数学史读后感

合集下载

数学史学习体会范本

数学史学习体会范本

数学史学习体会范本数学史是一门既有深厚学问又有广阔视野的学科,通过学习数学史,我深刻地认识到数学的发展历程中的伟大成就和思想方法,对我的数学学习和素养提供了极大的帮助。

在学习数学史的过程中,我受益匪浅,有以下几点感悟。

首先,数学史给我提供了一个鲜活的案例,展示了数学思想的迭代和进化过程。

通过研究古代数学家的贡献,我明白了他们如何从实际问题中发现并发展新的数学思想和方法。

例如,古希腊的毕达哥拉斯定理是通过对直角三角形的研究得出的,而欧几里得几何的基础是从解决农田测量问题开始的。

这些案例使我认识到数学是以解决实际问题为导向的,而不是只是一种抽象的概念。

每个数学思想和方法的产生都有它自身的背景和场景,这为我学习数学提供了很好的指导。

其次,数学史使我了解到数学的发展是一个集体努力的结果,不是个别天才的创造。

虽然我们经常听到像欧拉、高斯、牛顿这样的数学巨匠,但实际上,数学的进步是通过多个数学家的合作和互动取得的。

例如,勾股定理是在古希腊时期由不同数学家提出和证明的,而无理数的发现也是由不同数学家的努力积累而得出的。

这种合作和互动的精神对我产生了深刻的影响,提醒我在学习和解决数学问题时要注重团队合作和交流。

数学的发展需要集体智慧和合作,在此过程中每个人都可以作出自己的贡献。

再次,数学史给我展示了数学思想的多样性和开放性。

数学的发展历程中,出现了很多不同的思想流派和学派,每个学派都有自己独特的思考方式和解决问题的方法。

例如,古希腊的几何学和古印度的代数学都有各自的特点和重要性。

这使我认识到数学并不是固定不变的,而是随着时间和文化的变化而不断变化的。

这也为我提供了更多的思维方式和途径,让我能够从不同的角度来解决问题和思考数学的本质。

最后,数学史给我提供了一个全局的视野,让我认识到数学的重要性和广泛应用的范围。

数学是一门独立发展的学科,也是其他学科的重要基础。

通过学习数学史,我明白了数学对科学、工程、经济等各个领域的重要性和作用。

数学史读书笔记(通用6篇)

数学史读书笔记(通用6篇)

数学史读书笔记(通用6篇)数学史篇1那让我来分享一些我从本书中所得到的客观性知识吧。

说到数学史,我们当然不能忽略那些在创造数学历史,搭建数学楼层的数学家们。

想到一句话说“仰望者,唯巨星也!”在数学的漫漫长河中,涌出过无数颗值得我们学习与纪念的璀璨巨星。

从毕达哥拉斯、欧几里德得、祖冲之到牛顿、欧拉、高斯、庞加莱、希尔伯特当现在他们的名字一个一个从我的心底流过时,有一种兴奋,更有一种感动,涌出一句话,其实他们才是时代真正的潮人。

欧几里得的《几何原本》,开创了数学最早的典范,是漫漫长河中的第一座丰碑,公理化的思想由此而生;祖冲之关于圆周率的密率(355/113)给了国人足够骄傲的资本,也把“割圆术”发挥到了极致;牛顿和莱布尼兹联手创造了微积分,尽管他们之间有这样那样的矛盾,他们还是为数学付出心血,专心致志,开创了数学的分析时代,微积分也被恩格斯誉为“人类精神的最高胜利” 不禁发出感叹说,历史就是这样被书写,历史就是这样被引领,历史就是这样被创造。

一个多世纪前的1920xx年,德国数学家希尔伯特正在做一个题为《数学问题》的演讲,提出了23个需要被重视和解决的数学问题。

正是这23个数学问题,引领了整个二十世纪数学发展的主流。

1994年,当二十世纪即将落幕的时候,年轻的英国数学家维尔斯创造了一个新的历史——费马大定理获证,从而结束了这场长达320xx年之久的竞逐,给二十世纪的数学演奏了一首美妙的终曲。

体会到了书中所说的,数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。

同时,我也认识到了数学的历史源远流长。

了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。

数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。

学数学史的收获和感悟4000字

学数学史的收获和感悟4000字

学数学史的收获和感悟4000字☆ 第1篇:学数学史,就像是挖宝一样,每次都有新发现。

你想想,从古埃及人用绳子量地,到希腊人开始琢磨几何图形,再到阿拉伯数字的传播,每一个进步背后都藏着一群聪明绝顶的人。

我就记得有一次,研究阿基米德怎么算圆周率,那可真是让人佩服得五体投地。

他竟然能想到用多边形逼近的方法,这得多大的脑洞啊!话说回来,学数学史的时候,我还真遇到了不少有趣的事情。

比如说,了解到费马大定理,那个困扰了数学家们几百年的难题。

听说费马在一本旧书的边缘随手写下了这个猜想,还说他自己找到了一个绝妙的证明方法,可惜地方太小写不下。

这下好了,给后世的数学家留下了无数个不眠之夜。

直到1994年安德鲁·怀尔斯才真正证明了这个定理,这一路走来不知道有多少人为了它废寝忘食。

说到这儿,不得不提一下牛顿和莱布尼茨之间的微积分之争。

这两位都是天才级别的大佬,几乎同时发明了微积分。

但当时两人谁也不服谁,争论得不可开交。

后来呢,历史证明微积分确实是个好东西,不管是谁先发明的,现在都成了我们学习的基础工具。

想想看,要是没有微积分,那些复杂的物理问题该怎么解决?简直不敢想象。

我特别喜欢数学史里的一个小故事,是关于高斯的。

据说小时候的高斯就已经展现出了非凡的数学天赋。

老师让全班同学计算从1加到100的总和,大家都埋头苦算,只有高斯很快就算出来了。

你知道他是怎么做的吗?原来他发现了配对求和的方法,把数列首尾相加,一下子就得到了答案。

这种思维跳跃性真是太厉害了。

有时候我觉得,学数学史就像是在读一部部英雄传记。

每个数学家都在自己的时代里发光发热,为了解决一个问题可以花费一辈子的时间。

而这些努力的结果,不仅推动了数学的发展,也改变了人类理解世界的方式。

比如哥德尔不完备定理,告诉了我们任何足够强大的逻辑系统都会有其局限性,这对哲学、计算机科学等领域产生了深远的影响。

还有一次,我在研究图灵机的时候,深深感受到了数学的魅力。

图灵提出的这个概念,虽然简单,但却奠定了现代计算机科学的基础。

《数学简史》心得体会(优秀模板6篇)

《数学简史》心得体会(优秀模板6篇)

《数学简史》心得体会(优秀模板6篇)《数学简史》心得体会第1篇读《数学简史》有感数学经历了历史的积淀,给我们的世界展现出来一个不一样的画卷,我看了一本书《数学简史》,书里讲的是数学的发展历史,并且对国内外的数学都进行了介绍。

我想在时间的慢慢长河里,这是多么传奇的历史啊!那么接下来我带大家走进我所见到的数学世界。

数学是有自己独特魅力的科学,《数学简史》一共有十四个大的章节,每一个章节都凝聚了数学的“理”性思维脉络,让我们清楚的领略数的价值和意义所在。

首先谈谈数学早期的萌芽,事物的发展总是一步一步慢慢向前的,数学当然也不例外。

早期的数学主要是介绍数与形概念的起源,美索不达米亚、古埃及和中国等早期数学的萌芽,不同的文明,数学的产生与演变也有很多区别和联系,数的概念产生于原始人的生活和生产,中国早期用结绳、刻划等方式计数,并产生抽象过程从“结绳”到“书契”;美索不达米亚则是由楔形文字对数学内容进行了记载,一是“表格课本”也就是古代的“应用数学”,二是“问题课本”也称“理论数学”;古埃及数学知识的象征是至今蔚为奇观的金字塔,金字塔大多呈正四棱锥形,据对最大的胡夫金字塔的测算,发现它基地是正方形,各边误差仅仅是1。

6厘米。

这些早期的数学象征物的出现,给数学带来了一个基本的框架,让我们更好的了解的数学的发展。

其次,我们不得不说的便是古希腊数学,数学的发展和我们历史发展的是有很大相似之处的,它们都会经历兴盛和衰落,古希腊数学从雅典开始到亚历山大时期达到了全盛,但是物盛极必衰,在亚历山大后期就逐渐衰落,在此期间,数学史出现了几位十分重要的人物,论证数学开创者泰勒斯,他是古希腊“七贤之首”,据记载泰勒斯是第一个将埃及人的几何学带回到希腊。

据说他本人发现了许多几何命题,并创立了对几何命题的逻辑推理,因此泰勒斯是论证数学发端第一位代表人物。

有关几何的研究还出现了不少学派,毕达哥拉斯学派、埃利亚学派、柏拉图学派和亚里士多德学派等,这些学派活跃了数学世界。

数学史读后感

数学史读后感

数学史读后感数学史读后感当看完一本著作后,相信大家都有很多值得分享的东西,需要好好地就所收获的东西写一篇读后感了。

那么你真的会写读后感吗?下面是小编为大家整理的数学史读后感,欢迎大家借鉴与参考,希望对大家有所帮助。

数学史读后感1首先,看到这本书后,第一个感觉是这本书太厚了,肯定无聊。

而第二个印象是在每一个概念后的“见数学概念小史某某页”,然后这最重要的事是这书讲了这我不曾了解的事。

从过去到现在,先是古埃及人,他们的方法对于现代太不实用了,但是他们还是聪明,知道用符号,用两个符号来表示1()和10(),这东西就是幂,在生活中肯定很少用,而且我还发现这数学呢我一直认为是想从简单到复杂,但是并不是如此,可以说是相反的。

比巴伦的数学家们特别有趣,造的题目也有趣,不实用,但是很好玩,在本书的15页,有这原题,这大概就是用一根芦苇去测量田有多大,其实就是二元一次方程,但是看完头都大了,不知到底在讲什么。

继续读着,诶!看见了老熟人——欧几里得,从小学周围的人都在谈论着他,给我讲他的旷世巨作《几何原本》,过去经常说“好,好,好,《几何原本》好。

”但是我并不知道这书居然是公元前三千多年左右写的,我一直认为他是希腊人,但是他居然是埃及人,这好奇怪,据书中说有很多的希腊数学家都不是希腊人。

继续读,数学也和天文学有关,从天文学中又出现了三角学,原来三角学是从天文学出来的,在读阿拉伯数学时,看见了“杨辉”三角形,但是这书中的是“帕斯卡三角形”,其实也是“杨辉”三角形,所以后者好记些。

微积分里面看见了伽利略,但是似乎不是他的主场,所以不管他,微积分这里知道了流数和微分基本上都是我们现在所称的导数。

他们的发明者分别是牛顿和莱布尼茨。

牛顿这特别熟悉了,这莱布尼茨是个律师和数学家,他最可以的是他的公式几乎都是在颠簸的马车上写下。

在各个学科每每留下了著作。

还有一个人让我记住了,叫做欧拉,不光名字好记,他自己也是一个喜欢记的人,据书上所说,他可以说是一个论文天才也是数学天才,因为只要他有一个好的方法,自己马上就写一篇论文,来记下自己的观念。

数学史读后感

数学史读后感

数学史读后感数学史是一本关于数学发展历史的著作,通过对数学的起源、发展和演变进行深入探讨,让读者对数学的发展过程有更深刻的理解。

在阅读完《数学史》这本书后,我不禁对数学这门学科有了全新的认识和感悟。

首先,在阅读过程中,我对数学的起源和发展历程有了更加清晰的了解。

书中详细介绍了古代数学的起源,从古埃及、古巴比伦到古希腊等各个时期的数学成就,使我对古代数学的发展有了更加全面的认识。

例如,古埃及人发展出了一套简单而实用的计数系统,古巴比伦人发明了著名的巴比伦数字,而古希腊人则提出了许多重要的几何学理论。

通过了解这些历史背景,我深刻认识到数学的发展是一个源远流长的过程,每一次的进步都离不开前人的积累和努力。

其次,读完《数学史》后,我对数学的应用价值有了更加深刻的认识。

数学不仅仅是一门学科,更是一种思维方式和工具,广泛应用于各个领域。

书中介绍了数学在物理学、经济学、计算机科学等领域的应用案例,让我意识到数学在现实生活中的重要性。

例如,物理学中的力学和电磁学等理论都离不开数学的支持,经济学中的数学模型可以帮助我们分析市场变化和预测趋势,计算机科学中的算法和数据结构也是数学的重要应用之一。

通过这些案例,我更加深刻地认识到数学不仅仅是一门学科,更是一种解决问题的工具和思维方式。

此外,阅读《数学史》也让我对数学的美感有了更加深刻的体会。

数学作为一门学科,不仅仅是实用的工具,更是一种美的表达方式。

书中介绍了数学家们在探索数学规律和定理的过程中,所展现出来的智慧和创造力,让我对数学的美感有了更加深刻的体会。

例如,欧几里得的几何学原理和定理,牛顿的微积分理论,高斯的数论等等,这些数学家们的贡献不仅仅是对数学知识的积累,更是对人类智慧的体现。

通过阅读这些数学家们的故事,我对数学的美感有了更加深刻的认识和体会。

总结起来,阅读《数学史》这本书让我对数学的发展历程、应用价值和美感有了更加深刻的认识。

数学不仅仅是一门学科,更是一种思维方式和工具,它的发展离不开历史的积累和人类智慧的体现。

《数学简史》心得体会(精选9篇)

《数学简史》心得体会(精选9篇)

《数学简史》心得体会(精选9篇)我们心里有一些收获后,应该马上记录下来,写一篇心得体会,从而不断地丰富我们的思想。

但是心得体会有什么要求呢?下面是小编收集整理的《数学简史》心得体会范文,希望对大家有所帮助。

《数学简史》心得体会篇1数论专家写的数学历史简史,条理性,逻辑性强,作者奇才博学,读书多,文字精彩,有大手笔。

整本书简明扼要,通俗易懂,精彩。

特别是他对于过去世界数学历史的回顾,没得说。

它都是些“经典”的诠释与介绍。

读数学历史的意义?如同哲学家,思想家。

布莱士·帕斯卡曾说过:“不认识整体就不可能认识局部,同样,不认识局部也不可能认识整体。

”这像中国常言道,“不观全局,不足以为谋”。

同时他还强调“一叶知秋”的重要。

其实,在学习所有学科领域应该都是如此。

尽管作者涉及介绍数学历史内容太广,太丰富,他在关注数学思想美或者算法思想本身及将来数学发展的前景或者未来数学发展思想萌芽方面的介绍,居然都不欠缺。

特别是面对将来,数学毕竟更多,更大的挑战是要面对未来,像量子物理,AI算法等,它也都有介绍。

只是好像如何对于控制调节“复杂系统”之全新数学缺乏有挑战的系统思考,或者似乎需要有更多或者大手笔对于未来数学发展,像能够有“一叶知秋”的深思熟虑,或者列出还有哪些数学有待证明难题挑战?如果作者能够有一个简单清单,可能就更精彩。

因为现在似乎不缺对于一个不是数学家都可以总结内容书。

例如,过去的数学。

特别是用如此多笔墨与精力介绍已经知道的数学历史,多少有点像是一种人才极大浪费。

因为介绍数学家们及其数学或者八卦故事小册字已经成堆了。

当然,本作者下半部分有关现代数学内容介绍及数学应用部分最精彩!这也可能正是他的书与众不同的地方。

它能够开人的数学大眼界。

如此有上建议,是因为来自对于数学吃瓜读者的兴趣或者好奇心,及未来新一代读者,更关心的可能是哪些有挑战或者未知的,激发人想象力东东。

因为人对精神包括数学领域的创造是有一种强烈的渴求,如果没有这样一种渴求,也许就不会有下一位“新的爱因斯坦”式人物,也不会有新一代有影响力的大哲学家,思想家,大数学家。

《数学史》读后感

《数学史》读后感

《数学史》读后感《数学史》读后感今年的寒假出奇的漫长,在这漫长的寒假里,我读了一本我不怎么喜欢的书——《数学史》,为什么不喜欢呢?是因为我很多不懂,但是读着读着我就喜欢上了,《数学史》记录着人类数学历史发展的进程,读了它,我有一点肤浅的体会。

体会一:数学源自于与生活的需要与发展。

书中写到:人类在很久之前就已经具有识辨多寡的能力,从这种原始的数学到抽象的“数”概念的形成,是一个缓慢渐进的过程。

人们为了方便于生活便有了算术,于是开始用手指头去“计算”,手指头计数不够就开始用石头,结绳,刻痕去计计数。

例如:古埃及的象形数字;巴比伦的楔形数字;中国的甲骨文数字;希腊的阿提卡数字;中国筹算术码等等。

虽然每种数字的诞生都有不同的背景与用途,以及运算法则,但都同样在人类历史发展和数学发展起着至关重要的作用,极大地推动了人类文明的前进。

体会二:河谷文明和早期数学在历史的长河一样璀璨夺目。

历史学家往往把兴起于埃及,美索不达米亚,中国和印度等地域的古文明称为“河谷文明”,早期的数学,就是在尼罗河,底格里斯河与幼发拉底河,黄河与长江,印度河与恒河等河谷地带首先发展起来的。

埃及人留下来的两部草纸书——莱茵徳纸草书和莫斯科纸草书,还有经历几千年不倒的神秘金字塔,给后人诠释了古埃及人在代数几何的伟大成就,也给后人留下了辉煌的文化历史,而美索不达米亚在代数计算方面更是达到令人不可思议的程度。

三次方程,毕达哥拉斯都是它创造的不朽的历史,在数学史上的地位是至关重要的。

古人云:读史使人明智。

读了《数学史》让我明白:数学源于生活,高于生活,最终服务于生活,运用于生活。

数学是神秘的,古老而明亮,在人类历史长河中,闪闪发光,我读了数学史后,知道了数学的起源,发展与未来的走向,其中,《微积分与应用数学》给我留下深刻印象16世纪到17世纪,可以说是一个数学史路上一个里程碑,在16世纪早期,学者们创造了代数,他们被称为“未知数计算家”,在那个时期,代数占据了数学史的中心位置,而到了16世纪末17世纪初,人类开始了新的探索,代数与几何共存,以此来研究天文,工程,航海,甚至是政治上的一些问题:开勒普用希腊圆锥描述太阳系,托马斯·哈里奥特则发展代数,笛卡尔把代数和几何结合,从而开始理解彗星,光等现象,这一时期,可以说是各种数学成就在此出生,但最出名的,还是微积分,当时人们无法用数字表现出天体的运动,无法表现一些抽象的物体,于是牛顿与莱布尼茨发明了微积分,但微积分始终还是较为抽象,不就后,当时最著名的数学家——欧拉也做出了一系列成就:三角形中的几何学,多面体的基本定理,有趣的是,欧拉甚至将数应用于船舶,中彩票或是过桥,欧拉将自己生活的方方面面都往数学上想,在他的世界中,数学无处不在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学史》读后感
读完《数学史》,心底不由得一阵感动。

数学的殿堂是多么的华丽,我们这一本本厚厚的高中课本中蕴含着多少前人的探索,未来的数学史会不会因为我们的发现创造而改写?
数学,似乎是一个枯燥的学科,但是,却是我们生活里最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平称,是我们量化自己的必要工具……是的,数学是一个“工具箱”!那么,前人是怎么样把这个工具弄得更为人性化,更能让我们好好地使用呢?看完《数学史》,我知道了许多。

数学的历史源远流长。

我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。

数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。

这便使数学成为人类文化中最基础的工具。

而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

数学的发展决不是一帆风顺的,更是一部充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的情景剧。

在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。

第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。

从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。

但是,希帕苏斯却被无情地抛进了大海。

不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯!第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。

第三次数学危机——我们听过这个名字——罗素,但是紧跟在他的身后的两个字却是那么刺眼——“悖论”。

“罗素悖论”的出现使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础。

与此同时,歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。

数学似乎是再也站不起来了。

是的,罗素的观点似乎真的很有道理,危机产生后,数学家纷纷提出自己的解决方案,比如ZF公理系统。

这一问题的解决到现在还在进行中。

罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!不过,我们不能蔑视“罗素悖论”,换种说法,不正是这个“悖论”引起了我们的思考吗?不正是这个“悖论”使我们更有创造精神吗?
前文一直是外国的事件,但是,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。

它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。

数学是一门历史性或者说累积性很强的科学。

重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包容原先的理论。

例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。

可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。

正是我们不断地为数学这座高楼添砖加瓦,她才能越立越高,越立越扎实!。

相关文档
最新文档