多尺度小波

合集下载

多尺度几何分析详解

多尺度几何分析详解

多尺度几何分析详解一、从小波分析到多尺度几何分析小波分析取在从多学科领域中取得巨大成功的一个关键原因在于它比傅里叶分析能更“稀疏”地表示一维分段光滑或者有界变差函数。

遗憾的是,小波分析在一维时所具有的优异特性并不能简单的推广到二维或更高维。

这是因为一维小波张成的可分离小波(Separable wavelet)只具有有限的方向,不能“最优”表示含线或者面奇异的高维函数,但事实上具有线或面奇异的函数在高维空间中非常普遍,例如,自然物体光滑边界使得自然图像的不连续性往往体现为光滑曲线上的奇异性,而并不仅仅是点奇异。

换句话说,在高维情况下,小波分析并不能充分利用数据本身特有的几何特征,并不是最优的或者说“最稀疏”的函数表示方法;而继小波分析之后发展起来的多尺度几何分析(Multiscale Geometric Analysis,MGA)发展的目的和动力正是要致力于发展一种新的高维函数的最优表示方法,为了检测、表示、处理某些高维空间数据,这些空间的主要特点是:其中数据的某些重要特征集中体现于其低维子集中(如曲线、面等)。

比如,对于二维图像,主要特征可以由边缘所刻画,而在3-D图像中,其重要特征又体现为丝状物(filaments)和管状物(tubes)。

由一维小波张成的二维小波基具有正方形的支撑区间,不同的分辨率下,其支撑区间为不同尺寸大小的正方形。

二维小波逼近奇异曲线的过程最终表现为用“点”来逼近线的过程。

在尺度j,小波支撑区间的边长近似为2-j,幅值超过2-j的小波系数的个数至少为O(2j)阶,当尺度变细时,非零小波系数的数目以指数形式增长,出现了大量不可忽略的系数,最终表现为不能“稀疏”表示原函数。

因此,我们希望某种变换在逼近奇异曲线时,为了能充分利用原函数的几何正则性,其基的支撑区间应该表现为“长条形”,以达到用最少的系数来逼近奇异曲线。

基的“长条形”支撑区间实际上是“方向”性的一种体现,也称为这种基具有“各向异性(anisotropy)”。

Matlab中的小波分析与多尺度处理方法

Matlab中的小波分析与多尺度处理方法

Matlab中的小波分析与多尺度处理方法一、引言Matlab是一款非常强大的数学软件,它提供了丰富的工具和函数库,方便用户进行各种数学分析和数据处理。

在Matlab中,小波分析和多尺度处理方法被广泛应用于信号处理、图像处理、模式识别等领域。

本文将介绍Matlab中的小波分析与多尺度处理方法的基本原理和应用。

二、小波分析的原理小波分析是一种基于函数变换的信号分析方法。

其基本原理是将信号分解成一系列不同尺度和频率的小波基函数,然后利用小波基函数对信号进行分析和重构。

Matlab提供了丰富的小波函数和工具箱,方便用户进行小波分析。

在Matlab中,小波函数使用wavedec进行信号分解,使用waverec进行信号重构。

用户只需指定小波基函数和分解的尺度,就可以对信号进行小波分析。

小波分析可以用于信号压缩、噪声滤波、特征提取等多个方面的应用。

三、多尺度处理方法的应用多尺度处理是一种基于信号的不同尺度特征进行分析和处理的方法。

在Matlab 中,多尺度处理方法有多种应用,下面将介绍几个常见的应用。

1. 周期信号分析周期信号是指具有明显周期性的信号。

在Matlab中,可以利用多尺度处理方法对周期信号进行分析和处理。

用户可以选择不同的尺度和频率范围对周期信号进行分解,提取出不同尺度下的周期特征。

这种方法可以用于周期信号的频谱分析、频率特征提取等。

2. 图像处理图像处理是多尺度处理方法的典型应用之一。

在Matlab中,可以利用小波变换对图像进行多尺度分解和重构。

通过选择不同的小波基函数和尺度,可以提取图像的纹理、边缘等特征。

这种方法在图像去噪、图像压缩等领域有广泛的应用。

3. 信号压缩信号压缩是多尺度处理方法的重要应用之一。

在Matlab中,可以利用小波变换对信号进行分解,然后根据信号的特征选择保留重要信息的分量进行压缩。

这种方法可以有效地减小信号的数据量,提高信号传输效率。

四、小波分析与多尺度处理方法的案例研究为了更好地理解Matlab中小波分析与多尺度处理方法的应用,下面将以一个案例研究为例进行说明。

小波多尺度分析的原理与实现方法解析

小波多尺度分析的原理与实现方法解析

小波多尺度分析的原理与实现方法解析小波多尺度分析是一种用于信号和图像处理的有效工具,它能够将信号或图像分解成不同尺度的频率成分,从而揭示出信号或图像的局部特征和结构。

本文将从原理和实现方法两个方面对小波多尺度分析进行解析。

一、原理解析小波多尺度分析的原理基于信号和图像的局部特征,它通过选择合适的小波函数进行分解和重构。

小波函数是一种具有局部性质的函数,它在时域和频域上都有紧凑的表示。

小波分析的核心思想是将信号或图像分解成不同尺度的频率成分,然后通过重构将这些成分合并起来,得到原始信号或图像。

具体来说,小波分析通过将信号或图像与一组小波函数进行卷积运算,得到一组小波系数。

这些小波系数表示了信号或图像在不同尺度上的频率成分。

在小波分解过程中,高频细节部分被分解到高尺度小波系数中,而低频整体部分则被分解到低尺度小波系数中。

通过调整小波函数的尺度和位置,可以得到不同尺度的频率成分,从而实现对信号或图像的多尺度分析。

二、实现方法解析小波多尺度分析的实现方法主要包括离散小波变换(DWT)和连续小波变换(CWT)两种。

离散小波变换是一种基于滤波器组的方法,它通过一系列的低通和高通滤波器对信号或图像进行分解和重构。

在分解过程中,信号或图像经过低通滤波器和高通滤波器,分别得到低频和高频部分。

然后,低频部分再次经过滤波器组进行分解,直到达到所需的尺度。

在重构过程中,通过将各个尺度的低频和高频部分经过逆滤波器组合并,得到原始信号或图像。

连续小波变换是一种基于积分变换的方法,它通过将信号或图像与一组连续的小波函数进行内积运算,得到一组连续的小波系数。

连续小波变换可以实现对信号或图像的连续尺度分析,但计算量较大。

为了减少计算量,可以采用小波包变换等方法进行近似处理。

除了离散小波变换和连续小波变换外,还有一些其他的小波变换方法,如快速小波变换、小波包变换、多尺度小波分解等。

这些方法在实际应用中根据需求的不同选择使用。

总结起来,小波多尺度分析是一种有效的信号和图像处理工具,它能够揭示出信号或图像的局部特征和结构。

matlab时间序列的多时间尺度小波分析

matlab时间序列的多时间尺度小波分析

小波分析—时间序列的多时间尺度分析一、问题引入1.时间序列(Time Series )时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。

在时间序列研究中,时域和频域是常用的两种基本形式。

其中:时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。

然而,许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。

对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。

显然,时域分析和频域分析对此均无能为力。

2.多时间尺度河流因受季节气候和流域地下地质因素的综合作用的影响,就会呈现出时间尺度从日、月到年,甚至到千万年的多时间尺度径流变化特征。

推而广之,这个尺度分析,可以运用到对人文历史的认识,以及我们个人生活及人生的思考。

3.小波分析产生:基于以往对于时间序列分析的各种缺点,融合多时间尺度的理念,小波分析在上世纪80年代应运而生,为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。

优点:相对于Fourier 分析:Fourier 分析只考虑时域和频域之间的一对一的映射,它以单个变量(时间或频率)的函数标示信号;小波分析则利用联合时间-尺度函数分析非平稳信号。

相对于时域分析:时域分析在时域平面上标示非平稳信号,小波分析描述非平稳信号虽然也在二维平面上,但不是在时域平面上,而是在所谓的时间尺度平面上,在小波分析中,人们可以在不同尺度上来观测信号这种对信号分析的多尺度观点是小波分析的基本特征。

应用范围:目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应用。

多尺度小波变换在野值剔除中的应用

多尺度小波变换在野值剔除中的应用

f r , h y tm i n l sd s o o e o e c c l e e t ed s s e ld sg a s i t d b l n f — o m t e s s e s a ic mp s d t a h s a ewh r h ia s mb e i n l s e t g i i ma e y Kama i l
t r a d t n wa ltr c ns r ton i ppl d t tt e b s s i a i n va i c e T h sago ihm om b— e , n he vee e o tuc i sa i O ge h e te tm ton i rouss al. i l rt e c i
c om p e iy o heK a m a it rago ihm , n efce tfle i g alort m spr o e w hih i bl O el i t l x t ft l n fle l rt a fii n it rn g ih i op s d, c s a et i na e m outir l fe v e u ts ae d c m po ii n a e onsr to Si ulto h le s we la t r wa eltm lic l e o sto nd r c t uc in. m a in s owe t wo m u ts ae d bo h t lic l w a e e r ns o m lort sha e go d r s t n ei i to o tir . v l tta f r ag ihm v o e uls i lm na in fou le s Ke y wor s: am a fle ; vee r ns o m ; uhic l d K l n it r wa ltta f r m sae

小波变换的多尺度分析方法及实现步骤

小波变换的多尺度分析方法及实现步骤

小波变换的多尺度分析方法及实现步骤引言:小波变换是一种信号处理技术,它能够将信号分解成不同尺度的频率成分,从而实现对信号的多尺度分析。

本文将介绍小波变换的基本原理、多尺度分析方法以及实现步骤。

一、小波变换的基本原理小波变换是一种时间和频率的联合变换方法,它将信号分解成一系列的小波函数。

与傅里叶变换相比,小波变换具有更好的时频局部性,能够更准确地描述信号的瞬时特征。

小波变换的基本原理是通过将信号与小波函数进行内积运算,得到信号在不同尺度和位置上的频率成分。

小波函数是一种具有局部化特征的函数,它在时域和频域上都有一定的局部性。

二、多尺度分析方法小波变换的多尺度分析方法主要包括连续小波变换和离散小波变换两种。

1. 连续小波变换(CWT)连续小波变换是将信号与连续小波函数进行内积运算,得到信号在不同尺度和位置上的频率成分。

连续小波变换具有较好的时频分辨率,但计算量较大。

2. 离散小波变换(DWT)离散小波变换是将信号进行离散化处理后,与离散小波函数进行内积运算,得到信号在不同尺度和位置上的频率成分。

离散小波变换具有较好的计算效率,适用于实际应用中的信号处理。

三、实现步骤小波变换的实现步骤主要包括信号预处理、小波函数选择、小波变换计算和结果分析等。

1. 信号预处理在进行小波变换之前,需要对信号进行预处理,包括去除噪声、归一化处理等。

预处理的目的是提高小波变换的精度和稳定性。

2. 小波函数选择选择合适的小波函数对信号进行分析是小波变换的关键。

常用的小波函数有高斯小波、Morlet小波、Daubechies小波等。

选择小波函数时需要考虑信号的特性和分析的目的。

3. 小波变换计算根据选择的小波函数,对信号进行小波变换计算。

连续小波变换可以通过积分运算实现,离散小波变换可以通过快速小波变换算法实现。

4. 结果分析对小波变换的结果进行分析和解释。

可以通过频谱图、小波系数图等方式对信号的频率成分和时域特征进行分析。

结论:小波变换是一种有效的多尺度分析方法,能够在时频域上对信号进行精确的分析。

多尺度小波分解

多尺度小波分解

多尺度小波分解多尺度小波分解是一种分析信号及图像的方法,它可以将信号分解成多个尺度上的频率分量,并且保留原始信号的细节和整体特征。

这种方法在信号处理、图像处理、数据压缩等领域得到了广泛应用。

下面详细介绍多尺度小波分解的原理、方法和应用。

一、多尺度小波分解的原理多尺度小波分解基于小波变换和尺度变换的组合。

小波变换通过对信号进行多级高通和低通滤波,将信号分解成一系列子带信号。

尺度变换则将信号缩小或放大,从而实现信号在不同尺度上的分析。

通过将小波变换和尺度变换组合使用,可以得到多尺度小波分解的结果,即将信号分解成多个尺度上的频率分量。

多尺度小波分解的优点在于它可以同时分析信号的时域和频域特性。

通过不同的小波基函数,可以对信号的不同特性进行分析,比如对于具有瞬时变化的信号,可以使用高斯小波进行分析,而对于具有节拍特征的信号,则可以使用Mexican hat小波进行分析。

二、多尺度小波分解的方法多尺度小波分解的具体方法包括以下几个步骤:1. 对原始信号进行小波变换,得到其一级高通和低通分量。

2. 对低通分量进行进一步的小波变换,得到其二级高通和低通分量。

3. 将低通分量缩小至原始信号的一半大小,得到新的尺度,称为一级尺度。

4. 对二级低通分量进行进一步的小波变换,得到其三级高通和低通分量。

5. 将二级低通分量缩小至一级低通分量的一半大小,得到二级尺度。

6. 重复以上步骤,得到更多的尺度和频率分量。

多尺度小波分解的结果就是各个尺度上的频率分量和细节分量。

其中,高尺度分量反映了信号的高频信息,低尺度分量反映了信号的低频信息。

三、多尺度小波分解的应用多尺度小波分解在信号处理、图像处理和数据压缩等领域得到了广泛应用。

在信号处理中,多尺度小波分解常常用于信号去噪、特征提取和信号分类等任务。

在图像处理中,多尺度小波分解被广泛用于图像压缩、边缘检测、纹理分析等方面。

此外,多尺度小波分解还可以用于数据的多尺度表示和多尺度分析。

基于多尺度小波的Roberts边缘检测法

基于多尺度小波的Roberts边缘检测法

o i e e ts ae ,tc n p s in e g no mai n e a t a d i e sb e a d efc ie e g ee t n me h d f f r n c l s i a o i o d e i fr t x cl n sa f a i l n f t d e d t ci t o . df t o y, e v o Ke wo d y rs Ed e d t ci n Wa ee r n fr g ee t o v ltt s m Mu t s ae a a y i Ro e sa g r h a o l —c l n l s i s b r lo i m t t
s b i g h o g o e s g a in p r trt e t e e g ma e i o rs o d n c l , n h n le g ma e wa e i e r m h u —ma e t r u h R b r r de t e ao g t h d e i g s w t c re p n i g s ae a d t e f a d e i g s d rv d fo t e t o o h i
o o e sc o sg a i n p r tr F rwa ee — a so u — g sw t i e e t c l s s ailf s o d rd f r ni sp r r e n e c fR b a r s — r d e t e ao . o v l tt n fr s b i o r m ma e i df r n ae ,p t rt r e i e e t wa e f m d o a h h f s ai f l a o
Ab t a t s r c A l — c l d ed tc in meh d wi a ee r n f r e h n e n a r p s d b s d o h a wo k o d e d tci n mu t s ae e g ee t t o t w v lt a so m n a c me t sp o o e a e n t e f me r f g ee t i o h t w r e o
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于小波多尺度统计特征的图像分类
报告内容
1. 小波变换 2. 图像分类问题现状 3. 小波多尺度统计特征抽取及图像分类 4. 实验比较 5. 下一步工作 6. 参考文献
1. 小波变换
➢ 小波变换是强有力的时频分析(处理)工具,是在 克服傅立叶变换缺点的基础上发展而来的。已成 功应用于很多领域,如信号处理、图像处理、模 式识别等。
cn0
x
n
ckJ
kJ
x
d
kj
J k
x
nZ
k
j1 k
ckj
称为尺度系
数,d
j k
称为
小波系数,它们的计算:
ckj
d
j k
nZ nZ
ckj
1l
n
2k
d
j k
1hn
2k
一维MALLAT算法
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来的,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:
分类器
Support vector machine classifier Bayesian network classifier
Multiple neural network classifiers Support vector machine classifier
特征空间的分类方法可降低数据维数,降低计算复 杂性,但问题相关性较强,与特征提取的方法和效 果有很大关系。
文献[5]对常见的纹理分类进行了综述,如下表:
文献 文献[6]
特征 Gabor filters
文献[7] 文献[8]
Gabor filters and Statistical features Gabor filters
文献[9] Gabor filters and wavelet transform
3. 小波多尺度统计特征抽取及图像分类
图 像 特 征 提 取 及 分 类 方 法
图像的小波特征提取首先对输入图像做J层二维
小波分解;
因为小波变换具有很好的时频局部化特性,所 以可以将图像的不同底层特征变换为不同的小波系 数;
输入图像经过经一层小波分解后,被分成4个子 图:
➢ LL1—逼近子图,它代表输入图像水平和垂直
部化的。如:
图1 小波例1
图2 小波例2
不是小波的例 图3 图4
kj
x
,
j k
x
构成Vj+1的正交基。
x和 x 满足下列关系式(二尺度方程):
x 2ln2x n nZ
x 2 hn2x n nZ
其中ln称为低通滤波器,hn称为高通滤波器。
且hn=1nl1 n
信号的多尺度分解:
J
f
x
Vj 的正交基函数是由一个称为尺度函数的函数(x)经伸缩
平移得到的
kj x 2 j x k
设Wj 是Vj 相对于Vj+1的正交补空间, Wj 的正交基函数是 由一个称为小波函数的函数(x)经伸缩平移得到的
j k
x
2jxk
小波函数必须满足以下两个条件的函数:
(1) 小波必须是振荡的; (2) 小波的振幅只能在一个很短的一段区间上非零,即是局
➢ 小波变换的一个重要性质是它在时域和频域均 具有很好的局部化特征,它能够提供目标信号各 个频率子段的频率信息。这种信息对于信号分类 是非常有用的。
➢ 小波变换一个信号为一个小波级数,这样一个 信号可由小波系数来刻画。
1.1 一维小波变换(一维多尺度分析)
设有L2(R )空间的子空间序列:
V0 V1 V2
图像数据是非结构化数据,不能直接用于分类;
图像特征提取在图像分类中扮演着非常重要的 角色,特征提取的好坏直接影响着分类精度和分 类器的性能;
图像的小波变换可用于图像特征提取,实际上, 可将小波变换看作一种特征映射;
图像分类就是利用计算机对图像进行定量分析, 把图像或图像中的每个像元或区域划归为若干个类 别中的某一种,以代替人的视觉判读。 图像分类方法可分为:
j0
jmodM ,
y
x 0,1, , M 1; y 0,1, , N 1 2
ILL x,
y
1 Nl
Nl 1
liIL x,2x imod N
i0
I LH
x,
y
1 Nh
Nh 1
h
j0
jIL x, 2x
jmod N
I HL x,
y
1 Nl
Nl 1
liIH x,2x imod N
[4] R. Swiniarski, L. Hargis, Rough set as a front end of neuralnetworks texture classifiers, Neurocomputing 36 (1-4) (2001) 85– 102. [5] Chih-Fong Tsai, Image mining by spectral features: A case study of scenery image classification, Expert Systems with Application 32(2007) 135-142. [6] Autio, I., & Elomaa, T. (2003). Flexible view recognition for indoor navigation based on Gabor filters and support vector machines. Pattern Recognition, 36(12), 2769–2779. [7] Huang, Y., Chan, K. L., & Zhang, Z. (2003). Texture classification by multi-model feature integration using Bayesian networks. Pattern Recognition Letters, 24, 393–401.
均值和方差的计算公式:
i
1 M N
M x 1
N y 1
Ii (x, y)
i
1 M N
M x1
N
NEXT
I(x,y) [128 128]
RETURN
I1(x,y) [64 64] I1H(x,y) [64 64] I1V(x,y) [64 64] I1D(x,y) [64 64]
i0
IHH x,
y
1 Nh
Nh 1
h jIH
j0
x, 2 x
jmod N
x 0,1, , M 1; y 0,1, , N 1
2
2
对逼近子图重复此过程,直到确定的分解水平,下 图是二层小波分解的示意图。
图6 图像多尺度分解,(a)一层分解,(b)二层分解
2. 图像分类问题现状
目前常用的分类器如支持向量机,神经网络分 类器等大多以结构化数据作为输入;
LL x xy; LH x x y; HLx x y; HH x x y
图像的二维小波变换包括沿行向(水平方向)和列向(垂直 方向)滤波和2-下采样,如图所示:
图5 图像滤波采样
说明:如图所示,首先对原图像I(x,y)沿行向(水平 方向)进行滤波和2-下采样,得到系数矩阵IL(x,y)和 IH(x,y),然后再对IL(x,y)和IH(x,y)分别沿列向(垂直方 向)滤波和2-下采样,最后得到一层小波分解的4个 子图:
I2(x,y) [32 32] I2H(x,y) [32 32] I2V(x,y) [32 32] I2D(x,y) [32 32]
I3(x,y) [16 16] I3H(x,y) [16 16] I3V(x,y) [16 16] I3D(x,y) [16 16]
I4(x,y) [8 8]
I4H(x,y) [8 8]
NEXT
RETURN 图8 COIL-20图像
RETURN 图9 7个位置的图像
RETURN 表1 两种方法的实验结果比较
4. 下一步的工作
从图像小波系数中抽取其它特征,如多尺度熵 特征; 小波函数逼近与径向基函数逼近的联系; 完善实验设计。
6. 参考文献
[1] Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik. Support Vector Machines for Histogram-Based Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999. [2] Kwang In Kim, Keechul Jung, Se Hyun, and Hang Joon Kim, Support Vector Machine for Texture classification, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 11 NOVEMBER 2002, pp. 1542-1550. [3] 万华林,M. U. Chowdhury. 基于支持向量机的图像语义 分类. 软机学报,2003,VOL.14 NO.11,PP. 1892-1899.
✓ 文献[4]用矩阵表示图像,矩阵元素是 相应象素的灰度值,然后用SVD和PCA方法 抽取图像特征,BP网络作为分类器。
图像空间的分类方法的共同缺点是数据量大、计 算复杂性高,但分类精度一般比较理想。
➢特征空间的分类方法—首先将原图像经过某 种变换如K-L变换、小波变换等变换到特征空 间,然后在特征空间提取图像的高层特征以实 现图像的分类。这类分类方法的文献尤以纹理 图像分类和遥感图像分类最多。
相关文档
最新文档