高考理科数学定积分与微积分基本
高中数学高考高三理科一轮复习资料第2章 2.4 定积分与微积分基本定理

方); (2)如果在[a,b] 上,f(x)≤0,则曲线 y=f(x),x=a,x= b b b(a < b) 和 x 轴围成的曲边梯形的面积为 S = |f(x)|dx =-
a a
f(x)dx(这时曲线全部在 x 轴下方);
(3)如果在[a,b]上,f(x)有正有负,即曲线在 x 轴上方和下 方都有图象,例如:在(a,c)上位于 x 轴上方,在(c,b)上位于 x 轴下方,则曲线 y=f(x),x=a,x=b(a<b)和 x 轴围成的曲 c b 边梯形的面积为 S= f(x)dx+ |f(x)|dx=
b b b 4. f(x)dx, |f(x)|dx, | f(x)dx|三者在几何意义上的不同. 当
i 0 n-1
果和式极限存在,则称和式 In 的极限为函数 f(x)在区间[a,b] b fxdx 上的定积分,记作①______,即 =②________.
a
b (2)在 f(x)dx 中, a 与 b 分别叫做积分下限与积分上限, 区
a
间③________叫做积分区间,函数④________叫做被积函数, ⑤________叫做积分变量,⑥________叫做被积式.
a
曲线 f(x)以及直线 x=a、 x=b 之间的曲边梯形面积的代数和(图 ②中阴影所示),其中在 x 轴上方的面积等于该区间上的积分 值,在 x 轴下方的面积等于该区间上积分值的⑦__________.
3.定积分的基本性质: b (1) kf(x)dx=⑧____________________________.
c a
b f(x)dx- f(x)dx.
c
a
c
2.由曲线 y=f(x),y=g(x)(f(x)>g(x))与直线 x=a,x= b b(a<b)围成的图形的面积为 S= [f(x)-g(x)]dx.
3-4 定积分与微积分基本定理(共54张PPT)

将 区 间 1<xi<…<xn=b,
-
n个 小 区 间 , 在 每 个 区 间
1
, xi] 上取一点
ξi (i = 2 1 , , … , n) ,作和式 , 当 n→+∞时 , 上 述 和 式 无 限 接 近 某 个 常 数 , f(x)在 区 间 [a,b]上 定 积 分 , 记 作 .
b
= 这 个 常 数 叫 做 函 数 f(x)dx=
f(x)dx b ,即 a
a
课前自助餐
授人以渔
自助餐
课时作业
高考调研
新课标版 · 高三数学(理)
其定义体现求定积分的四个步骤: ① 分割 ;② 近似代替 ;③ 取和 ;④ 取极限 .
课前自助餐
授人以渔
自助餐
课时作业
高考调研
新课标版 · 高三数学(理)
y是 自 0、1、 BE、AE 和抛
AB 围 成 的 区 域 的 面 积 .
课前自助餐
授人以渔
自助餐
课时作业
高考调研
新课标版 · 高三数学(理)
7 【答案】 6
课前自助餐
自助餐
课时作业
高考调研
新课标版 · 高三数学(理)
3 x2 x 因 为 ( 2 )′=x,(x2- 3 )′=2x-x2, 故 所 求 的 面 积 2 3 x x 1 2 1 2 2 1 2 | | S = (2x-x)dx+ (2x-x )dx= 2 0+(x - 3 ) 1=2-0+(4- 0 1
x2 x3 x2 2, 又 ( 2 )′=x,( 3 - 2 )′=x2-x.故
2 3 2 x x x 8 2 2 2 2 2 | | S= (2x-x)dx- (x -x)dx= 2 0-( 3 - 2 ) 1=2-(3-2 ) + 0 1
第三章 3.3定积分与微积分基本定理

§3.3 定积分与微积分基本定理1.定积分的概念在ʃb a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.2.定积分的性质(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数);(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).3.微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F(b)-F(a)记作F(x)|b a,即ʃb a f(x)d x=F(x)|b a=F(b)-F(a).概念方法微思考ʃb a f(x)d x是否总等于曲线f(x)和直线x=a,x=b,y=0所围成的曲边梯形的面积?提示不是.函数y=f(x)在区间[a,b]上连续且恒有f(x)≥0时,定积分ʃb a f(x)d x表示由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.( √)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.( √)(3)若ʃba f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( × )(4)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( × ) 题组二 教材改编 2.[P66A 组T14]ʃe +121x -1d x =________. 答案 1 解析 ʃe +121x -1d x =ln(x -1)|e +12=ln e -ln 1=1. 3.[P55A 组T1]ʃ0-11-x 2d x =________.答案π4解析 ʃ0-11-x 2d x 表示由直线x =0,x =-1,y =0以及曲线y =1-x 2所围成的图形的面积, ∴ʃ0-11-x 2d x =π4.4.[P60A 组T6]汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是______ m. 答案132解析 s =ʃ21(3t +2)d t =⎪⎪⎪⎝ ⎛⎭⎪⎫32t 2+2t 21 =32×4+4-⎝ ⎛⎭⎪⎫32+2=10-72=132(m).题组三 易错自纠5.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( )A .1 B.43 C. 3 D .2答案 B解析 所求面积=ʃ20(-x 2+2x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫-13x 3+x 220=-83+4=43.6.一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12 s ~6 s 间的运动路程为____m.答案494解析 由题图可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t ≤3,13t +1,3<t ≤6.由变速直线运动的路程公式,可得s =611122()d 2d t t t t ⎰⎰=+v ʃ312d t +ʃ63⎝ ⎛⎭⎪⎫13t +1d t=⎪⎪⎪t 2|112+2t |31+⎝ ⎛⎭⎪⎫16t 2+t 63=494(m).所以物体在12 s ~6 s 间的运动路程是494 m.7.⎝ ⎛⎭⎪⎫x +π4d x =________.答案 2解析 由题意得sin ⎝⎛⎭⎪⎫x +π4d x=π2⎰(sin x +cos x )d x =(sin x -cos x )π20|=⎝⎛⎭⎪⎫sin π2-cos π2-(sin 0-cos 0)=2.题型一 定积分的计算利用微积分基本定理求下列定积分:(1)ʃ21(x 2+2x +1)d x ; (2)ʃπ0(sin x -cos x )d x ; (3)ʃ20|1-x |d x ; (4)ʃ21⎝ ⎛⎭⎪⎫e 2x+1x d x ;(5)ʃ1-1e |x |d x ;(6)若ʃ10(x 2+mx )d x =0,求m .解 (1)ʃ21(x 2+2x +1)d x =ʃ21x 2d x +ʃ212x d x +ʃ211d x =⎪⎪⎪x 3321+x 2|21+x |21=193. (2)ʃπ0(sin x -cos x )d x =ʃπ0sin x d x -ʃπ0cos x d x = | |(-cos x )π0-sin x π0=2.(3)ʃ20|1-x |d x =ʃ10(1-x )d x +ʃ21(x -1)d x =⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫x -12x 210+⎝ ⎛⎭⎪⎫12x 2-x 21=⎝ ⎛⎭⎪⎫1-12-0+⎝ ⎛⎭⎪⎫12×22-2-⎝ ⎛⎭⎪⎫12×12-1=1. (4)ʃ21⎝⎛⎭⎪⎫e 2x +1xd x =ʃ21e 2x d x +ʃ211xd x=⎪⎪⎪⎪⎪⎪12e 2x 21+ln x 21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (5)ʃ1-1e |x |d x =ʃ0-1e -x d x +ʃ10e xd x= | |-e -x0-1+e x 1=-1+e +e -1=2e -2. (6)∵ʃ10(x 2+mx )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 33+m 2x 210=13+m 2=0, ∴m =-23.思维升华 计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. (2)把定积分变形为求被积分函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例1 设f (x )=错误!则ʃ错误!f (x )d x 的值为________. 答案π2+43解析 根据定积分性质可得ʃ2-1f (x )d x =ʃ1-11-x 2d x +ʃ21(x 2-1)d x ,根据定积分的几何意义可知,ʃ1-11-x 2d x 是以原点为圆心,以1为半径的圆面积的12,∴ʃ1-11-x 2d x =π2,∴ʃ2-1f (x )d x =π2+⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-x 21=π2+43. 命题点2 求平面图形的面积例2 (1)曲线y =2x与直线y =x -1,x =1所围成的封闭图形的面积为________.答案 2ln 2-12解析 解方程组⎩⎪⎨⎪⎧y =2x,y =x -1,得⎩⎪⎨⎪⎧x =2,y =1,则曲线y =2x与直线y =x -1,x =1所围成的封闭图形如图所示,所求的面积S =ʃ21⎝ ⎛⎭⎪⎫2x -x +1d x =⎪⎪⎪⎝ ⎛⎭⎪⎫2ln x -12x 2+x 21=(2ln 2-2+2)-⎝ ⎛⎭⎪⎫0-12+1=2ln 2-12.(2)曲线y =14x 2和曲线在点(2,1)处的切线以及x 轴围成的封闭图形的面积为________.答案 16解析 设曲线y =14x 2在点(2,1)处的切线为l ,∵y ′=12x ,∴直线l 的斜率k =y ′|x =2=1,∴直线l 的方程为y -1=x -2,即y =x -1.当y =0时,x -1=0,即x =1, 所围成的封闭图形如图所示,∴所求面积S =ʃ2014x 2d x -12×1×1 =⎪⎪⎪112x 320-12=16. 思维升华 (1)根据定积分的几何意义可计算定积分. (2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象; ②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案. 跟踪训练1 (1)定积分ʃ309-x 2d x 的值为________.答案9π4解析 由定积分的几何意义知,ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积.故ʃ309-x 2d x =π·324=9π4.(2)(2018·郑州模拟)曲线y =2sin x (0≤x ≤π)与直线y =1围成的封闭图形的面积为________. 答案 23-2π3解析 令2sin x =1,得sin x =12,当x ∈[0,π]时,得x =π6或x =5π6,所以所求面积S =5π6π6⎰(2sin x -1)d x=(-2cos x -x)5π6π62π|.3= 题型三 定积分在物理中的应用例3 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离是________ m. 答案 4+25ln 5解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40(7-3t +251+t )d t=⎪⎪⎪⎣⎢⎡⎦⎥⎤7t -32t 2+25ln(1+t )40=28-24+25ln 5=4+25ln 5(m). 思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃba v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃba F (x )d x .跟踪训练2 一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 J C.433 J D .2 3 J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x =⎪⎪⎪⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫5x -13x 3×3221=433,所以F (x )做的功为433 J.1.ʃ10(1-x )d x 等于( ) A .1 B .-1 C.12 D .-12答案 C解析 ʃ10(1-x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x -12x 210=12. 2.ʃ2π0|sin x |d x 等于( )A .1B .2C .3D .4答案 D 解析 ʃ2π|sin x |d x =2ʃπ0sin x d x =2(-cos x )|π0=2×(1+1)=4.3.(2018·东莞质检)ʃ1-1(1-x 2+x )d x 等于( )A .π B.π2 C .π+1 D .π-1答案 B 解析 ʃ1-1(1-x 2+x )d x =ʃ1-11-x 2d x +ʃ1-1x d x =⎪⎪⎪π2+12x 21-1=π2. 故选B.4.(2018·大连双基测试)π2⎰sin 2x2d x 等于( )A .0 B.π4-12 C.π4-14 D.π2-1 答案 B 解析π2⎰sin 2x2d x =π2⎰1-cos x2d x =⎝ ⎛⎭⎪⎫12x -12sin x π20|=π4-12. 5.(2018·大连调研)若ʃa 1⎝ ⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则a 的值是( )A .2B .3C .4D .6答案 A解析 由题意知ʃa 1⎝ ⎛⎭⎪⎫2x +1xd x =(x 2+ln x )|a1=a 2+ln a -1=3+ln 2,解得a =2(舍负).6.设f (x )=错误!(其中e 为自然对数的底数),则ʃ错误!f (x )d x 的值为( )A.43B.54C.65D.76答案 A解析 ʃe 0f (x )d x =ʃ10f (x )d x +ʃe 1f (x )d x =ʃ10x 2d x + ʃe 11xd x =⎪⎪⎪13x 310+ln x |e 1=13+1=43.故选A. 7.设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( ) A .a >b B .a +b <1 C .a <b D .a +b =1答案 A解析 ∵(sin x )′=cos x ,∴a =ʃ10cos x d x =sin x |10=sin 1. ∵(-cos x )′=sin x ,∴b =ʃ10sin x d x =(-cos x )|10=1-cos 1.∵sin 1+cos 1>1,∴sin 1>1-cos 1,即a >b .故选A. 8.已知函数y =f (x )的图象为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( )A .2B .-2C .1D .-1答案 D解析 由题图易知f (x )=⎩⎪⎨⎪⎧-x -1,-1≤x ≤0,x -1,0<x ≤1,所以ʃ1-1[(x +1)f (x )]d x =ʃ0-1(x +1)(-x -1)d x+ʃ10(x +1)(x -1)d x =ʃ0-1(-x 2-2x -1)d x +ʃ10(x 2-1)d x=⎪⎪⎪⎝ ⎛⎭⎪⎫-13x 3-x 2-x 0-1+⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-x 10=-13-23=-1,故选D.9.ʃ21⎝ ⎛⎭⎪⎫1x +2x d x =________.答案 ln 2+2ln 2解析 ʃ21⎝ ⎛⎭⎪⎫1x +2x d x =⎪⎪⎪⎝ ⎛⎭⎪⎫ln x +2xln 221=ln 2+4ln 2-2ln 2=ln 2+2ln 2. 10.(2018·太原调研)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________. 答案3解析 所求面积S =π3π3-⎰cos x d x =sin x π3π3|-=sin π3-⎝⎛⎭⎪⎫-sin π3= 3.11.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 答案 49解析 封闭图形如图所示,则ʃa 0x d x=2332x |a 0=2332a -0=a 2,解得a =49.12.(2018·郑州模拟)设函数f (x )=ax 2+b (a ≠0),若ʃ30f (x )d x =3f (x 0),x 0>0,则x 0=________. 答案3解析 ∵f (x )=ax 2+b ,ʃ30f (x )d x =3f (x 0), ∴ʃ30(ax 2+b )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13ax 3+bx 30=9a +3b ,则9a +3b =3ax 20+3b ,∴x 20=3, 又x 0>0,∴x 0= 3.13.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13B.310C.14D.15答案 A解析 由题意得,所求阴影部分的面积S =ʃ10(x -x 2d x =331202133x x ⎛⎫- ⎪⎝⎭=13,故选A. 14.(2018·呼和浩特质检)若S 1=ʃ21x 2d x ,S 2=ʃ211x d x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 答案 B解析 方法一 S 1= ⎪⎪⎪13x 321=83-13=73, S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图(图略)易知S 2<S 1<S 3.15.若函数f (x )在R 上可导,且f (x )=x 2+2xf ′(1),则ʃ20f (x )d x =________.答案 -163解析 因为f (x )=x 2+2xf ′(1),所以f ′(x )=2x +2f ′(1).所以f ′(1)=2+2f ′(1),解得f ′(1)=-2,所以f (x )=x 2-4x .故ʃ20f (x )d x =ʃ20(x 2-4x )d x = ⎪⎪⎪⎝ ⎛⎭⎪⎫x 33-2x 220=-163. 16.在平面直角坐标系xOy 中,将直线y =x 与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积V 圆锥=ʃ10πx 2d x = ⎪⎪⎪π3x 310=π3.据此类比:将曲线y =2ln x与直线y =2及x 轴、y 轴所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V =________.答案 π(e 2-1)解析 类比已知结论,将曲线y =2ln x 与直线y =2及x 轴、y 轴所围成的图形绕y 轴旋转一周得到旋转体的体积应为一定积分,被积函数为π22(e )y =πe y ,积分变量为y ,积分区间为[0,2],即V =ʃ20πe y d y =πe y |20=π(e 2-1).。
高考数学一轮总复习 2.13定积分与微积分基本定理

【答案】 D
ppt课件
【名师点评】 定积分的主要应用是求曲边形的面积,一般 地,由曲线 y=f(x),y=g(x),直线 x=a,x=b(a<b)所围成的曲边 形的面积 S=b|f(x)-g(x)|dx,被积函数中的绝对值是不可少的,
a
在具体解题中就是根据两个函数 y=f(x),y=g(x)图象位置的高低, 用分段的形式将面积表示出来.
S=1
0
x+13xdx+132-x+13xdx
=23x
3 2
+16x201
+2x-13x231
=23+16+43=163.
ppt课件
考点三 定积分在物理中的应用
【例 3】 物体 A 以 v=3t2+1(m/s)的速度在一直线 l 上运动,
物体 B 在直线 l 上,且在物体 A 的正前方 5 m 处,同时以 v=10t(m/s)
A.S=1(x2-x)dx 0
B.S=1(x-x2)dx 0
C.S=1(y2-y)dy 0
D.S=1(y- y)dy 0
答案 B
ppt课件
3.1 -x2+2xdx=________. 0 ppt课件
解析 1 -x2+2x dx表示y= -x2+2x 与x=0,x=1及y=0所围 0
成的图形的面积.
ppt课件
J 基础回扣·自主学习
理教材 夯基础 厚积薄发
ppt课件
知识点一 (1)定积分的定义
知识梳理 定积分的定义及几何意义
ppt课件
如果函数f(x)在区间[a,b]上 连续
,当n→∞时,和式
n
i=1
b-n af(ξi)无限接近
某个常数
,
这个常数 叫做函数f(x)在区
高中数学高考总复习定积分与微积分基本定理习题及详解

年 级 高二 学科数学内容标题 定积分的计算 编稿老师马利军一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题.2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题.二、知识要点分析1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:⎰badx x f )(2. 定积分的几何意义:(1)当函数f (x )在区间[a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是:y=f(x )与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下.⎰badx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号.在图(1)中:0s dx )x (f ba>=⎰,在图(2)中:0s dx )x (f ba<=⎰,在图(3)中:dx)x (f ba⎰表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和.注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于⎰badx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于⎰badx x f )(.3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)⎰⎰⎰±=±bab aba dx )x (g dx )x (f dx )]x (g )x (f [(2)⎰⎰=baba dx x f k dx x kf )()(,(k 为常数)(3)⎰⎰⎰+=bcbac adx x f dx x f dx x f )()()((4)若在区间[a ,b ]上,⎰≥≥badx x f x f 0)(,0)(则推论:(1)若在区间[a ,b ]上,⎰⎰≤≤babadx x g dx x f x g x f )()(),()(则(2)⎰⎰≤babadx x f dx x f |)(||)(|(3)若f (x )是偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=⎰-aadx x f4. 微积分基本定理:一般地,若)()()(],[)(),()('a Fb F dx x f b a x f x f x F ba-==⎰上可积,则在且注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据导数定义知:F (x )+C 也是f (x )的原函数,求定积分⎰badx x f )(的关键是求f (x )的原函数,可以利用基本初等函数的求导公式和导数的四则运算法则从反方向求F (x ).(2)求导运算与求原函数的运算互为逆运算.【典型例题】知识点一:定积分的几何意义例1.根据⎰=π200sin xdx 推断:求直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积下列结论正确的是( )A .面积为0B .曲边梯形在x 轴上方的面积大于在x 轴下方的面积C .曲边梯形在x 轴上方的面积小于在x 轴下方的面积D .曲边梯形在x 轴上方的面积等于在x 轴下方的面积题意分析:本题考查定积分的几何意义,注意dx x ⎰π20sin 与y=sinx 及直线x=a ,x=b 和x轴围成的面积的区别.思路分析:作出函数y=sinx 在区间[0,π2]内的图象及积分的几何意义及函数的对称性可判断.解:对于(A ):由于直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积为正可判断A 错.对于(B ),(C )根据y=sinx 在[0,π2]内关于()0,π对称知两个答案都是错误的. 根据函数y=sinx 的图象及定积分的几何意义可知:答案(D )是正确的.解题后的思考:本题主要考查定积分的几何意义,体现了数与形结合的思想的应用,易错点是混淆函数y=sinx 与x 轴、直线x=0,x=π2围成的面积等于⎰π20)(dx x f .例2.利用定积分的几何意义,说明下列等式的合理性 (1)121=⎰xdx(2)⎰=-1241πdx x .题意分析:本题主要考查定积分的几何意义:在区间[0,1]上函数y=2x ,及y=21x -恒为正时,定积分⎰102xdx 表示函数y=2x 图象与x=0,x=1围成的图形的面积,dx x ⎰-121表示函数y=21x -图象与x=0,x=1围成的图形的面积.思路分析:分别作出函数y=2x 及y=21x -的图象,求此图象与直线x=0,x=1围成的面积.解:(1)在同一坐标系中画出函数y=2x 的图象及直线x=0,x=1(如图),它们围成的图形是直角三角形.其面积∆S =11221=⨯⨯.由于在区间[0,1]内f (x )恒为正,故1210=⎰xdx .(2)由]1,0[,11222∈=+⇒-=x y x x y ,故函数y 21x -=(]1,0[∈x 的图象如图所示,所以函数y 21x -=与直线x=0,x=1围成的图形面积是圆122=+y x 面积的四分之一,又y 21x -=在区间[0,1]上恒为正.⎰=-1241πdx x解题后的思考:本题主要考查利用定积分的几何意义来验证函数y=2x 及函数y=21x -在区间[0,1]上的定积分的值,体现了数与形结合的思想的应用,易错点是画函数图象的不准确造成错误的结果.例3.利用定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.题意分析:本题考查定积分的几何意义,⎰-+-4|)3||1(|dx x x 的值是函数|3||1|-+-=x x y 的图象与直线x=0,x=4所围成图形的面积.思路分析:首先把区间[0,4]分割为[0,1],[1,3],[3,4],在每个区间上讨论x -1,x -3的符号,把函数|3||1|-+-=x x y 化为分段函数,再根据定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.解:函数|3||1|-+-=x x y 化为⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y由于函数⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y 在区间[0,1],[1,3],[3,4]都恒为正.设函数y=-2x+4的图象与直线x=0,x=1围成的面积为S 1 函数y=2的图象与直线x=1,x=3围成的面积是S 2 函数y=2x -4的图象与直线x=3,x=4围成的面积是S 3 由图知:S 1=S 3=,31)24(21=⨯+S 2=422=⨯ 由定积分的几何意义知:⎰-+-4|)3||1(|dx x x =10231=++S S S解题后的思考:本题考查的知识点是定积分的几何意义,利用其几何意义求定积分⎰-+-4|)3||1(|dx x x 的值,体现了等价转化的数学思想(把区间[0,4]分割,把函数y=|x -1|+|x -3|化成分段函数)、数与形结合的思想的应用.易错点是:区间[0,4]分割不当及画函数图象不准确,造成错误的结果.当被积函数含有绝对值时,常采用分割区间把函数化为分段函数的方法求定积分的值.小结:本题主要考查定积分的几何意义,要分清在区间[a ,b ]上f (x )恒为正时,f (x )在区间[a ,b]上定积分值才等于函数图象与直线x=a ,x=b 围成的面积.在画函数图象时注意x 的取值区间.当被积函数含有绝对值时,恰当的分割区间把函数画为分段函数再求定积分的值.高中数学高考总复习定积分与微积分基本定理习题及详解一、选择题1.(2010·山东日照模考)a =⎠⎛02x d x ,b =⎠⎛02e xd x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112B.14C.13D.712(2010·湖南师大附中)设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝ ⎛⎭⎪⎫43,169B.⎝ ⎛⎭⎪⎫45,169C.⎝ ⎛⎭⎪⎫43,157D.⎝ ⎛⎭⎪⎫45,137 3.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64.(2010·湖南省考试院调研)⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2πB .3πC.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎪⎫36,+∞ B .(0,e 21) C .(e -11,e )D .(0,e 11)8.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y=sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.(2010·吉林质检)函数f (x )=⎩⎪⎨⎪⎧x +2-2≤x <02cos x 0≤x ≤π2的图象与x 轴所围成的图形面积S 为( )A.32B .1C .4D.1210.(2010·沈阳二十中)设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.(2010·江苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.(2010·吉林省调研)已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12 B.14 C.13D.25二、填空题13.(2010·芜湖十二中)已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.(2010·安徽合肥质检)抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.(2010·福建福州市)已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S1+S2最小.。
3.6定积分的概念与微积分基本定理

-a
a 2 f(x)dx ____________. 0
第三章
导
数
高三一轮总复习 ·数学(理科)
8.定积分的求法 (1)定义法(用微分思想求曲边梯形的面积, 即分割, 近似代 替,求和,取极限); (2)牛顿-莱布尼茨公式法; (3)几何意义法:若曲线 y=f(x) ,x 轴与直线 x=a,x=b 之间的各部分区域是可求面积的规则图形, 则可直接求其面积, 比如求
0
0
其中被积函数 y= 1-x-12 (0≤x≤1)的图象恰是一个 1 π 1 1 位于 x 轴上方的4圆,其面积为4,又可用公式求得 xdx=2,
0
π 1 故 [ 1-x-1 -x]dx=4 -2.
1 0
2
【规律总结】 根据定积分的几何意义,可将一些特殊函数 的定积分转化为利用平面几何知识求某些规则图形的面积.
b-a lim n f(ξi) b b n→∞i=1 f(x)dx,即 f(x)dx=__________________________.
n
a a
第三章
导
数
高三一轮总复习 ·数学(理科)
其中 f(x)叫做被积函数,x 叫做积分变量, f(x)dx 叫做被积
[a,b] 叫做积 式,b,a 分别叫做积分上限和积分下限,区间________
1 -1
1-x2dx;
(4)利用奇、偶函数的性质.
第三章
导
数
高三一轮总复习 ·数学(理科)
2 f(x)dx 的值等于( 1.设 f(x)=x3+x,则 -2
)
A.0
2 C. f(x)dx
B.8
2 D.2 f(x)dx
高考定积分与微积分基本定理

a
做微积分基本定理,又叫做牛顿一莱布尼兹公式.为了方
便,我们常常把 F(b)-F(a)记成 F(x)|ab,
即b
f(x)dx=F(x)|ba=
a
F(b)-F(a).
其中 F(x)叫做 f(x)的一个原函数.
思想方法技巧
一、思想方法 (1)数形结合思想:求曲线围成图形的面积,要画出草 图,寻找积分上限和积分下限,以及被积函数的形式. (2)极限的思想:求曲边梯形的面积时,分割,近似代 替,求和,取极限,采用的是以直代曲,无限逼近的极限思 想. (3)公式法:套用公式求定积分,避免繁琐的运算,是求 定积分常用的方法. (4)定义法:用定义求定积分是最基本的求定积分方法.
D. 3
解析:如图为y=cosx在[-3π,π3]上的图象. 答案:D
[例4] 如图所示,已知曲线C1:y=x2与曲线C2:y=- x2+2ax(a>1)交于点O、A,直线x=t(0<t≤1)与曲线C1、C2 分别相交于点D、B,连结OD、DA、AB.
(1)写出线段OD、DA、AB和曲线 OB 所围成的曲.边.四.边. 形.ABOD(阴影部分)的面积S与t的函数关系式S=f(t);
S=b[f(x)-g(x)]dx(如图). a
考点典例讲练
定积分的几何意义
[例 1] (2011·潍坊二模)曲线 y=sinx,y=cosx 与直线 x =0,x=2π所围成的平面区域的面积为( )
解析:当 x∈[0,2π]时,y=sinx 与 y=cosx 的图象的交点坐标为 π4, 22,作图可知曲线 y=sinx,y=cosx 与直线 x=0,x=π2所围成 的平面区域的面积可分为两部分:一部分是曲线 y=sinx,y=cosx 与直线 x=0,x=π4所围成的平面区域的面积;另一部分是曲线 y= sinx,y=cosx 与直线 x=π4,x=π2所围成的平面区域的面积.且这两 部分的面积相等,结合定积分定义可知选 D.
定积分与微积分基本定理(理)

解析:∫π(sin x-cos x)dx=∫πsin xdx-∫πcos xdx 0 0 0 =(-cos x)| π-sin x| π=2. 0 0
答案:2
返回
2 2.(2012· 石家庄模拟)∫0|1-x|dx=________.
解析:若1-x≥0,则x≤1, 若1-x<0,则x>1,于是
2 ∫2|1-x|dx=∫1(1-x)dx+∫1(x-1)dx 0 0
2 1 2 1 1 2 =x-2x | 0+2x -x| 1=1.
答案: 1
返回
[冲关锦囊]
计算一些简单的定积分,解题的步骤是:①把被积函 数变形为幂函数、正弦函数、余弦函数、指数函数与常数 的积的和或差;②把定积分用定积分性质变形为求被积函 数为上述函数的定积分;③分别用求导公式找到一个相应
1 A.S=∫0(x2-x)dx 1 C.S=∫0(y2-y)dy
(
)
B.S=∫1(x-x2)dx 0
1 D.S=∫0(y- y)dy
答案:B
返回
3.(2011· 福建高考)∫1(ex+2x)dx等于 0 A.1 C.e B.e-1 D.e+1
(
)
1 解析:∫1(ex+2x)dx=(ex+x2)| 0=(e1+1)-e0=e. 0
答案: C
返回
4.(教材习题改编)已知函数f(x)=x2-2x-3,则∫1 1f(x)dx - =________.
1 解析:∫1 1f(x)dx=∫-1(x2-2x-3)dx -
1 3 1 16 2 =3x -x -3x| -1=- 3 .
16 答案:- 3
返回
5.如果∫1f(x)dx=1,∫2f(x)dx=-1,则∫2f(x)dx=________. 0 0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分与微积分基本定理[时间:45分钟 分值:100分]基础热身 1.[2011·郑州一中模拟] 已知f (x )为偶函数,且 ⎠⎛06f(x)d x =8,则⎠⎛6-6f(x)d x =( )A .0B .4C .8D .162.[2011·福州模拟] 设f(x)=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e ](其中e 为自然对数的底数),则⎠⎛0ef(x)d x 的值为( )A .43B .2C .1D .23 3.[2011·临沂模拟] 若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a<c<bB .a<b<cC .c<b<aD .c<a<b4.如图K 15-1A .2 3B .2- 3C .323D .353能力提升5.设函数f(x)=ax 2+1,若⎠⎛01f(x)d x =2,则a =( )A .1B .2C .3D .46.[2011·湖南卷] 由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A .12B .1C .32D . 3 7.一物体以v =9.8t +6.5(单位:m /s )的速度自由下落,则下落后第二个4 s 内经过的路程是( )A .260 mB .258 mC .259 mD .261.2 m8.若⎠⎛0k (2x -3x 2)d x =0,则k 等于( )A .0B .1C .0或1D .以上均不对9.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为( )A .0.28 JB .0.12 JC .0.26 JD .0.18 J 10.[2011·洛阳模拟] 设函数y =f(x)的定义域为R +,若对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧K ,f (x )≤K ,f (x ),f (x )>K ,则当函数f (x )=1x ,K =1时,定积分⎠⎛214f K (x)d x 的值为________.11.⎠⎛01(x -x 2)d x =________.12.[2011·枣庄模拟] ∫π20(sin x +a cos x)d x =2,则实数a =________.13.由抛物线y 2=2x 与直线x =12及x 轴所围成的图形绕x 轴旋转一周所得旋转体的体积为________.14.(10分)已知函数f(x)=x 3+ax 2+bx +c 的图象如图K 15-2所示,直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f(x)的解析式.图K 15-215.(13分)如图K 15-3所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax(a>1)交于点O 、A ,直线x =t(0<t ≤1)与曲线C 1、C 2分别相交于点D 、B ,连接OD 、DA 、AB.(1)写出曲边四边形ABOD(阴影部分)的面积S 与t 的函数关系式S =f(t); (2)求函数S =f(t)在区间(0,1]难点突破16.(12分)已知点P 在曲线y =x 2-1上,它的横坐标为a(a>0),由点P 作曲线y =x 2的切线PQ(Q 为切点).(1)求切线PQ 的方程;(2)求证:由上述切线与y =x 2所围成图形的面积S 与a 无关. 参考答案:【基础热身】1.D [解析] ⎠⎛6-6f(x)d x =2⎠⎛06f(x)d x =2×8=16.2.A [解析] 根据积分的运算法则,可知∫e 0f(x)d x 可以分为两段,即∫e 0f(x)d x =⎠⎛01x 2d x+∫e 11x d x =13x 3⎪⎪⎪⎪10+ln x e 1=13+1=43,所以选A . 3.D [解析] a =⎠⎛02x 2d x =13x 3⎪⎪20=83,b =⎠⎛02x 3d x =14x 4⎪⎪20=4,c =⎠⎛02sin x d x =-cos x ⎪⎪20=1-cos 2<2,∴c<a<b.4.C [解析] ⎠⎛1-3(3-x 2-2x)d x =⎝⎛⎭⎫3x -13x 3-x 2⎪⎪1-3=323.【能力提升】 5.C [解析] ⎠⎛1f(x)d x =⎠⎛01(ax 2+1)d x =ax 33+x ⎪⎪10=a3+1=2,解得a =3.6.D [解析] 根据定积分的相关知识可得到:由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为:⎪⎪S =∫π3-π3cos x d x =sin x π3-π3=sin π3-sin ⎝⎛⎭⎫-π3=3,故选D .7.D [解析] ⎠⎛48(9.8t +6.5)d t =(4.9t 2+6.5t)⎪⎪84=4.9×64+6.5×8-4.9×16-6.5×4=313.6+52-78.4-26=261.2.8.C [解析] ⎠⎛0k (2x -3x 2)d x =⎠⎛0k 2x d x -⎠⎛0k 3x 2d x =x 2⎪⎪⎪⎪k0-x 3k=k 2-k 3=0,∴k =0或k =1.9.D [解析] 由F(x)=kx ,得k =100,F(x)=100x ,W =∫0.060100x d x =0.18(J ).10.2ln 2+1 [解析] 由题设f 1(x)=⎩⎨⎧1,1x ≤1,1x ,1x>1,于是定积分⎠⎛214f 1(x )d x =⎠⎛1141x d x +⎠⎛121d x =ln x ⎪⎪ 114+x⎪⎪21=2ln 2+1.11.13 [解析] ⎠⎛01(x -x 2)d x =⎪⎪⎝⎛⎭⎫23x 32-13x 310=13. 12.1 [解析] ∫π20(sin x +a cos x)d x =(a sin x -cos x)错误!=错误!-a sin 0+cos 0=a +1=2,∴a =1.13.π4[解析] 如图所示,因为y 2=2x ,x ∈⎣⎡⎦⎤0,12,⎪⎪所以V =π∫1202x d x =πx 2120=π4.14.[解答] 由图象过点(0,0)知c 在原点处相切知b =0,则有f (x )=x 3+ax 2,令f (x )=0,得x 3+ax 2=0,可得x =0或x =-a (-a >0,即a <0).可以得到图象与x 轴交点为(0,0),(-a,0),故∫-a 0-f (x )d x =⎪⎪⎝⎛⎭⎫-x 44-ax 33-a 0=-a 44+a 43=a 412=274,a =-3,所以f (x )=x 3-3x 2.15.[解答] (1)由⎩⎪⎨⎪⎧ y =x 2,y =-x 2+2ax ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =a ,y =a 2. ∴O (0,0),A (a ,a 2).又由已知得B (t ,-t 2+2at ),D (t ,t 2),∴S =⎠⎛0t (-x 2+2ax )d x -12t ×t 2+12(-t 2+2at -t 2)×(a -t )=⎝⎛⎭⎫-13x 3+ax 2⎪⎪t0-12t 3+(-t 2+at )×(a -t ) =-13t 3+at 2-12t 3+t 3-2at 2+a 2t =16t 3-at 2+a 2t .故S =f (t )=16t 3-at 2+a 2t (0<t ≤1).(2)f ′(t )=12t 2-2at +a 2,令f ′(t )=0,即12t 2-2at +a 2=0,解得t =(2-2)a 或t =(2+2)a .∵0<t ≤1,a >1,∴t =(2+2)a 应舍去.①若(2-2)a ≥1,即a ≥12-2=2+22,∵0<t ≤1,∴f ′(t )≥0.∴f (t )在区间(0,1]上单调递增,S 的最大值是f (1)=a 2-a +16.②若(2-2)a <1,即1<a <2+22,(i)当0<t <(2-2)a 时,f ′(t )>0, (ii)当(2-2)a <t ≤1时,f ′(t )<0.∴f (t )在区间(0,(2-2)a )上单调递增,在区间[(2-2)a ,1]上单调递减.∴f (t )的最大值是f ((2-2)a )=16[(2-2)a ]3-a [(2-2)a ]2+a 2(2-2)a =22-23a 3.综上所述f (t )max=⎩⎪⎨⎪⎧a 2-a +16⎝ ⎛⎭⎪⎫a ≥2+22,22-23a 3⎝ ⎛⎭⎪⎫1<a <2+22.【难点突破】16.[解答] (1)设点P 的坐标为(a ,a 2-1),又设切点Q 的坐标为(x ,x 2).则k PQ =a 2-1-x 2a -x ,由y ′=2x 知a 2-1-x 2a -x=2x ,解得:x =a +1或x =a -1.所以所求的切线方程为2(a +1)x -y -(a +1)2=0或2(a -1)x -y -(a -1)2=0. (2)证明:S =⎠⎛a a -1[x 2-2(a -1)x +(a -1)2]d x +∫a +1a [x 2-2(a +1)x +(a +1)2]d x =23. 故所围成的图形面积S =23,此为与a 无关的一个常数.。