过程控制系统设计
《过程控制系统设计》PPT课件

❖ 命题
▪ 确定所要求取的参数——流量、孔径、压差
❖ 从层流到紊流的分界线取决于
▪ 流量、流体的密度、粘度和管道内径
❖ 雷诺数Re
▪ Re〈2300 层流 ▪ Re〉4000 紊流
46微米厚的液晶层的流动。 当电场强度平缓增加时 •层流(右上) •弱的湍流(左下) •方格状对流(右下) 下侧两图混沌→湍流
ppt课件
14
3 过程控制系统设计
(2) 雷诺数Re(续)
ppt课件
8
3 过程控制系统设计
(3) 推断控制 当被控变量不能直接测量使用,利用辅助变 量的测量值来调节控制变量,使不可测的被控变 量保持在预期值。
ppt课件
9
3 过程控制系统设计
3.3 过程控制系统硬件选择
根据过程控制的输入输出变量以及控制要求,可
以选定系统硬件,包含:
保护
❖ 控制装置
装置
❖ 测量仪表、传感器 ❖ 执行机构
ppt课件
11
3 过程控制系统设计
3.3.2 测量仪表和传感器的选型原则
❖ 检测部件一般宜采用定型产品,设计过程控 制系统时,根据控制方案选择测量仪表和传 感器
❖ 选型原则:
▪ 可靠性 ▪ 实用性 ▪ 先进性
ppt课件
12
3 过程控制系统设计
3.4 流量计选择
3.4.1 流量计算有关的基本概念
(1) 流量Q 流体在单位时间内流过管道或设备某处横断面 的数量成为流量。
ε 可膨胀系数
a 节流装置开孔截面积
ρ1 流体流过节流装置前的密度
Δp 节流元件前后压力差
ppt课件
23
3 过程控制系统设计
化工过程控制系统的设计与实现

化工过程控制系统的设计与实现近年来,随着化工产业的迅猛发展,工业自动化技术得到广泛应用,化工过程控制系统已成为化工生产中不可或缺的一部分。
本文将探讨化工过程控制系统的设计与实现。
一、化工过程控制系统的概述化工过程控制系统是指利用先进的电子、自动控制技术,对各种化工生产过程进行监测、控制和管理的一种系统。
化工过程控制系统主要包括传感器、执行器、控制器、人机界面等部分。
其中,传感器用于采集化工生产过程的实时数据,执行器用于执行控制指令,控制器用于对数据进行实时处理,并产生相应的控制指令,人机界面则提供了方便的操作界面,使操作员能够对整个系统进行监测和控制。
二、化工过程控制系统的设计1. 系统功能分析在化工过程控制系统的设计过程中,首先需要进行系统功能分析。
这一步的目的是明确系统需要实现的功能,并将不同的功能分配给不同的子系统。
2. 设计方案选择根据系统功能分析的结果,设计方案选择是化工过程控制系统设计的重要步骤。
在这一步中,需要选择合适的硬件设备和软件平台,并确定系统的通信网络。
同时,还需要根据实际情况选择适用的控制算法和控制策略。
3. 系统拓扑设计系统拓扑设计是化工过程控制系统设计过程的下一步。
这一步的目的是将不同的子系统予以组织并建立相应的通信连接。
通常,化工过程控制系统的硬件包括传感器、执行器、控制器等组成,软件包括控制算法和控制策略。
在系统拓扑设计中,需要确定不同硬件和软件的组合方式,并建立相应的通信链路。
4. 系统接口设计在系统接口设计中,需要将不同的子系统与系统总线相连接,并确定数据传输协议。
同时,还需要制定数据传输格式以及相应的数据传输方式。
三、化工过程控制系统的实现1. 各子系统实现根据化工过程控制系统的设计方案,实现各个子系统的开发和调试工作。
其中,传感器和执行器的选择非常重要,需要适应化工生产环境中的高温、高压、易腐蚀等特殊条件。
2. 控制算法和控制策略的实现控制算法和控制策略是化工过程控制系统中最为关键的部分。
过程控制系统的设计与实现

过程控制系统的设计与实现随着工业自动化的不断提高和科技的不断发展,越来越多的企业和生产厂家开始采用过程控制系统,以提高生产效率和产品质量。
过程控制系统是指利用计算机、传感器等技术手段对工艺流程进行实时监测和控制的系统。
本文将着重讨论过程控制系统的设计与实现过程。
具体内容如下:一、需求分析进行过程控制系统的设计与实现,需要首先进行需求分析。
需求分析主要包括以下几个方面:1.生产需求:明确生产厂家的生产要求和目标,制定相应的生产计划。
2.设备要求:确定所需的硬件设备、软件系统及其规格和参数。
3.控制策略:根据生产需求和设备要求,确定相应的控制策略和规则。
4.安全性:保障系统的安全性和可靠性,防止系统被外界攻击或故障。
在需求分析阶段,我们需要与生产厂家充分沟通,了解其需求和要求,制定相应的控制方案,并确定相应的设计方向和目标。
二、系统设计在需求分析阶段完成后,需要对过程控制系统进行系统设计。
系统设计主要包括以下几个步骤:1.系统架构:确定过程控制系统的总体架构,包括硬件、软件和网络架构等。
2.功能设计:确定系统要实现的功能和特性,如控制、监测、报警等。
3.软件设计:设计系统所需要的软件,包括编写代码、测试程序、编写文档等。
4.硬件设计:根据系统架构和功能要求,设计硬件系统,选择合适的传感器、执行器、控制器等等。
5.集成测试:将软件、硬件、网络等各个部分进行集成测试,确保系统能够正常运行。
在系统设计阶段,需要充分考虑系统的可扩展性、灵活性和稳定性等要求。
三、系统实现系统实现是指将以上设计方案付诸实践的过程。
系统实现主要包括以下几个步骤:1.硬件搭建:根据设计方案,选择合适的硬件设备并进行搭建。
2.软件编码:根据设计方案,编写相应的代码并进行调试。
3.测试和调试:对已实现的系统进行测试和调试,确保系统能够正常运行。
4.安装和调试:将系统安装到实际生产环境中,并进行调试和实验,确保系统能够满足生产需求。
在系统实现阶段,需要根据系统设计方案进行具体实现,并进行现场实验和调试,确保系统能够正常运行。
过程控制系统设计

过程控制系统设计过程控制系统是指在工业生产中对生产过程进行监控、调节和控制的系统。
它是工业自动化的核心部分,直接关系到生产的稳定性、效率和质量。
因此,过程控制系统的设计非常重要,下面将从几个方面对过程控制系统的设计进行探讨。
首先,过程控制系统的设计需要确定控制目标和要求。
根据生产过程的特点和目标,确定系统的控制方式、控制参数和控制精度等指标。
例如,在化工生产中,常采用PID控制器进行温度、压力、流量等参数的控制,而在电力系统中,常采用分布式控制系统(DCS)进行电流、电压和功率的控制。
控制目标和要求的明确可以为后续的系统设计提供指导。
其次,过程控制系统的设计需要考虑传感器与执行器的选择和布置。
传感器的选择和布置将直接影响到系统对生产过程的感知能力和控制精度。
传感器应能准确、稳定地测量相关物理量,并能与控制系统进行数据交互。
同时,传感器的布置要考虑到实际生产过程的特点,尽可能地覆盖全部关键位置,以获得全面的数据信息。
类似地,执行器的选择和布置也需要根据实际情况进行决策,以实现对生产过程的精确控制。
其次,过程控制系统的设计需要考虑系统的可靠性和安全性。
作为一个关键系统,过程控制系统在设计时必须考虑到可能出现的各种故障情况,并采取相应的措施进行容错和备份。
例如,可以使用冗余设计,即在系统中引入多个备用组件,以备份主要组件的工作。
此外,还需考虑到系统的安全性,采取相应的措施防止非法操作和恶意攻击,确保生产过程的安全运行。
最后,过程控制系统的设计需要进行系统的集成和优化。
传感器、执行器、控制器以及相关的软件和通信设备需要在设计和实施阶段进行集成,确保各个组件之间的正常通信和协作。
同时,在系统实施后,还需对系统进行优化和调整,以满足实际生产过程的要求。
通过对系统的数据进行分析和处理,可以发现问题和改进的空间,提高生产过程的效率和质量。
综上所述,过程控制系统的设计是一个复杂而重要的过程。
需要明确控制目标和要求,选择合适的传感器和执行器,考虑系统的可靠性和安全性,并进行系统的集成和优化。
过程控制系统课程设计

过程控制系统课程设计过程控制系统课程设计引言:过程控制系统是工程技术中的重要组成部分,它负责对工业过程进行监控与控制,以确保工艺的稳定性和高效性。
在过程控制系统课程设计中,学生将探讨过程控制系统的原理与应用,并通过实践设计一个实际的过程控制系统。
一、绪论过程控制系统又称作工业控制系统,它广泛应用于化工、电力、机械制造等领域。
过程控制系统的主要目标是监控和控制工业过程,以确保产品质量、提高生产效率和降低能源消耗。
通过对传感器的采集和执行器的控制,过程控制系统可以实现自动化的生产。
二、过程控制系统的组成1.传感器与执行器:传感器负责采集工业过程中的各项参数,如温度、压力、流量等。
执行器则负责根据控制系统的指令,对工艺过程进行调节和控制。
2.控制器:控制器是过程控制系统的核心,它根据传感器采集到的数据,通过算法和控制策略进行分析和判断,产生相应的控制信号送往执行器。
3.人机界面:人机界面是人与过程控制系统之间的桥梁,它提供了一个直观、友好的操作界面,使操作人员可以实时地监控和控制生产过程。
三、过程控制系统的设计步骤1.确定系统的目标:在设计过程控制系统前,首先需要明确系统的目标,即要控制的工艺过程中所需达到的标准和要求。
2.收集和分析数据:通过传感器采集工艺过程中的数据,并进行数据分析,了解工艺过程的变化规律和特点。
3.建立模型:根据收集到的数据,建立工艺过程的数学模型,用于后续的控制系统设计。
4.选择控制策略:根据工艺过程的性质和目标要求,选择合适的控制策略,如PID控制、模糊控制、神经网络控制等。
5.设计控制算法:根据选择的控制策略,设计相应的控制算法,并将其实现在控制器中。
6.仿真和优化:使用仿真工具对设计好的控制系统进行仿真,并进行调整和优化,以使系统的性能符合要求。
7.实现与调试:根据控制器的设计方案,采购和安装相应的硬件设备,并进行调试和验证。
8.监控与维护:设计好的过程控制系统需要持续地进行监控和维护,以确保系统的稳定性和可靠性。
过程控制系统课程设计

过程控制系统课程设计在过程控制系统课程设计中,学生需要综合运用所学的理论和技能,设计一个能够有效控制和监控工业过程的系统。
本文将介绍一个典型的过程控制系统课程设计流程,并着重介绍设计中需要考虑的关键要素和实施步骤。
一、引言过程控制系统是现代工业中必不可少的一部分,它能够监测和控制工业过程中的各种参数,保证生产的高效性和安全性。
因此,对于学习过程控制系统的专业学生而言,掌握设计过程控制系统的能力非常重要。
本课程设计旨在帮助学生深入了解过程控制系统,并通过实践提高他们的设计能力。
二、设计要素在进行过程控制系统的课程设计时,需要考虑以下关键要素:1. 系统需求分析:了解工业过程的特点和需求,明确系统的功能、性能和稳定性要求。
2. 控制策略选择:根据系统需求分析,选择适合的控制策略,如PID控制、最优控制等。
3. 传感器选择与布置:根据需求确定需要监测的参数,并选择合适的传感器进行测量,并合理布置传感器。
4. 控制器选择与配置:选择合适的控制器,并通过配置参数来实现所需的控制策略。
5. 人机界面设计:设计一个直观、易用的人机界面,以方便操作人员实时监测和控制过程。
6. 安全性考虑:确保系统具备安全性,采取相应的防护措施,防止事故的发生。
三、课程设计步骤以下是一个典型的过程控制系统课程设计步骤,供学生参考:1. 系统需求分析:对于一个给定的工业过程,分析其特性和需求,确定系统的功能、性能和稳定性要求。
2. 控制策略选择:根据需求分析,选择适合的控制策略,如PID控制、模糊控制等,并解释其原理和适用范围。
3. 传感器选择与布置:根据需求确定需要监测的参数,选择合适的传感器进行测量,并合理布置传感器,以保证测量的准确性和可靠性。
4. 控制器选择与配置:根据选择的控制策略,选择合适的控制器,并通过配置参数来实现所需的控制策略。
5. 人机界面设计:设计一个直观、易用的人机界面,以方便操作人员实时监测和控制过程。
界面应包括实时数据显示、报警功能等。
过程控制系统设计

❖ 具体步骤:
1.根据工艺要求和控制目标确定系统变量 2.建立数学模型 3.确定控制方案 4.选择硬件设备 5.选择控制算法,进行控制器设计 6.软件设计
设备安装、调试与整定、运行
❖ 3-2 确定控制变量与控制方案 根据稳定性、安全性和经济性原则确定控制目标
❖ 1.被控变量 在定性地确定目标以后,需要用工业过程的被控变 量来定量地表示控制目标 被控变量也是工业过程的输出变量
❖ 检测部件一般宜采用定型产品,设计过程控制系统 时,根据控制方案选择测量仪表和传感器 选型原则:
❖ (1) 可靠性原则 可靠性是指产品在一定的条件下,能长期而稳定地 完成规定功能的能力。 是测量仪表和传感器的最重要选型原则。
❖ (2) 实用性原则 完成具体功能要求的能力和水平。根据工艺要求
考虑实用性,既要保证功能的实现,又应考虑经济 性,并非功能越强越好。
❖
模拟量控制回路较少,开关量较多的过程控制系统 宜采用PLC控制。
❖ 测量仪表和传感器的选型原则
一个简单的控制系统就是由被控对象、检测部件( 测量仪表和传感器)和执行机构组成
❖ 自动控制系统中检测部件的作用相当于人的感觉器 官,它直接感受被测参数的变化,提取被测信息, 转换成标准信号供显示和作为控制的依据
2.输入变量
有两类:
控制(或操作)变量,扰动变量。
研究调节阀的流量特性对于选用调节阀有重要意义。
研究调节阀的流量特性对于选用调节阀有重要意义。
②旁路阀逐渐开启,旁路流量增加,则B值减小,可调比下降;
(2)实际可调比
在实际使用中,调节阀前后的压降是随管道阻力的变化而改的。
把控制器比喻为自动调节系统中的“头脑”,则调节阀就是自动调节系统的“手脚”。
过程控制系统课程设计题目和要求自动化1102

过程控制系统课程设计题目和要求自动化1102过程控制系统是自动化专业的一门重要课程,旨在培养学生对工业过程自动化控制的理论知识和实践能力。
在学习这门课程的过程中,学生需要完成一些课程设计题目,以检验对知识的掌握和应用能力。
本文将分享一些关于过程控制系统课程设计题目和要求的内容。
一、概述在过程控制系统课程设计中,学生需要完成一系列的实践任务,以应用所学知识解决实际问题。
这些任务通常结合了实验室实践和实际案例分析,旨在培养学生的实践能力和创新思维。
二、基本要求1. 深入理解过程控制系统的原理和方法,掌握控制系统的建模、分析和设计技术。
2. 熟悉常见的传感器、执行器和控制器,并能正确选择和使用它们。
3. 掌握过程控制系统的调试和优化技术,能够解决控制过程中的常见问题。
4. 具备团队合作和沟通能力,能够与他人合作完成复杂的课程设计任务。
三、课程设计题目举例1. 温度控制系统设计要求:设计一个温度控制系统,能够实时监测和调节给定温度和实际温度之间的误差。
使用合适的传感器和执行器进行温度测量和调节,并采用合适的控制算法实现闭环控制。
2. 液位控制系统设计要求:设计一个液位控制系统,能够稳定控制液位在给定范围内波动。
选用合适的传感器和执行器进行液位测量和调节,采用适当的控制策略实现对液位的控制。
3. 压力控制系统设计要求:设计一个压力控制系统,能够实时监测和调节给定压力和实际压力之间的误差。
选用合适的传感器和执行器进行压力测量和调节,并采用适当的控制算法实现对压力的控制。
4. 流量控制系统设计要求:设计一个流量控制系统,能够实时监测和调节给定流量和实际流量之间的误差。
使用合适的传感器和执行器进行流量测量和调节,并采用合适的控制算法实现对流量的控制。
四、课程设计流程1. 确定课程设计题目,并与指导教师进行讨论和确认。
2. 进行课程设计的理论准备,包括相关的知识学习和文献阅读。
3. 进行实验室实践,完成所设计的过程控制系统的搭建和调试工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要加热炉在工业生产中是非常重要的换热设备,在炉膛内将燃料燃烧释放的热量通过热辐射方式传递给被加热的工艺介质。
加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。
同时,近年来能源的节约、回收和合理利用日益受到关注。
加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。
因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。
另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。
为保证工艺介质最终温度稳定的同时,达到节能减排的目的,本文设计的加热炉控制系统包括如下控制回路:燃料量和空气量交叉限制式串级燃烧自动系统、炉膛压力自动控制,热风温度自动控制系统,燃料、空气流量比例自动控制。
另外,为了最大程度地节约能源,在具有下游换热器的加热炉装置中,下游换热器只在工艺介质最终温度异常升高时工作,在平稳生产时不起作用。
关键词:温度、加热炉、控制系统。
目录摘要 (1)第一章绪论 (3)1.1引言 (3)1.2 国内外控制系统状况 (3)第二章控制系统设计 (5)2.1生产工艺及加热炉简介 (5)2.2 控制系统的设计思想和总体方案 (7)2.2.1 控制系统的设计思想 (7)2.2.2 控制系统的设计方案 (7)2.3 控制回路的参数选择 (10)2.4 主、副调节器调节规律的选择 (10)2.4.1 调节规律分析 (10)2.4.2 调节规律的确定 (11)2.5主、副调节器选用 (12)2.6主、副电路检测变送器的确定 (13)2.6.1 温度检测元件 (13)2.6.2 温度变送器 (14)2.7 调节阀的确定 (14)2.8 联锁保护 (15)第三章结束语 (16)参考文献 (17)第一章绪论1.1引言近年来,轧钢生产中所涌现的新技术、新工艺主要是围绕节约能源、降低成本、提高产品质量、开发新产品所进行的。
在节能降耗上,主要技术是:连铸坯热送热装技术、薄板坯连铸连轧技术、先进的节能加热炉等;在提高产品性能、质量上,主要技术是:TMCP 技术、高精度轧制技术、先进的板形、板厚控制技术、计算机生产管理技术等;在技术装备上,主要是大型化、连续化、自动化,即热轧带钢、冷轧带钢的连续化,实现无头轧制、酸轧联合机组、连续退火及板带涂层技术等。
这些技术的应用可极大地提高产品的竞争能力。
以节能降耗为目标的新技术。
加热炉炉温的控制直接影响到生产质量和能耗的多少。
所以加热炉控制系统的优化控制方案有待解决!1.2 国内外控制系统状况一、国外控制系统的发展情况自 70 年代以来,由于工业过程控制的需要,特别是在微电子技术和计算机技术的迅猛发展以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化、自适应、参数自整定等方面取得成果,在这方面,以日本、美国、德国、瑞典等国技术领先,都生产出了一批商品化的、性能优异的控制器及仪器仪表,并在各行业广泛应用。
它们主要具有如下的特点:1、适应于大惯性、大滞后等复杂控制系统的控制。
2、能够适应于受控系统数学模型难以建立的控制系统的控制。
3、能够适应于受控系统过程复杂、参数时变的控制系统的控制。
4、这些控制系统普遍采用自适应控制、自校正控制、模糊控制、人工智能等理论,运用先进的算法,适应的范围广泛。
5、控制系统具有控制精度高、抗干扰力强、鲁棒性好的特点。
目前,国外控制系统及仪表正朝着高精度、智能化、小型化等方面快速发展。
二、国内控制系统的发展概况随着人们物质生活水平的提高以及市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,以及安全生产、保护环境等要求,做为工业自动化重要分支的过程控制的任务也愈来愈繁重。
在现代工业控制中, 过程控制技术是一历史较为久远的分支。
在本世纪30 年代就已有应用。
过程控制技术发展至今天, 在控制方式上经历了从人工控制到自动控制两个发展时期。
在自动控制时期内,过程控制系统又经历了三个发展阶段, 它们是:分散控制阶段, 集中控制阶段和集散控制阶段。
几十年来,工业过程控制取得了惊人的发展,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起着十分重要的作用。
目前,过程控制正朝高级阶段发展,不论是从过程控制的历史和现状看,还是从过程控制发展的必要性、可能性来看,过程控制是朝综合化、智能化方向发展,即计算机集成制造系统(CIMS):以智能控制理论为基础,以计算机及网络为主要手段,对企业的经营、计划、调度、管理和控制全面综合,实现从原料进库到产品出厂的自动化、整个生产系统信息管理的最优化。
本期中国重型机械研究院自动化研究所米进周和高朝波撰写的《连铸过程控制系统的研究和应用》详细阐述了作为钢铁企业实现企业信息化管理重要组成部分的连铸过程控制系统,集成了先进的工艺数学模型和控制技术,使铸坯质量得到极大提高、生产管理更加方便,增强了企业竞争力,发展前景十分广阔。
第二章 控制系统设计2.1生产工艺及加热炉简介一、 冶金工艺流程采矿、选矿过程工艺流程→炼铁区工艺流程→炼钢区工艺流程→轧钢区工艺流程。
从矿石到成品的整个工艺流程如下图所示。
图2—1冶金工艺流程 二、热轧工艺流程铁矿石送入高炉炼铁,炼铁厂出来的产品又作为炼钢的原料送入炼钢厂冶炼,从炼钢厂出来的钢坯还仅仅是半成品,必须到轧钢厂去进行轧制以后,才能成为合格的产品。
从炼钢厂送过来的连铸坯,首先是进入加热炉,然后经过初轧机反复轧制之后,进入精轧机。
轧钢属于金属压力加工,说简单点,轧钢板就像压面条,经过擀面杖的多次挤压与推进,面就越擀越薄。
在热轧生产线上,轧坯加热变软,被辊道送入轧机,最后轧成用户要求的尺寸。
轧钢是连续的不间断的作业,钢带在辊道上运行速度快,设备自动化程度高,效率也高。
从平炉出来的钢锭也可以成为钢板,但首先要经过加热和初轧开坯才能送到热轧线上进行轧制,工序改用连铸坯就简单多了,一般连铸坯的厚度为150~250mm,先经过除磷到初轧,经辊道进入精轧轧机,精轧机由7架4辊式轧机组成,机前装图2—1 冶金工艺流程有测速辊和飞剪,切除板面头部。
精轧机的速度可以达到23m/s。
热轧成品分为钢卷和锭式板两种,经过热轧后的钢轨厚度一般在几个毫米,如果用户要求钢板更薄的话,还要经过冷轧。
三、加热炉简介1、加热炉分类在冶金工业中,加热炉习惯上是指把金属加热到轧制成锻造温度的工业炉,包括有连续加热炉和室式加热炉等。
金属热处理用的加热炉另称为热处理炉。
初轧前加热钢锭或使钢锭内部温度均匀的炉子称为均热炉。
广义而言,加热炉也包括均热炉和热处理炉。
连续加热炉包括推钢式炉、步进式炉、转底式炉、分室式炉等连续加热炉,但习惯上常指推钢式炉。
连续加热炉多数用于轧制前加热金属料坯,少数用于锻造和热处理。
主要特点是:料坯在炉内依轧制的节奏连续运动,炉气在炉内也连续流动;一般情况,在炉料的断面尺寸、品种和产量不变的情况下,炉子各部分的温度和炉中金属料的温度基本上不随时间变化而仅沿炉子长度变化。
2、加热炉的结构按炉温分布,炉膛沿长度方向分为预热段、加热段和均热段;进料端炉温较低为预热段,其作用在于利用炉气热量,以提高炉子的热效率。
加热段为主要供热段,炉气温度较高,以利于实现快速加热。
均热段位于出料端,炉气温度与金属料温度差别很小,保证出炉料坯的断面温度均匀。
用于加热小断面料坯的炉子只有预热段和加热段。
习惯上还按炉内安装烧嘴的供热带划分炉段,依供热带的数目把炉子称为一段式、二段式,以至五段式、六段式等。
50~60年代,由于轧机能力加大,而推钢式炉的长度受到推钢长度的限制不能太长,所以开始在进料端增加供热带,取消不供热的预热段,以提高单位炉底面积的生产率。
用这种炉子加热板坯,炉底的单位面积产量达900~1000公斤/(米2·时),热耗约为(0.5~0.65)×106千卡/吨。
70年代以来,由于节能需要,又由于新兴的步进式炉允许增加炉子长度,所以又增设不供热的预热段,最佳的炉底单位面积产量在600~650公斤/(米2·时),热耗约为(0.3~0.5)×106千卡/吨。
3、加热炉工作方式在锻造和轧制生产中,钢坯一般在完全燃烧火焰的氧化气氛中加热。
采用不完全燃烧的还原性火焰(即“自身保护气氛”)来直接加热金属,可以达到无氧化或少氧化的目的。
这种加热方式称为明火式或敞焰式无氧化加热,成功地应用于转底式加热炉和室式加热炉。
4、加热炉节能方式加热炉对钢锭进行加热时的温度高,烟气带走了大量的高温热量,造成白白浪费,热利用率较低,如果使用蜂窝陶瓷蓄热体可以达到余热回收的目的,但一次性投入大,切换机构多,维修成本高;另外在切换过程中也带走了相当多被烧嘴吹出但未燃烧的燃气,造成能源严重流失。
而使用换热器则可弥补蜂窝陶瓷这方面的不足,且投资少、无切换机构、免维修。
如果使用金属换热器,由于材质的限制,抗氧化能力差,不能在高温下长期使用,余热回收率低。
如烟道温度达到800度以上,金属换热器非常容易被高温损坏,无法达到余热回收的目的。
2.2 控制系统的设计思想和总体方案2.2.1 控制系统的设计思想串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。
前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。
整个系统包括两个控制回路,主回路和副回路。
副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
2.2.2 控制系统的设计方案一、加热炉控制系统的基本组成1、炉膛压力自动控制炉膛压力直接影响钢坯的加热质量、炉温分布、燃料消耗及炉体寿命。
一般加热炉控制炉膛为微正压状态,以使炉子既不吸入冷空气,炉气也不外溢。
炉膛压力控制是靠控制器升降烟道闸板,即改变烟囱抽力来实现的,系统串入阻尼器以提高其稳定性,又由于炉膛压力数值小,故取压管用较粗的管子,且从取压装直至变送器之间的导压管设置了补偿导管。
有些加热炉在烟道中设置两组调节翻版,其中一组有比值设定器,可根据数值来调节比值,保证烟道内气流均匀。
2、热风温度自动控制系统采用控制放风量的方法以保持热风温度在以最大限制范围内。
系统还设有废气温度控制系统,他用热电偶测量废气温度,通过控制器动作冷风阀向烟囱里加入冷风以保证废气温度不高于换热器允许温度,和防止烧坏炉子设备。