15分)1.(2020河北新时代NT 教育模拟自测)已知函数f (x )={|lnx |,x >0,x 2+2x +2,x ≤0,若f (x )=kx 有两个不等实根,则实数k 的取值范围是 ( )A.2-2√2<k <0或k =1e B.k <2-2√2C.2-2√2<k <0D.k <2-2√2或k =1e 答案 D2.(2020辽宁葫芦岛兴城高级中学模拟)已知函数f (x )=2x ,函数g (x )与p (x )=1+ln (-2-x )的图象关于点(-1,0)对称,若f (x 1)=g (x 2),则x 1+x 2的最小值为 ( ) A.2 B.ln2-12C.12ln 2 D.ln 2答案 C3.(2019河北衡水中学第二次调研,12)已知函数f (x )={x 2+4x ,x ≤0,xlnx ,x >0,g (x )=kx -1,若方程f (x )-g (x )=0在x ∈(-2,e 2)上有3个实根,则k 的取值范围为 ( )A.(1,2]B.(1,32]∪{2} C.(1,32)∪(32,2) D.(1,32)∪(32,2+1e 2)答案 B二、多项选择题(每小题5分,共10分)4.(2021湖南衡阳联考(一),12)已知函数f (x )=e sin|x |+e|sin x |,以下结论正确的是 ( )A. f (x )是偶函数B. f (x )的最小值为2C. f (x )在区间(-π,-π2)上单调递减 D.g (x )=f (x )-2πx 的零点个数为5 答案 ABD5.(2021山东日照一模,11)已知函数f (x )对于任意x ∈R ,均满足f (x )=f (2-x ).当x ≤1时, f (x )={lnx ,0<x ≤1,e x,x ≤0,若函数g (x )=m |x |-2-f (x ),则下列结论正确的为 ( ) A.若m <0,则g (x )恰有两个零点 B.若32<m <e ,则g (x )有三个零点 C.若0<m ≤32,则g (x )恰有四个零点 D.不存在m 使得g (x )恰有四个零点 答案 ABC三、填空题(每小题5分,共10分)6.(2021山东济南十一学校联考,16)如果两个函数存在零点,分别为α,β,且满足|α-β|<n ,则称两个函数互为“n 度零点函数”.若f (x )=ln (x -2),g (x )=ax 2-ln x 互为“2度零点函数”,则实数a 的取值范围为 .答案 (0,12e]7.(2020山东淄博实验中学模拟,16)已知函数f (x )=(2-a )·(x -1)-2ln x.若函数f (x )在(0,12)上无零点,则a 的最小值为 . 答案 2-4ln 2— 一年原创 —1.(2021 5·3原创题)已知x 0是函数f (x )=x 2e x -2+ln x -2的零点,则下列结论错误的是( )A.ln x 0=2-x 0B.e 2-x 0+ln x 0=2C.x 0∈(1,2)D.ln x 0-1x 0>0 答案 D2.(2021 5·3原创题)已知函数f (x )={|x +2|,x ≤0,log 2x ,x >0.关于x 的方程[f (x )]2=mf (x )+1有4个不同的实数根,则实数m 的取值范围为( )A.(-32,1) B.(-∞,32] C.(1,32] D.(-∞,-32) 答案 B3.(2021 5·3原创题)已知f (x )={lnx ,x ≥1,x 2,x <1,若g (x )=f 2(x )+mf (x )+2有5个零点,则实数m 的取值范围为( )A.(-∞,-2√2)B.(-∞,-3)C.(-∞,-3]D.(-2√3,-3) 答案 B4.(2021 5·3原创题)已知函数F (x )=(x 3+x2)3+x 3+x2-2x ,设x 1,x 2(x 1<x 2)是函数的两个非零零点,则函数y =2(x 1+2x 2)t +2(2x 1+x 2)t+1(t ∈R )的最小值为( )A .2√2B .0C .1D .4 答案 A5.(2021 5·3原创题)已知函数f (x )=|x |(x +1),若函数g (x )=f (x )+2f (x )+m 有四个不同零点x 1,x 2,x 3,x 4,则实数m 的取值范围是 ;若x 1<x 2<x 3<x 4,则f (x 1)f (x 2)f (x 3)f 3(x 4)的值是 .答案 (-∞,-334);8 6.(2021 5·3原创题)函数f (x )=|cos x |-m sin x -3m 无零点,则m 的取值范围是 . 答案 (-∞,0)∪(√24,+∞)11 / 11 7.(2021 5·3原创题)已知f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x >0时,f (x )={3x -7,0<x ≤2,|x -5|-1,x >2.g (x )=f (x )-a. (1)若函数g (x )恰有三个不相同的零点,求实数a 的值;(2)记h (a )为函数g (x )的所有零点之和.当-1<a <1时,求h (a )的取值范围.解析 (1)作出函数f (x )的图象,如图,由图象可知,当且仅当a =2或a =-2时,直线y =a 与函数y =f (x )的图象有三个不同的交点,∴当且仅当a =2或a =-2时,函数g (x )恰有三个不相同的零点.(2)由f (x )的图象可知,当-1<a <1时,g (x )有6个不同的零点.设这6个零点从左到右依次为x 1,x 2,x 3,x 4,x 5,x 6. 则x 1+x 2=-10,x 5+x 6=10,x 3是方程-3-x +7-a =0的解,x 4是方程3x-7-a =0的解. ∴h (a )=-10-log 3(7-a )+log 3(7+a )+10=log 37+a7-a .∵当-1<a <1时,7+a 7-a =147-a -1∈(34,43),∴h (a )∈(1-2log 32,2log 32-1).∴当-1<a <1时,h (a )的取值范围为(1-2log 32,2log 32-1).技巧点拨 遇到函数零点求和时,往往要结合函数的图象,注意函数图象的对称性,理清零点间的关系再求和.。
函数的零点与方程的解(经典导学案及练习答案详解)

§2.9函数的零点与方程的解学习目标1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)二次函数y=ax2+bx+c(a≠0),若b2-4ac<0,则f(x)无零点.(√)教材改编题1.(多选)已知函数f(x)的图象是连续不断的,且有如下对应值表:x 1234567f(x)-4-2142-1-3在下列区间中,函数f(x)必有零点的区间为()A.(1,2) B.(2,3) C.(5,6) D.(5,7)答案 BCD解析 由所给的函数值表知, f (1)f (2)>0,f (2)f (3)<0,f (5)f (6)<0, f (5)f (7)<0,∴f (x )在区间(2,3),(5,6),(5,7)内各至少有一个零点.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0,则f (x )的零点为________.答案 -2,e解析 ⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.3.方程2x +x =k 在(1,2)内有解,则实数k 的取值范围是________. 答案 (3,6)解析 设f (x )=2x +x , ∴f (x )在(1,2)上单调递增, 又f (1)=3,f (2)=6, ∴3<k <6.题型一 函数零点所在区间的判定例1 (1)(多选)(2022·菏泽质检)函数f (x )=e x -x -2在下列哪个区间内必有零点( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案 AD解析 f (-2)=1e 2>0,f (-1)=1e -1<0,f (0)=-1<0,f (1)=e -3<0, f (2)=e 2-4>0,因为f (-2)·f (-1)<0,f (1)·f (2)<0, 所以f (x )在(-2,-1)和(1,2)内存在零点.(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案 A解析 函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点. 教师备选(2022·湖南雅礼中学月考)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点 答案 D解析 f (x )的定义域为{x |x >0}, f ′(x )=13-1x =x -33x,令f ′(x )>0⇒x >3,f ′(x )<0⇒0<x <3,∴f (x )在(0,3)上单调递减,在(3,+∞)上单调递增, 又f ⎝⎛⎭⎫1e =13e +1>0,f (1)=13>0, ∴f (x )在⎝⎛⎭⎫1e ,1内无零点.又f (e)=e3-1<0,∴f (x )在(1,e)内有零点.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1 (1)(2022·太原模拟)利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)答案 C解析 设f (x )=log 3x -3+x , 当x →0时,f (x )→-∞,f (1)=-2, 又∵f (2)=log 32-1<0, f (3)=log 33-3+3=1>0, 故f (2)·f (3)<0,故方程log 3x =3-x 在区间(2,3)上有解,即利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是(2,3).(2)已知2<a <3<b <4,函数y =log a x 与y =-x +b 的交点为(x 0,y 0),且x 0∈(n ,n +1),n ∈N *,则n =________. 答案 2解析 依题意x 0为方程log a x =-x +b 的解, 即为函数f (x )=log a x +x -b 的零点, ∵2<a <3<b <4,∴f (x )在(0,+∞)上单调递增, 又f (2)=log a 2+2-b <0, f (3)=log a 3+3-b >0, ∴x 0∈(2,3),即n =2. 题型二 函数零点个数的判定例2 (1)(2022·绍兴模拟)若函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且x ∈[-1,1]时,f (x )=1-x 2,已知函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0,则函数h (x )=f (x )-g (x )在区间[-6,6]内的零点个数为( )A .14B .13C .12D .11 答案 C解析 因为f (x +1)=-f (x ),所以函数y =f (x )(x ∈R )是周期为2函数, 因为x ∈[-1,1]时,f (x )=1-x 2,所以作出它的图象,则y =f (x )的图象如图所示.(注意拓展它的区间)再作出函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0的图象,容易得出交点为12个.(2)函数f (x )=36-x 2·cos x 的零点个数为______. 答案 6解析 令36-x 2≥0,解得-6≤x ≤6, ∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0, 由36-x 2=0得x =±6, 由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 为-3π2,-π2,π2,3π2.故f (x )共有6个零点. 教师备选函数f (x )=2x |log 2x |-1的零点个数为( ) A .0 B .1 C .2 D .4 答案 C解析 令f (x )=0,得|log 2x |=⎝⎛⎭⎫12x ,分别作出y =|log 2x |与y =⎝⎛⎭⎫12x 的图象(图略), 由图可知,y =|log 2x |与y =⎝⎛⎭⎫12x的图象有两个交点,即原函数有2个零点. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点; (2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2 (1)函数f (x )是R 上最小正周期为2的周期函数,当0≤x <2时f (x )=x 2-x ,则函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为( ) A .6 B .7 C .8 D .9 答案 B解析 令f (x )=x 2-x =0,所以x =0或x =1,所以f (0)=0,f (1)=0, 因为函数的最小正周期为2, 所以f (2)=0,f (3)=0,f (-2)=0,f (-1)=0,f (-3)=0.所以函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为7.(2)(2022·泉州模拟)设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,-x 2-2x ,x ≤0,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为( ) A .3 B .7 C .5 D .6 答案 B解析 根据题意,令2f 2(x )-3f (x )+1=0, 得f (x )=1或f (x )=12.作出f (x )的简图:由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为 7. 题型三 函数零点的应用命题点1 根据函数零点个数求参数例3 (2022·武汉模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤0,1x ,x >0,若关于x 的方程f (x )-a (x +3)=0有四个不同的实根,则实数a 的取值范围是( ) A .(-∞,4-23) B .(4+23,+∞) C .[0,4-23] D .(0,4-23)答案 D解析 画出f (x )的函数图象,设y =a (x +3),该直线恒过点(-3,0), 结合函数图象,若y =a (x +3)与y =-x 2-2x 相切,联立得x 2+(a +2)x +3a =0, Δ=(a +2)2-12a =0, 得a =4-23(a =4+23舍), 若f (x )=a (x +3)有四个不同的实数根, 则0<a <4-2 3.命题点2 根据函数零点范围求参数例4 (2022·北京顺义区模拟)已知函数f (x )=3x -1+axx .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是( ) A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫0,43 C .(-∞,0) D.⎝⎛⎭⎫43,+∞ 答案 B解析 由f (x )=3x -1+ax x =0,可得a =3x -1x,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时, g (x )=3x -1x <3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)上的值域为⎝⎛⎭⎫0,43. 因此实数a 的取值范围是⎝⎛⎭⎫0,43. 教师备选1.函数f (x )=xx +2-kx 2有两个零点,则实数k 的值为________.答案 -1解析 由f (x )=xx +2-kx 2=x ⎝⎛⎭⎫1x +2-kx ,函数f (x )=x x +2-kx 2有两个零点,即函数y =1x +2-kx 只有一个零点x 0,且x 0≠0.即方程1x +2-kx =0有且只有一个非零实根.显然k ≠0,即1k=x 2+2x 有且只有一个非零实根.即二次函数y =x 2+2x 的图象与直线y =1k 有且只有一个交点(横坐标不为零).作出二次函数y =x 2+2x 的图象,如图.因为1k ≠0,由图可知,当1k>-1时,函数y =x 2+2x 的图象与直线y =1k 有两个交点,不满足条件.当1k=-1,即k =-1时满足条件. 当1k <-1时,函数y =x 2+2x 的图象与直线y =1k无交点,不满足条件. 2.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________. 答案 ⎝⎛⎭⎫14,12解析 依题意,结合函数f (x )的图象分析可知,m 需满足⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,(m -2-m +2m +1)(2m +1)<0,(m -2+m +2m +1)·[4(m -2)+2m +2m +1]<0, 解得14<m <12.思维升华 已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围. (2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.跟踪训练3 (1)(多选)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 可取的值可能是( ) A .0 B.13 C.12 D .1答案 BCD解析 函数g (x )=f (x )-b 有三个零点等价于函数y =f (x )的图象与直线y =b 有三个不同的交点, 当x ≤0时,f (x )=(x +1)e x , 则f ′(x )=e x +(x +1)e x =(x +2)e x ,所以f (x )在(-∞,-2)上单调递减,在(-2,0]上单调递增,且f (-2)=-1e 2,f (0)=1,x →-∞时,f (x )→0,从而可得f (x )的图象如图所示,通过图象可知,若函数y =f (x )的图象与直线y =b 有三个不同的交点,则b ∈(0,1]. (2)已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则m 的取值范围为( )A.⎝⎛⎭⎫-53,0 B.⎝⎛⎭⎫-∞,-53∪(0,+∞) C.⎝⎛⎦⎤-∞,-53∪(0,+∞) D.⎣⎡⎭⎫-53,0 答案 D解析 由于函数y =log 2(x +1),y =m -1x 在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x+m 在区间(1,3]上有零点,则⎩⎪⎨⎪⎧f (1)<0,f (3)≥0,即⎩⎪⎨⎪⎧m <0,m +53≥0,解得-53≤m <0.因此,实数m 的取值范围是⎣⎡⎭⎫-53,0.课时精练1.函数f (x )=x 3-⎝⎛⎭⎫12x -2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 由题意知,f (x )=x 3-⎝⎛⎭⎫12x -2,f (0)=-4,f (1)=-1,f (2)=7,因为f (x )在R 上连续且在R 上单调递增,所以f (1)·f (2)<0,f (x )在(1,2)内有唯一零点.2.设函数f (x )=4x 3+x -8,用二分法求方程4x 3+x -8=0近似解的过程中,计算得到f (1)<0,f (3)>0,则方程的近似解落在区间( )A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫32,2 C.⎝⎛⎭⎫2,52 D.⎝⎛⎭⎫52,3 答案 A解析 取x 1=2,因为f (2)=4×8+2-8=26>0,所以方程近似解x 0∈(1,2),取x 2=32, 因为f ⎝⎛⎭⎫32=4×278+32-8=7>0, 所以方程近似解x 0∈⎝⎛⎭⎫1,32. 3.(2022·武汉质检)若函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是( )A .(2,+∞)B .[2,+∞) C.⎣⎡⎭⎫2,52 D.⎣⎡⎭⎫2,103 答案 D解析 由题意知方程ax =x 2+1在⎝⎛⎭⎫12,3上有实数解,即a =x +1x 在⎝⎛⎭⎫12,3上有解, 设t =x +1x,x ∈⎝⎛⎭⎫12,3, 则t 的取值范围是⎣⎡⎭⎫2,103. 所以实数a 的取值范围是⎣⎡⎭⎫2,103. 4.若函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点,则实数m 的取值范围为( ) A .[-3,0)B .[-1,0)C .[0,1)D .[-3,+∞)答案 A 解析 因为函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点, 当且仅当f (x )在(-∞,1]上有一个零点,x ≤1时,f (x )=0⇔m =-3x ,即函数y =-3x 在(-∞,1]上的图象与直线y =m 有一个公共点,而y =-3x 在(-∞,1]上单调递减,且有-3≤-3x <0,则当-3≤m <0时,直线y =m 和函数y =-3x (x ≤1)的图象有一个公共点.5.(2022·重庆质检)已知函数f (x )=⎝⎛⎭⎫13x -log 2x ,设0<a <b <c ,且满足f (a )·f (b )·f (c )<0,若实数x 0是方程f (x )=0的一个解,那么下列不等式中不可能成立的是( )A .x 0<aB .x 0>cC .x 0<cD .x 0>b答案 B解析 f (x )=⎝⎛⎭⎫13x -log 2x 在(0,+∞)上单调递减,由f (a )·f (b )·f (c )<0, 得f (a )<0,f (b )<0,f (c )<0或f (a )>0,f (b )>0,f (c )<0.∴x 0<a 或b <x 0<c ,故x 0>c 不成立.6.(2022·北京西城区模拟)若偶函数f (x )(x ∈R )满足f (x +2)=f (x )且x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的根的个数是( )A .2B .3C .4D .多于4答案 C解析 f (x )=log 3|x |的解的个数,等价于y =f (x )的图象与函数y =log 3|x |的图象的交点个数,因为函数f (x )满足f (x +2)=f (x ),所以周期T =2,当x ∈[0,1]时,f (x )=x ,且f (x )为偶函数,在同一平面直角坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是( )A .1B .2C .4D .6答案 ABC解析 由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π], 在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y =k 与y =f (x )的图象交点个数可能为0,1,2,3,4.8.(多选)(2022·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,并是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .g (x )=x 2-x -3C .f (x )=12x +1D .f (x )=|log 2x |-1答案 BCD解析 选项A ,若f (x 0)=x 0,则02x =0,该方程无解,故A 中函数不是“不动点”函数;选项B ,若g (x 0)=x 0,则x 20-2x 0-3=0,解得x 0=3或x 0=-1,故B 中函数是“不动点”函数;选项C ,若f (x 0)=x 0,则120x +1=x 0,可得x 20-3x 0+1=0,且x 0≥1,解得x 0=3+52,故C 中函数是“不动点”函数; 选项D ,若f (x 0)=x 0,则|log 2x 0|-1=x 0,即|log 2x 0|=x 0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0,即|log 2x 0|=x 0+1,故D 中函数是“不动点”函数.9.若函数f (x )=x 3+ax 2+bx +c 是奇函数,且有三个不同的零点,写出一个符合条件的函数:f (x )=________.答案 x 3-x (答案不唯一)解析 f (x )=x 3+ax 2+bx +c 为奇函数,故a =c =0,f (x )=x 3+bx =x (x 2+b )有三个不同零点,∴b <0,∴f (x )=x 3-x 满足题意.10.函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0,-x 2-2x +1,x <0,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值范围是________.答案 (1,2)解析 画出函数y =f (x )与y =m 的图象,如图所示,注意当x =-1时,f (-1)=-1+2+1=2,f (0)=1,∵函数y =f (x )-m 有三个不同的零点,∴函数y =f (x )与y =m 的图象有3个交点,由图象可得m 的取值范围为1<m <2.11.(2022·枣庄模拟)已知函数f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,则实数a 的取值范围是______________.答案 ⎣⎡⎭⎫2e 2,1e 解析 ∵函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,∴y =f (x )的图象与直线y =ax 在区间(0,e 2]上有三个交点,由函数y =f (x )与y =ax 的图象可知,k 1=2-0e 2-0=2e2, f (x )=ln x (x >1),f ′(x )=1x, 设切点坐标为(t ,ln t ),则ln t -0t -0=1t , 解得t =e.∴k 2=1e. 则直线y =ax 的斜率a ∈⎣⎡⎭⎫2e 2,1e .12.(2022·济南质检)若x 1是方程x e x =1的解,x 2是方程x ln x =1的解,则x 1x 2=________. 答案 1解析 x 1,x 2分别是函数y =e x ,函数y =ln x 与函数y =1x的图象的交点A ,B 的横坐标,所以A ⎝⎛⎭⎫x 1,1x 1,B ⎝⎛⎭⎫x 2,1x 2两点关于y =x 对称,因此x 1x 2=1.13.已知函数f (x )=2x +x -1,g (x )=log 2x +x -1,h (x )=x 3+x -1的零点分别为a ,b ,c ,则a ,b ,c 的大小为( )A .c >b >aB .b >c >aC .c >a >bD .a >c >b答案 B解析 令f (x )=0,则2x +x -1=0,得x =0,即a =0,令g (x )=0,则log 2x +x -1=0,得x =1,即b =1,因为函数h (x )=x 3+x -1在R 上为增函数,且h (0)=-1<0,h (1)=1>0,所以h (x )在区间(0,1)上存在唯一零点c ,且c ∈(0,1),综上,b >c >a .14.(2022·厦门模拟)已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))的所有零点之和为________.答案 12 解析 当x ≤0时,x +1=0,x =-1,由f (x )=-1,可得x +1=-1或log 2x =-1,∴x =-2或x =12;当x >0时,log 2x =0,x =1,由f (x )=1,可得x +1=1或log 2x =1,∴x =0或x =2;∴函数y =f (f (x ))的所有零点为-2,12,0,2,∴所有零点的和为-2+12+0+2=12.15.若关于x 的方程|x |x +4=kx 2有四个不同的实数解,则k 的取值范围为() A .(0,1) B.⎝⎛⎭⎫14,1C.⎝⎛⎭⎫14,+∞ D .(1,+∞)答案 C解析 因为|x |x +4=kx 2有四个实数解,显然,x =0是方程的一个解,下面只考虑x ≠0时有三个实数解即可.若x >0,原方程等价于1=kx (x +4),显然k ≠0,则1k =x (x +4).要使该方程有解,必须k >0,则1k +4=(x +2)2,此时x >0,方程有且必有一解;所以当x <0时必须有两解,当x <0时,原方程等价于-1=kx (x +4),即-1k=x (x +4)(x <0且x ≠-4),要使该方程有两解, 必须-4<-1k<0, 所以k >14. 所以实数k 的取值范围为⎝⎛⎭⎫14,+∞. 16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案 ⎝⎛⎦⎤1e ,4e 2解析 由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2e x . 令h (x )=x 2e x ,则h ′(x )=2x -x 2e x =x (2-x )e x,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2,h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点,只需a ∈⎝⎛⎦⎤1e ,4e 2.。
2021届高中数学新人教版高中数学第一册方程的根与函数的零点含解析

3.1.1方程的根与函数的零点课标要点课标要点学考要求高考要求1.函数零点的概念a b2.f(x)=0有实根与y=f(x)有零点的关系b c3.函数零点的判定b c知识导图学法指导1.会用因式分解、公式法等求一元二次方程的根,并明白与相应二次函数图象间的关系.2.熟悉基本函数(一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数)的图象与性质,能根据图象判断零点的情况.知识点一函数的零点1.零点的定义对于函数y=f(x),把f(x)=0的实数x,叫做函数y=f(x)的零点.函数的零点不是一个点,而是一个实数,当自变量取该值时,其函数值等于零.2.方程的根与函数零点的关系知识点二函数零点的判定函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,.(3,4)(2)判断下列函数是否存在零点,如果存在,请求出.①f(x)=-x2-4x-4;②f(x)=4x+5;③f(x)=log3(x+1).=f(x)的图象,图见解析方程f(x)=0的实数根的个数就是函数思路二:画出函数图象,依据图象与x上是一条连续不断的)内至少有一个零解析:方法一 方程x +2=0(x <0)的根为x =-2,方程x 2-1=0(x >0)的根为x =1,所以函数f (x )有2个零点-2与1.方法二 画出函数f (x )=⎩⎪⎨⎪⎧x +2,x <0,x 2-1,x >0的图象,如图所示,观察图象可知,f (x )的图象与x 轴有2个交点,所以函数f (x )有2个零点.答案:C解决分段函数的零点个数问题的关键在于“对号入座”,即根据分段函数中自变量的取值范围,代入相应的解析式求解零点,注意自变量的取值范围.类型三 判断函数的零点所在的大致区间例3 设x 0是函数f (x )=ln x +x -4的零点,则x 0所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)【解析】 因为f (2)=ln 2+2-4=ln 2-2<0,f (3)=ln 3-1>ln e -1=0,f (2)·f (3)<0.由零点存在性定理,得x 0所在的区间为(2,3).【答案】 C根据零点存在性定理,对照选项,只需验证区间端点函数值的符号,或可借助于图象分析.方法归纳判断函数零点所在区间的三个步骤(1)代入:将区间端点值代入函数求出函数的值. (2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.跟踪训练3 函数f (x )=2x -1+x -5的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解析:f (2)=22-1+2-5<0,f (3)=23-1+3-5>0,故f (2)·f (3)<0,又f (x )在定义域内是增函数,则函数f (x )=2x -1+x -5只有一个零点,且零点所在的区间为(2,3).答案:C利用f(a)·f(b)<0求零点区间.[能力提升](20分钟,40分)11.二次函数f(x)=ax2+bx+c(x∈R)的部分对应值如下表:x -3-2-10123 4y 6m -4-6-6-4n 6 不求a,b,c的值,判断方程ax2+bx+c=0的两根所在的区间是()A.(-3,-1)和(2,4) B.(-3,-1)和(-1,1)C.(-1,1)和(1,2) D.(-∞,-3)和(4,+∞)解析:因为f(-3)=6>0,f(-1)=-4<0,所以在(-3,-1)内必有根,又由f(2)=-4<0,f(4)=6>0,所以在(2,4)内必有根.答案:A12.函数f(x)=ln x+x2-3的零点的个数是________.解析:方法一函数对应的方程为ln x+x2-3=0,所以原函数零点的个数即为函数y=ln x与y=3-x2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y=3-x2与y=ln x的图象只有一个交点.从而ln x+x2-3=0有一个根,即函数f(x)=ln x+x2-3有一个零点.方法二因为f(1)=-2,f(2)=ln 2+1>0.所以f(1)·f(2)<0,又f(x)=ln x+x2-3的图象在(1,2)上是不间断的,所以f(x)在(1,2)上必有零点,又f(x)在(0,+∞)上是递增的,所以零点只有一个.答案:113.函数f(x)=x2-2|x|+a-1有四个不同的零点,求实数a的取值范围.解析:由f(x)=0得a-1=2|x|-x2,因为函数f(x)=x2-2|x|+a-1有四个不同的零点,所以函数y=a-1与y=2|x|-x2的图象有四个交点,画出函数y =2|x|-x2的图象,如图所示,观察图象可知,0<a-1<1,所以1<a<2.即a的取值范围为(1,2).。
人教A版数学必修一第三章3.1.1《方程的根与函数的零点》讲解与例题

3.1.1 方程的根与函数的零点1.函数零点的概念对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.比如,由于方程f(x)=lg x=0的解是x=1,所以函数f(x)=lg x的零点是1.辨误区函数的零点不是点我们把使f(x)=0成立的实数x叫做函数y=f(x)的零点,因此函数的零点不是点,而是函数y=f(x)与x轴的交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.例如,函数f(x)=x+1,当f(x)=x+1=0时仅有一个实根x=-1,因此函数f(x)=x+1有一个零点-1,由此可见函数f(x)=x+1的零点是一个实数-1,而不是一个点.【例1】函数f(x)=x2-1的零点是( )A.(±1,0) B.(1,0)C.0 D.±1解析:解方程f(x)=x2-1=0,得x=±1,因此函数f(x)=x2-1的零点是±1.答案:D2函数零点(或零点个数)正比例函数y=kx(k≠0)一个零点0反比例函数kyx=(k≠0)无零点一次函数y=kx+b(k≠0)一个零点b k -二次函数y=ax2+bx+c(a≠0Δ>0两个零点-b±Δ2aΔ=0一个零点-b2aΔ<0无零点指数函数y=a x(a>0,且a≠1)无零点对数函数y=log a x(a>0,且a≠1)一个零点1幂函数y=xαα>0一个零点0α≤0无零点【例2( )A.0 B.1 C.2 D.1或2解析:∵b2=ac,∴方程ax2+bx+c=0的判别式Δ=b2-4ac=b2-4b2=-3b2.又∵abc≠0,∴b≠0.因此Δ<0.故函数f(x)=ax2+bx+c的零点个数为0.答案:A3.函数的零点与对应方程的关系(1)方程f(x)=0有实根⇔函数f(x)的图象与x轴有交点⇔函数f(x)有零点.【例3-1】若函数f(x)=x2+ax+b的零点是2和-4,求a,b的值.解析:因为函数f(x)=x2+ax+b的零点就是方程x2+ax+b=0的根,故方程x2+ax +b=0的根是2和-4,可由根与系数的关系求a,b的值.解:由题意,得方程x2+ax+b=0的根是2和-4,由根与系数的关系,得2(4), 2(4),ab+-=-⎧⎨⨯-=⎩即2,8.a b =⎧⎨=-⎩(2)一元二次方程ax 2+bx +c =0(a ≠0)与二次函数f (x )=ax 2+bx +c (a ≠0)的图象联 Δ>0 Δ=0 Δ<0二次函数 f (x )=ax 2+ bx +c (a >0) 的图象图象与x 轴交点 (x 1,0),(x 2,0) (x 0,0) 无交点方程f (x )=0的根 x =x 1,x =x 2 x =x 0 无实数根函数y =f (x )的零点x 1,x 2 x 0 无零点式即可.从形的角度沟通函数零点与方程的根的关系.【例3-2】函数y =f (x )的图象如图所示,则方程f (x )=0的实数根有( )A .0个B .1个C .2个D .3个解析:观察函数y =f (x )的图象,知函数的图象与x 轴有3个交点,则方程f (x )=0的实数根有3个.答案:D点技巧 借助图象判断方程实数根的个数 由于“方程f (x )=0的实数根⇔函数y =f (x )的图象与x 轴的交点的横坐标”,因此,对于不能直接求出根的方程来说,我们要判断它在某个区间内是否有实数根,只需判断它的图象在该区间内与x 轴是否有交点即可.4.判断(或求)函数的零点(1)方程法:根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此,判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根.例如,判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x;(2)f (x )=1-log 3x .解:(1)令x +3x=0,解得x =-3.故函数f (x )=x +3x的零点是-3; (2)令1-log 3x =0,即log 3x =1,解得x =3. 故函数f (x )=1-log 3x 的零点是3.(2)图象法:对于利用方程法很难求解的函数的零点问题,可利用函数的图象求解.我们知道,函数F(x)=f(x)-g(x)的零点就是方程F(x)=0即方程f(x)=g(x)的实数根,也就是函数y=f(x)的图象与y=g(x)的图象的交点的横坐标.这样,我们就将函数F(x)的零点问题转化为函数f(x)与g(x)图象的交点问题,作出两个函数的图象,就可以判断其零点个数.【例4-1】判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=x2+7x+6;(2)f(x)=1-log2(x+3);(3)f(x)=2x-1-3;(4)f(x)=24122x xx+--.解析:分别解方程f(x)=0得函数的零点.解:(1)解方程f(x)=x2+7x+6=0,得x=-1或-6.故函数的零点是-1,-6.(2)解方程f(x)=1-log2(x+3)=0,得x=-1.故函数的零点是-1.(3)解方程f(x)=2x-1-3=0,得x=log26.故函数的零点是log26.(4)解方程f(x)=24122x xx+--=0,得x=-6.故函数的零点为-6.辨误区忽略验根出现错误本题(4)中解方程后容易错写成函数的零点是-6,2,其原因是没有验根,避免出现此类错误的方法是解分式方程、对数方程等要验根,保证方程有意义.【例4-2】函数f(x)=ln x-11x-的零点的个数是( )A.0 B.1 C.2 D.3解析:在同一坐标系中画出函数y=ln x与11yx=-的图象如图所示,因为函数y=ln x与11yx=-的图象有两个交点,所以函数f(x)=ln x-11x-的零点个数为2.答案:C,5.判断零点所在的区间零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.确定函数的零点所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.但需注意以下几点:(1)当函数y=f(x)同时满足:①函数的图象在区间[a,b]上是连续曲线;②f(a)·f(b)<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(2)当函数y =f (x )的图象在区间[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.例如函数f (x )=x 2在区间[-1,1]上有f (-1)·f (1)>0,但是它在区间(-1,1)上存在零点0.(3)函数在区间[a ,b ]上的图象是连续曲线,且在区间(a ,b )上单调,若满足f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有且只有一个零点.,【例5-1】求函数f (x )=x 2-5x +6在区间[1,4]上的零点个数. 错解 错解一:由题意,得f (1)=2>0,f (4)=2>0,因此函数f (x )=x 2-5x +6在区间[1,4]上没有零点,即零点个数为0.错解二:∵f (1)=2>0,f (2.5)=-0.25<0,∴函数在区间(1,2.5)内有一个零点;又∵f (4)=2>0,f (2.5)=-0.25<0,∴函数在区间(2.5,4)内有一个零点.∴函数在区间[1,4]内有两个零点. 错因分析对于错解一,是错误地类比了零点存在性定理,注意当f (a )·f (b )>0时,区间(a ,b )内的零点个数是不确定的;对于错解二,注意当f (a )·f (b )<0时,区间(a ,b )内存在零点,但个数是不确定的.正解由x 2-5x +6=0,得x =2或x =3,所以函数f (x )=x 2-5x +6在区间[1,4]上的零点个数是2.【例5-2】函数f (x )=lg x -x的零点所在的大致区间是( ) A .(6,7) B .(7,8) C .(8,9) D .(9,10)解析:∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0, f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0. ∴函数f (x )=lg x -9x的零点所在的大致区间为(9,10). 答案:D6.一元二次方程的根的分布(1)一元二次方程的根的零分布所谓一元二次方程的根的零分布,是指方程的根相对于零的关系.设一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2且x 1≤x 2①x 1>0,x 2>0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=->⎨⎪⎪⋅=>⎪⎩②x 1<0,x 2<0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩③x 1<0<x 2⇔ca<0.④x 1=0,x 2>0⇔c =0,且b a <0;x 1<0,x 2=0⇔c =0,且ba>0.(2)一元二次方程的根的k 分布研究一元二次方程的根的k 分布,一般情况下要从以下三个方面考虑: ①一元二次方程根的判别式.②对应二次函数区间端点的函数值的正负. ③对应二次函数图象——抛物线的对称轴2bx a=-与区间端点的位置关系. 设一元二次方程ax 2+bx +c =0(a >0)的两实根为x 1,x 2,且x 1≤x 2,则一元二次方程x 1,x 2中有且仅有一个在区间 (k 1,k 2)内f (k 1)·f (k 2)<0或f (k 1)=0,k 1<12<22k k b a +-或f (k 2)=0,12<22k k b a+-<k 2.__________________________________________________________________ __________________________________________________________________ __________________________________________________________________【例6-1】已知函数f (x )=mx 2+(m -3)x +1的零点至少有一个在原点右侧,求实数m 的取值范围.解:(1)当m =0时,f (x )=-3x +1,直线与x 轴的交点为1,03⎛⎫ ⎪⎝⎭,即函数的零点为13,在原点右侧,符合题意.(2)当m ≠0时,∵f (0)=1,∴抛物线过点(0,1). 若m <0,函数f (x )图象的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若m >0,函数f (x )图象的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当2(3)40,30,20m m mm m ⎧∆=--≥⎪-⎪>⎨⎪>⎪⎩⇒21090,03,0m m m m ⎧-+≥⎪<<⎨⎪>⎩⇒19,03m m m ≤≥⎧⎨<<⎩或⇒0<m ≤1.综上所述,所求m 的取值范围是(-∞,1].点技巧 研究函数图象性质有技巧 对于函数图象性质的研究,一是要注意特殊点,如本题中有f (0)=1,即图象过点(0,1);二是要根据题意,画出示意图,再根据图象的特征解决问题.【例6-2】关于x 的方程ax 2-2(a +1)x +a -1=0,求a 为何值时, (1)方程有一根; (2)两根都大于1;(2)方程一根大于1,一根小于1;(3)方程一根在区间(-1,0)内,另一根在区间(1,2)内.解:(1)当a =0时,方程变为-2x -1=0,即12x =-符合题意; 当a ≠0时,方程为二次方程,因为方程有一根,所以Δ=12a +4=0,解得13a =-. 综上可知,当a =0或13a =-时,关于x 的方程ax 2-2(a +1)x +a -1=0有一根.(2)方程两根都大于1,图象大致如下图,所以必须满足:0,0,11,(1)0,a a a f >⎧⎪∆>⎪⎪+⎨>⎪⎪>⎪⎩或0,0,11,(1)0,a a a f <⎧⎪∆>⎪⎪+⎨>⎪⎪<⎪⎩解得a ∈∅.因此不存在实数a ,使方程两根都大于1. (3)因为方程有一根大于1,一根小于1,图象大致如下图,所以必须满足0,(1)0,a f >⎧⎨<⎩或0,(1)0,a f <⎧⎨>⎩解得a >0.(4)因为方程有一根在区间(-1,0)内,另一根在区间(1,2)内,图象大致如下图,所以必须满足(1)0,(0)0,(1)0,(2)0,f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩或(1)0,(0)0,(1)0,(2)0,f f f f -<⎧⎪>⎪⎨>⎪⎪<⎩解得a ∈∅.因此不存在实数a ,使方程有一根在区间(-1,0)内,另一根在区间(1,2)内.。
方程的根与函数的零点经典练习及答案

[基础巩固]1.(多选)下列图象表示的函数有零点的是( )解析 观察图象可知A 选项中图象对应的函数没有零点.答案 BCD2.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0,的零点个数为( ) A .0B .1C .2D .3 解析 解法一 令f (x )=0,得⎩⎪⎨⎪⎧ x ≤0x 2+2x -3=0或⎩⎪⎨⎪⎧x >0ln x =2, ∴x =-3或x =e 2,应选C.解法二 画出函数f (x )的图象可得,图象与x 轴有两个交点,则函数f (x )有2个零点. 答案 C3.设x 0是方程ln x +x =4的解,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析 设函数f (x )=ln x +x -4,则函数f (x )的图象是一条连续不断的曲线.f (1)=ln 1+1-4=-3<0,f (2)=ln 2-2<0,f (3)=ln 3-1>0,f (4)=ln 4>0,所以f (2)·f (3)<0,所以x 0∈(2,3).答案 C4.函数f (x )=ln x -x 2+2x +5的零点个数为________.解析 令ln x -x 2+2x +5=0得ln x =x 2-2x -5,画图可得函数y =ln x 与函数y =x 2-2x -5的图象有2个交点,即函数f (x )的零点个数为2.答案 25.若f (x )=x +b 的零点在区间(0,1)内,则b 的取值范围为________.解析 ∵f (x )=x +b 是增函数,又f (x )=x +b 的零点在区间(0,1)内,∴⎩⎪⎨⎪⎧ f (0)<0,f (1)>0.∴⎩⎪⎨⎪⎧b <0,1+b >0.∴-1<b <0. 答案 (-1,0)6.判断方程log 2x +x 2=0在区间⎣⎡⎦⎤12,1内有没有实数根?为什么?解析 设f (x )=log 2x +x 2,先设该方程有实数根,∴f ⎝⎛⎭⎫12=log 212+⎝⎛⎭⎫122=-1+14=-34<0, f (1)=log 21+1=1>0,∴f ⎝⎛⎭⎫12·f (1)<0. ∵函数f (x )=log 2x +x 2的图象在区间⎣⎡⎦⎤12,1上是连续的,∴f (x )在区间⎣⎡⎦⎤12,1内有零点,即方程log 2x +x 2=0在区间⎣⎡⎦⎤12,1内有实根.[能力提升]7.已知f (x )为奇函数,且该函数有三个零点,则三个零点之和等于( )A .0B .1C .-1D .不能确定解析 因为奇函数的图象关于原点对称,所以若f (x )有三个零点,则其和必为0.答案 A8.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≤0,-2+ln x ,x >0,若函数y =f (x )-k 有三个零点,则实数k 的取值范围为( )A .(-2,-1]B .[-2,-1]C .[1,2]D .[1,2)解析 函数y =f (x )-k 有三个零点,即y =f (x )与y =k 有三个交点,f (x )的图象如上,由图象可得-2<k ≤-1.故选A .答案 A9.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 解析 函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,就是函数y =a x (a >0且a ≠1)与函数y =x +a 的图象有两个交点,由图象可知当0<a <1时两函数的图象只有一个交点,不符合;当a >1时,因为函数y =a x (a >1)的图象过点(0,1),当直线y =x +a 与y 轴的交点(0,a )在(0,1)的上方时一定有两个交点.所以a >1.答案 (1,+∞)10.已知二次函数f (x )=x 2-2ax +4,在下列条件下,求实数a 的取值范围.(1)零点均大于1;(2)一个零点大于1,一个零点小于1;(3)一个零点在(0,1)内,另一个零点在(6,8)内.解析 (1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在性定理得⎩⎪⎨⎪⎧ (-2a )2-16≥0,f (1)=5-2a >0,a >1,解得2≤a <52. (2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在性定理得f (1)=5-2a <0,解得a >52. (3)因为方程x 2-2ax +4=0的一个根在(0,1)内,另一个根在(6,8)内,结合二次函数的单调性与零点存在性定理得⎩⎪⎨⎪⎧ f (0)=4>0,f (1)=5-2a <0,f (6)=40-12a <0,f (8)=68-16a >0,解得103<a <174. [探索创新]11.已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)解析 函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示.由图可知,-a≤1,解得a≥-1,故选C. 答案 C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.函数f (x )=log 5(x -1)的零点是( ) A .0 B .1 C .2 D .3 解析:选(x -1)=0,解得x =2,
∴函数f (x )=log 5(x -1)的零点是x =2,故选C.
2x
( )
A.(-1,0) C .(1,2) D .(2,3)
解析:选C.设f (x )=e x
-x -2,∵f (1)=-3=-<0,f (2)=-4=>0.∴f (1)f (2)<
0,由根的存在性定理知,方程e x
-x -2=0必有一个根在区间(1,2).故选C.
3.(2010年高考福建卷)函数f (x )=⎩
⎪⎨⎪⎧
x 2+2x -3,x ≤0
-2+ln x ,x >0的零点个数为( )
A .0
B .1
C .2
D .3
解析:选C.当x ≤0时,由f (x )=x 2
+2x -3=0,得x 1=1(舍去),x 2=-3;当x >0
时,由f (x )=-2+ln x =0,得x =e 2
,所以函数f (x )的零点个数为2,故选C.
4.已知函数f (x )=x 2
-1,则函数f (x -1)的零点是________.
解析:由f (x )=x 2-1,得y =f (x -1)=(x -1)2-1=x 2-2x ,∴由x 2
-2x =0.解得x 1
=0,x 2=2,因此,函数f (x -1)的零点是0和2.
答案:0和2
1.若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2
-ax 的零点是( )
A .0,2
B .0,-1
2
C .0,12
D .2,12
解析:选B.由题意知2a +b =0,
∴b =-2a ,∴g (x )=-2ax 2
-ax =-ax (2x +1),
使g (x )=0,则x =0或-1
2.
2.若函数f (x )=x 2
+2x +a 没有零点,则实数a 的取值范围是( ) A .a <1 B .a >1 C .a ≤1 D .a ≥1 解析:选B.由题意知,Δ=4-4a <0,∴a >1.
3.函数f (x )=ln x -2
x
的零点所在的大致区间是( )
A .(1,2)
B .(2,3)
C .(3,4)
D .(e,3)
解析:选B.∵f (2)=ln2-1<0,f (3)=ln3-2
3
>0,
∴f (2)·f (3)<0,∴f (x )在(2,3)内有零点. 4.下列函数不存在零点的是( )
A .y =x -1x
B .y =2x 2
-x -1
C .y =⎩
⎪⎨
⎪⎧
x +1 x ≤0x -1 x >0
D .y =⎩
⎪⎨
⎪⎧
x +1
x ≥0x -1 x <0
解析:选D.令y =0,得A 和C 中函数的零点均为1,-1;B 中函数的零点为-1
2
,1;
只有D 中函数无零点.
5.函数y =log a (x +1)+x 2
-2(0<a <1)的零点的个数为( ) A .0 B .1 C .2 D .无法确定
解析:选C.令log a (x +1)+x 2
-2=0,方程解的个数即为所求函数零点的个数.即考查
图象y 1=log a (x +1)与y 2=-x 2
+2的交点个数.
6.设函数y =x 3
与y =(12
)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,4)
解析:选B.设f (x )=x 3
-(12
)x -2,
则f (0)=0-(12)-2<0;f (1)=1-(12)-1<0;f (2)=23-(1
2
)0>0.∴函数f (x )的零点在(1,2)
上.
7.函数f (x )=ax 2
+2ax +c (a ≠0)的一个零点为1,则它的另一个零点为________. 解析:设方程f (x )=0的另一根为x ,
由根与系数的关系,得1+x =-2a
a
=-2,
故x =-3,即另一个零点为-3. 答案:-3
8.若函数f (x )=3ax -2a +1在区间[-1,1]上存在一个零点,则a 的取值范围是________.
解析:因为函数f (x )=3ax -2a +1在区间[-1,1]上存在一个零点,所以有f (-1)·f (1)≤0,即(-5a +1)·(a +1)≤0,(5a -1)(a +1)≥0,
所以⎩⎪⎨⎪⎧ 5a -1≥0a +1≥0或⎩
⎪⎨⎪⎧
5a -1≤0,a +1≤0,解得a ≥15或a ≤-1.
答案:a ≥1
5
或a ≤-1. X k b 1 . c o m
9.下列说法正确的有________:
①对于函数f (x )=x 2
+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内一定没有零点.
②函数f (x )=2x -x 2
有两个零点.
③若奇函数、偶函数有零点,其和为0.
④当a =1时,函数f (x )=|x 2
-2x |-a 有三个零点. 解析:①错,如图.
②错,应有三个零点.
③对,奇、偶数图象与x 轴的交点关于原点对称,其和为0.
④设u (x )=|x 2-2x |=|(x -1)2
-1|,如图向下平移1个单位,顶点与x 轴相切,图象与x 轴有三个交点.∴a =1.
答案:③④
10.若方程x 2
-2ax +a =0在(0,1)恰有一个解,求a 的取值范围.
解:设f (x )=x 2
-2ax +a .
由题意知:f (0)·f (1)<0,
即a (1-a )<0,根据两数之积小于0,那么必然一正一负.故分为两种情况.
⎩
⎪⎨
⎪⎧
a >0,1-a <0,或⎩
⎪⎨
⎪⎧
a <0,
1-a >0,
∴a <0或a >1.
11.判断方程log 2x +x 2
=0在区间[12
,1]内有没有实数根?为什么?
解:设f (x )=log 2x +x 2
,
∵f (12)=log 212+(12)2=-1+14=-3
4
<0,
f (1)=lo
g 21+1=1>0,∴f (12)·f (1)<0,函数f (x )=log 2x +x 2的图象在区间[1
2,1]
上是连续的,因此,f (x )在区间[12,1]内有零点,即方程log 2x +x 2
=0在区间[12
,1]内有实
根.
12.已知关于x 的方程ax 2
-2(a +1)x +a -1=0,探究a 为何值时, (1)方程有一正一负两根; (2)方程的两根都大于1;
(3)方程的一根大于1,一根小于1. 解:(1)因为方程有一正一负两根,
所以由根与系数的关系得⎩⎪⎨⎪⎧
a -1a <0Δ=12a +4>0
,
解得0<a <1.即当0<a <1时,方程有一正一负两根.
(2)法一:当方程两根都大于1时,函数y =ax 2
-2(a +1)x +a -1的大致图象如图(1)(2)所示,
所以必须满足⎩⎪⎨⎪⎧ a >0
Δ>0
a +1
a >1f 1>0
,或⎩⎪⎨⎪⎧
a <0
Δ>0
a +1
a >1f 1<0
,不等式组无解.
所以不存在实数a ,使方程的两根都大于1.
法二:设方程的两根分别为x 1,x 2,由方程的两根都大于1,得x 1-1>0,x 2-1>0, 即⎩⎪⎨⎪⎧
x 1-1x 2-1>0x 1-1+x 2-1>0 ⇒⎩⎪⎨
⎪
⎧
x 1x 2-x 1+x 2+1>0
x 1+x 2>2
.
所以⎩⎪⎨⎪⎧
a -1a -2a +1
a
+1>02a +1
a
>2
⇒⎩
⎪⎨
⎪⎧
a <0a >0,不等式组无解.
即不论a 为何值,方程的两根不可能都大于1.
(3)因为方程有一根大于1,一根小于1,函数y =ax 2
-2(a +1)x +a -1的大致图象如
图(3)(4)所示,
所以必须满足⎩⎪⎨
⎪⎧
a >0
f 1
<0或⎩⎪⎨⎪⎧
a <0f 1
>0
,解得a >0.
∴即当a >0时,方程的一个根大于1,一个根小于1.。