重力线原则

合集下载

正常重力线

正常重力线

正常重力线正常重力是地球对物体的吸引力,也是我们日常生活中最为熟悉的一种力。

它是地球质量吸引其他物体的结果,使得我们能够保持在地面上,物体能够落入地面,以及其他种种现象。

下面我们就来详细了解一下正常重力线的一些基本知识。

正常重力是地球所具有的一种基本力,它是由地球质量造成的。

地球质量越大,正常重力就越强。

正常重力是一个向下的力,它使物体朝向地球的中心运动。

在地球表面,正常重力的大小大约是9.8牛顿/千克。

这意味着,如果一个物体的质量是1千克,它受到的正常重力就是9.8牛顿。

如果一个物体的质量是2千克,它受到的正常重力就是19.6牛顿。

可以看出,正常重力的大小与物体的质量是成正比的。

正常重力的方向是垂直向下的。

这是因为地球是一个球体,而球体的表面处处垂直于球心的方向是向下的。

所以无论我们在地球的哪个位置,正常重力的方向都是垂直向下的。

这也是为什么我们站立在地面上的原因,因为正常重力使得我们被地球吸引住,不会飘在空中。

正常重力对物体的影响是很大的。

它使得物体能够保持在地面上,而不会飞向空中。

正常重力也使得物体能够落入地面,这就是为什么物体会掉落下来。

正常重力还使得物体在空中运动时受到阻力,这就是为什么物体在空中会减速下降的原因。

除了地球上的正常重力外,其他天体也有各自的正常重力。

例如,月球也有自己的正常重力,虽然它的大小只有地球的六分之一,但对月球上的物体来说,它的影响是相当大的。

正常重力还是太阳系中行星之间相互作用的基础,它决定了行星之间的运动轨迹。

总结一下,正常重力是地球对物体的吸引力,它使得物体能够保持在地面上,物体能够落入地面,以及其他种种现象。

正常重力的大小与物体的质量成正比,方向是垂直向下的。

除了地球上的正常重力外,其他天体也有各自的正常重力。

正常重力是物体运动和行星运动的基础,它对我们的日常生活和宇宙的运行都起着重要的作用。

重力的三要素

重力的三要素

重力的三要素
力的大小、方向、作用点被称为“力的三要素”,重力是由于地球的吸引产生的力,重力的大小与质量大小的关系可用公式:G=mg算出(g=9.8N/kg)
重力的三要素
1.重力的大小
物体重力的大小与其质量成正比,在要求不很精确的情况下g=10N/kg.
例如:质量为200g的物体所受的重力为
G=mg=0.2kg×10N/kg=2N.
2.重力的方向
用细线把物体悬挂起来,线的方向跟物体所受的重力的方向一致,这个方向称为“竖直向下”
重力的方向应用实例:用重锤线检查墙壁是否竖直.
我们在地球上任何一个位置受到的重力方向都是竖直向下,这个“下”指的是地球的中心,又称为“地心”
3.重力的作用点
地球对其表面的物体小到分子,大到海洋山川都要受到重力的作用,也就是物体上的每一部分都要受到重力。

对于整个物体,重力作用的表现就好像作用在物体上的某一个点上.重力在物体上的作用点叫做物体的重心.质地均匀、外形规则物体的重心在物体的几何中心。

长距离重力流输水管道设计问题分析

长距离重力流输水管道设计问题分析

长距离重力流输水管道设计问题分析摘要:随着近年来我国城市化进程的不断加快,长距离重力流输水管道已经成为城市供水的重要组成部分之一。

随着长距离输水工程数量的增加,输水管道的设计、施工与使用也越来越受重视。

本文主要围绕长距离重力流输水管道的相关设计问题进行了讨论,期望能够推动我国长距离输水工程设计水平的提升,为广大设计人员提供参考与借鉴。

关键词:长距离;重力流;输水管道;设计;问题在长距离输水工程水量不断增加的今天,重力流输水工程已经成为其中重要的组成部分之一。

重力流输水管道有着节能、节点、成本低、运维简便等诸多优势。

重力流输水管道在应用的过程中对于高程有着一定的要求,要求地形高差必须能够满足相应的水头损失需要,并配置自由水头于管道末端,且地形坡降>输水水力坡降。

长距离重力流输水管道在设计的过程中还存在着诸多问题需要重视,例如输水道路路线的设计、管道管材与管径的选择、水锤的防护等。

基于此,本文围绕长距离重力流输水管道的相关设计问题进行了讨论,具体内容如下。

1、工程概述甲工程管线总长30000m。

工程的末端土壤具有腐蚀性,施工难度相对较大。

工程的首端地势平坦,便于施工。

该工程的设计流量为3.00m3/s,上下浮动0.20m3/s。

该工程为重力流输水管道,高程差为162m。

甲工程在设计时,存在着落差集中于末端、管道出口处富余水头大的问题。

为了解决上述问题,设计人员在设计时选择了分段分压的方式进行处理。

该工程在建设时,分别选用了用DN1400球墨铸铁管道以及DN1600预应力钢筋混凝土管。

2、长距离重力流输水管道的布线原则管线的布置与走向将直接决定整个工程的投资金额与施工难度。

因此,在布置管线时,要提前做好管道沿线的调查工作,重点对地质、地貌、河流、公路、地下管道(输气管道、输油管道)进行调查。

拟定多种方案,通过比选选择可行性与经济性最好的方案。

在长距离重力流输水管道布线时,应该遵循以下原则:(1)布线时要尽可能避开大起伏、急转弯现象,选择直线缩短管线的长度,使供水系统的布局尽可能合理。

基本布线走线原则

基本布线走线原则

一般情况下,基本布线走线原则如下:
1. 安全性原则:在布线的过程中,需要充分考虑到安全因素,避免电线直接暴露在外部可能被压、被烫伤、被割伤等危害。

2. 稳定性原则:布线一定要保证电线的稳定性,避免电线因重力、拉力等作用而发生位移或变形。

3. 方便性原则:布线应考虑到方便性,便于后续的维护和更换。

4. 经济性原则:在满足安全性和稳定性的前提下,应尽可能考虑到成本问题,选择合适的线材和布线方式以减少成本。

5. 美观性原则:布线应尽量整齐美观,避免杂乱无章,影响整体美观。

以上这些原则都是在布线过程中需要充分考虑的。

出入库原则——精选推荐

出入库原则——精选推荐

出入库原则下面介绍几个比较成熟的出入库原则。

(一)先入先出原则先入先出原则FIFO(First In First Out),是货物在出库时最先考虑的原则,最先入库的物品最先出库,从而避免了旧物品的积压,出现物品过期失效现象。

先入先出原则适用于有失效期要求的物品,对于大多数物品的出入库都会采用先入先出原则。

(二)分区原则分区原则就是根据货物特性、货位拣选方式和作业方式的不同,把一个整体的立体仓库,逻辑上划分为几个不同的分区,从而更好的满足不同货物存储要求的同时,也能提高物品出入库效率。

ABC分类法可作为对货位进行分区的很好理论依据。

ABC分析法又称帕雷托(Pareto)分析法、ABC分类管理法、ABC动态管理法、重点管理法等。

它是根据事物有关方面的特征,进行分类、排队,分清重点和一般,从而有区别地实施管理的一种分析方法。

立体库是不是需要分区,主要取决于仓库的形式以及仓库出、入库频率高低。

对于库体较长的仓库,分区才有必要。

因为运输设备效率在行程较短的情况下,主要取决于加速、减速过程,只有在较长行程的情况下,才能体现出运行时间的差异,这样根据货物出入库优先级不同或者货位的周转周期不同来进行分区,才显得很有必要。

同样,对于生产量大、出入库频率高的立体仓库才有必要分区。

对于出入库周期较多的物品则可以安排在出入库台较近的区域,从而更好的满足频繁出入库的要求。

如果作业系统的瓶颈在输送机那么就没有必要分区。

分区还要考虑所存储物料的性质,如果库中要存放用量大,单盘存放少的物料,则分区才有必要,同时还需要库存中也要有用量不大的物料存在,分区才有意义。

.还有对于一些特殊需求的物品,分区也很有必要。

例如,如对于药品而言,就存在不能混放的情况,则也应考虑分区存放,但其分区目的不再是出、入库效率的要求。

分区也有其自身的特点,以此作为一种功能,系统要保留分区的功能。

在实际的立体仓库的运作过程中,至于要不要分区应根据实际情况决定。

国际航运港口装卸机械课后习题答案

国际航运港口装卸机械课后习题答案

国际航运港口装卸机械课后习题答案第一章:1-5:DCAAD 6-10:CBAAA 11-14:DBBB 15(1-5):ABCCD简单题:1.港口是运输网络中水陆运输的枢纽,是货物的集散地以及船舶与其他载运工具的衔接点;它可以提供船舶靠泊、旅客上下船、货物装卸、储存、驳运以及其他相关业务;港口由港口水域和港口陆域组成;港口主要有码头、泊位、仓库、堆场等设施;作用自由发挥!2、港口功能:1)货物装卸和装运功能 2)商业功能 3)工业功能港口的作用:1)港口是海运和陆运的交接点2)港口是工业活动基地3)港口是城市发展的增长点4)港口具有社会经济发展促进效应3、港口类型:1)按规模大小分为特大型港口、大型港口、中型港口、小型港口2)按所在地理位置分海港、河港、河口港、湖港、水库港3)按用途分商港、工业港、渔港、军港、军港、避风港4)按水运系统中的低位和作用分为世界性港、国际区域性港口、地区性港口5)按对进出口货物是否要报关分为报关港、自由港4、港口生产活动的特点:1)产品的特殊性2)生产的不平衡性3)生产活动的多样性和复杂性4)港口生产活动与经济发展的相关性5)生产的连续性6)装卸组织的协作性7)货物运输信息的集聚性8)生产调度的层次性5、港口换装形式有直接换装和间接换装形式。

6、操作过程指货物在换装过程中,按一定的装卸工艺路线所完成的一次完整位移的装卸搬运过程。

主要有船-船,船-车、驳,船-库场,车、驳-库场,车、驳-车、驳,库场-库场7、作业工序是构成港口操作过程的相对独立的完整的作业环节:船舱作业工序、起落舱作业工序、水平搬运作业工序、车内作业工序、库场作业工序。

8、装卸指标有装卸自然吨,操作量,操作系数。

9、港口通过能力是指港口在一定时期内,在一定的技术装备和劳动组织条件下,所能转型货物的最大数量。

因素:货物、港口总体布局和码头专业化程度、港口设施与设备、运输工具、装卸工人及装卸司机的数量和素质、港口自然条件、企业领导素质和生产经营管理水平、其他10、提高港口通过能力的途径:提高企业领导和职工素质,加强生产组织提高企业管理水平,加强装卸设备的技术管理,加强港口疏运工作,加强港口内部和港口外部各环节之间的协作,注重港口合理布局第二章1-5:BDBBA 6-10:ABDBD填空题1.港口装卸工艺合理化原则有(社会和劳动保护)个方面、(设备)个方面、(工艺布置与流程)个方面、(作业方面)个方面、(成本)个方面2、在工艺布置与流程方面的港口装卸工艺合理化原则有(减少作业数)原则、(直线)原则、(作业线各环节相互协调)原则、(保证运载工具高效作业)原则、(防止工艺中断)原则、(灵活性)原则。

重力线的定义及其作用详细版.doc

一,重力线的定义及其作用重力线是指人的驱干及头部的重力线。

它不只是人与地球间的重力线,而且是包括人地球和整个宇宙的重力线.具体的讲,它就是用意念联系着天,地,人的,垂直于天地的畅通的被延伸了的任督二脉.从狭义上讲,它是人体畅通的任督二脉(小周天)路线,从广义上讲,它是以宇宙中的地球球心为“下丹田“以天顶为“上丹田”垂直地通过人体的任督二脉的路线是“宇宙小小周天”。

重力线的作用在于全自己在攻防中有深厚的根基,使自己稳定,使对手失重。

重力线又能使自己发挥最大的力量,有深厚了发力源泉,就象孩子有了父母一样。

重力线还能保证人在武术动作中做到“六合”即手与脚合,肘与膝合,肩与胯合,心与意合,意与气合,气与力合,做出整体力来。

所以,掌握体会重力线是练武术的最基本的练习,也是最重要的练习。

二,如何体会重力线要体会出重力线,首先要求做到身体姿势正确,然后在松静中用意念将天,地,人,联系在一起,在意念的开合运转中,以天顶为“上丹田”以地球为“下丹田”进行“小周天‘运转。

正确的身体姿势,在武术的各门派,拳种都分别各有论述,各有严格的形象的要求。

但细分析起来,他们在原则上都是一致的,都是为了保证任督二脉畅通无阻。

概括起来,我们认为“钻顶骨,吞锁骨,扎尾巴骨,撂盖骨”这句话较具体形象,又较全面好记。

钻顶骨就是后脑往天上顶,(后脑骨是头顶头发转圈的位置,而不是百会穴),吞锁骨是是喉咙骨往里往下咽之势,要求舌顶上鄂,气沉丹田,沉至地球球心。

扎尾巴骨就是尾闾骨下扎于地球球心。

撂盖骨就象撂担子似的,意念从丹田出发经过两胯,两膝盖,象一把大钳子似的抱向地球球心。

要体会出重力线至关重要的是要做到全身松静。

松静除了肌肉,神经以外,关节,各个器官都不得要做到松静。

松静不等于全部松软,没有任何意念。

松静是指随着呼吸开合,意念去跟随动静走。

重力线的体会可以这样进行比喻:人的(下)丹田就象一台水泵,“上丹田”天顶和“下丹田”地球球心就象两个大蓄水池,动静意念就象管子里的水。

基础护理学简答和论述

简答和论述五、简答题1、简述社会环境因素对健康的影响因素。

答:社会经济、社会阶层、社会关系、文化因素、生活方式、卫生服务。

2、简述良好的医院环境应具备的特点。

答:(1)服务的专业性:在医院环境中工作的对象是患者,而患者是十分复杂的生命机体。

因此,护理工作专业素质要求也不断提高,应具有全面的理论知识、熟练的操作能力和丰富的临床经验,科学的照护患者的生活,提高专业的生活护理、精神护理、营养指导等服务,并在新技术、新专业不断发展的同时,进一步满足患者的需求。

(2)安全舒适性:医院是患者治疗病痛,恢复健康的场所,应在治疗性安全、生物环境安全和医患和谐方面都满足患者安全的需要。

(3)管理统一性。

3、用护患关系的影响源分析如何建立良好的护患关系。

答:(1)在护理活动中,护士应善于运用语言,通过恰当的交谈,帮助患者正确的认识和对待自身的疾病,减轻消极情绪,帮助患者肯定自己的价值与自尊。

(2)行为举止上,医护人员的仪表和神态应该庄重、沉着、热情、关切、机敏、果断,操作时要稳、准、轻、快,从行为举止上消除患者的疑虑,带给患者心理上的安慰。

(3)情绪上,护理人员应学会控制自己,时刻以积极的情绪去感染患者,使患者乐观开朗,为患者提供一个舒适、安全、优美、令人愉快的环境。

(4)工作态度:严肃认真,一丝不苟的工作态度可使患者获得安全感、信赖感。

4、简述内外环境之间的关系。

答:人的生理环境、心理环境、自然环境和社会环境是相互影响、相互制约的。

护理学家纽曼(Neuman)认为:人是生理、心理、社会文化及生长发育等四种因素相互关系的动力合成体;罗伊(Roy)认为:人是生物、心理和社会的结合体。

无论生理、心理、物理或社会环境任何一个方面有了问题,都可能影响一个人的健康,如:环境污染可能导致疾病,因疾病住院可能导致心理情绪的变化、社交隔离或人际关系改变。

有些生理方面的疾病还源于心理问题。

由于人是复杂的个体,而且生活在各种环境中,因此,要去了解一个人时,应将人看作一个整体,并要考虑环境因素对整体人的影响。

人或物体的平衡和稳定与重心支撑面和重力线的关系

人或物体的平衡和稳定与重心、支撑面和重力线的关系人为了使物体保持平衡,必须使作用于物体的一切外力相互平衡,也就是通过物体重心的各力的合力应等于零;而且不通过物体重心的各力矩的总和也等于零。

人体局部平衡是整个人体平衡不可缺少的一部分,而整个人体平衡也是由各个局部平衡来实现的。

物体或人体的平衡与稳定,是由其重量、支撑面的大小、重心的高低及重力线和支撑面边缘之间的距离而决定的。

(1)物体的重量与稳定度成正比:物体重量越大,稳定度越大。

推倒一较重物体所用的力比推倒一较轻物体的力要大。

在护理操作中,如要把病人移到较轻的椅子上,应注意有其他力量的支持椅子,如扶住椅子的靠背或将椅子靠墙。

(2)支撑面的大小与稳定度成正比:支撑面是人或物体与地面接触的各支点的表面构成的,并且包括各支点之间的表面积。

支撑面可为站立、提重物或移动时提供稳定性。

各支点之间的距离越大,物体的支撑面积越大。

支撑面小,则需付出较大的肌肉拉力,以保持平衡稳定,如用一只脚站立时,为了维持人体平衡稳定,肌肉必须用较大的拉力。

扩大支撑面可以增加人或物体的稳定度,如人体平卧比侧卧稳定;老年人站立或行走时,用手杖扩大支撑面,可增加稳定度。

(3)物体的重心高度与稳定度成反比:重力的作用所集中的一点称为物体的重心。

当物体的组成成分均匀时,重心位于它的几何中心。

如物体的形状发生变化时,重心的位置也会随之变化。

人体重心的位置随着躯干和四肢的姿势改变而改变。

在直立垂臂时,重心位于骨盆的第二骶椎前约7cm处;如把手臂举过头顶,重心随之升高;当身体下蹲时,重心下降,甚至吸气时膈肌下降,重心也会下降。

人或物体的重心越低,稳定度越大。

(4)重力线必须通过支撑面才能保持人或物体的稳定:重力线是重量的作用线,是自重心垂直于地面的线。

竖直向下的重力与竖直向上的支持力,二者大小相等、方向相反,且作用在一直线上,即处于平衡状态。

人体只有在重力线通过支撑面时,才能保持动态平衡。

当人从坐椅上站起来时,应该先将身体向前倾,一只脚向后移,使重力线落在扩大的支撑面内,这样可以平稳地站起来。

生产现场物流流向原则

生产现场物流流向原则嘿,小伙伴们,今天咱们来唠唠生产现场物流流向原则这个事儿。

生产现场的物流流向啊,就像是一场精心编排的舞蹈。

首先呢,要遵循单向流动原则。

啥叫单向流动呢?就是物流像一条单行道,只能朝着一个方向走。

比如说在生产线上,原材料从进料口进来,然后按照固定的路线,一个环节一个环节地往前走,直到变成成品出去。

这样做的好处可多啦,就像大家排队买东西,如果有人乱插队,那就乱套了。

在生产现场也是一样,如果物流来回乱窜,很容易造成拥堵,效率就会变得超级低。

还有啊,要遵循就近原则。

就好比咱们在家里,东西总是放在离使用地点近的地方才方便。

在生产现场,物料也应该尽可能地靠近使用它的工序或者设备。

比如说,组装某个零件需要用到特定的螺丝,那这个螺丝的存放点就应该离组装这个零件的地方很近。

这样工人拿取方便,能节省很多时间。

要是螺丝放在老远的地方,工人得跑来跑去拿,那多浪费时间呀。

另外呢,物流流向要遵循重力原则。

这就像是水往低处流一样自然。

如果能够利用重力让物料自动流动,那是再好不过的了。

比如说在一些有高度差的生产环节,可以设计一些倾斜的滑道,物料就可以顺着滑道自己滑到下一个工序,既不需要额外的动力,又节省了能源。

而且,物流流向还得考虑连续流动原则。

生产就像一个链条,一环扣一环,不能中间断开。

物料在各个工序之间要持续不断地流动,不能在某个环节停滞不前。

如果某个工序突然停了,那后面的工序都得等着,就像堵车一样,越堵越厉害。

再来说说分层原则。

在生产现场,可以把不同类型或者不同优先级的物料分层次管理和流动。

比如说,那些紧急要用的物料可以放在比较容易拿到的上层,而那些不是那么紧急的可以放在下层。

这样在需要的时候就能快速区分,提高物流的效率。

概括性来讲呢,生产现场的物流流向原则是为了让整个生产过程更加顺畅、高效、有序。

就像一个和谐的大家庭,每个成员都知道自己该做什么,该往哪里走,这样这个家庭才能幸福美满,生产现场才能创造出更多的价值呢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Gravity line strategy may reduce risks of intraoperative injury during laparoscopic surgeryAnlong Zhu •Chao Yuan •Daxun Piao •Tao Jiang •Hongchi JiangReceived:2January 2013/Accepted:28June 2013/Published online:27July 2013ÓSpringer Science+Business Media New York 2013AbstractBackground ‘‘Tilt’’of surgical view was commonly shown on the monitor due to unintentional rotation of camera along its long axis by camera driver.Surgeons may be influenced on identification of anatomical structures by the tilt vision.We aimed to analyze the surgical records and videos of laparoscopic surgery,and to reveal the correlation between intraoperative complications and tilt view.Methods A series of 425consecutive patients who received laparoscopic low anterior resection and abdominoperineal resection were studied,and 398surgery videos were reviewed.Still pictures showing intraoperative injury were selected.A method was established to measure tilt angle in the still pictures according to the reference line based on several anatomic landmarks.The patients were grouped with two methods according to different study purposes.Incidence of intraoperative complication and tilt angle were calculated,and statistical analysis was performed.Results The incidence of intraoperative complications was 8.3%.Tilt of the surgical field at different degrees (\15°,15°–30°and [30°)was found in a relatively high rate in these surgery videos (31.4%).Compared with controls,comparatively bigger tilt angles were found in all cases of complication group.It is interesting to note that intraoperative complications happened more often when the tilt angle was in the range of 15°–30°(72.7%)than [30°(18.2%).We also noted a high incidence of complication(72.7%),while tilt angle was over 15°(26%)in the first 100cases;comparatively a steady declining low rate of complication occurrence (5–7%)and also tilt angle over 15°(9–11%)were noted in the later 298cases.Conclusions Rotation of camera is common during lap-aroscopic procedures.The tilt view increased the risk of laparoscopic procedures.Tilt angle at 15–30°is the most dangerous rotation for laparoscopic surgeries.Therefore,we propose the ‘‘Gravity Line Strategy’’principle as one of the basic operating criteria to correct the tilt angle.Keywords Intraoperative complications ÁLaparoscopic surgery ÁOperative techniques ÁPrevention ÁSurgical proceduresAlthough the important progress has been made in the past decade in terms of surgical equipment,techniques,and perioperative management [1,2],patients who receive laparoscopic procedures for abdominal diseases may still experience risks of intraoperative complications [3–5].It is crucial to understand not only the impact of intraoperative complications on patient survival,but also the risk factors associated with complications during laparoscopic proce-dures [6–8].Most of the intraoperative complications,including thermal injury,too-deep dissection,and technical compli-cations,are results of misidentification of anatomic struc-tures [9–11],although other less frequent factors exist [6–8,10,11].The visual perceptual illusion is the main cause accounting for the misidentification of anatomic structures [9–12],which could be led by the rotation of laparoscopic camera [13].One common phenomenon is that ‘‘tilt of laparoscopic view’’may be shown on the monitor while the laparoscopePresented at the SAGES 2013annual meeting,April 17–20,2013,Baltimore,MD.A.Zhu (&)ÁC.Yuan ÁD.Piao ÁT.Jiang ÁH.Jiang Department of General Surgery,First Affiliated Hospitalof Harbin Medical University,Harbin,Hei Long Jiang,China e-mail:zhuanlone@Surg Endosc (2013)27:4478–4484DOI 10.1007/s00464-013-3093-2is unintentionally rotated along its long axis by the camera driver.Relatively moving and tilted vision is a character of the indirect view style of laparoscopic surgery,compared with the direct vision of open surgery[14–16].The tilted view is often ignored by surgeons and may lead to misi-dentification of anatomic structures[17].To date,to our knowledge,no research has addressed the relationship between camera rotation and intraoperative complications. Therefore,we analyzed the surgical records and videos of laparoscopic surgery to study the correlation between intraoperative complications and tilted view.Patients and methodsPatientsA series of consecutive patients from September2006to June2012who received laparoscopic low anterior resec-tion(LAR)and laparoscopic abdominoperineal resection (APR)for sigmoid colon and rectal diseases in the Department of General Surgery at the First Affiliated Hospital of Harbin Medical University were included.This hospital is a teaching hospital that provides training in general surgery and laparoscopic techniques.The exclusion criteria were as follows:(1)integral operation video unavailable,(2)integral case record unavailable,and(3) conversion to open surgery not due to intraoperative inju-ries,such as adhesion,intra-abdominal phlegmon,abscess, enteric-relatedfistulae,or tumor size.These operations were performed by three different surgeons.In addition to the listed procedures,performed surgeries also included adnexectomies and appendectomies when indicated intraoperatively.Data recorded for each patient included age,sex,body mass index(BMI),indi-cation for surgery,performed surgical procedure,conver-sion to laparotomy,operating time,length of stay,and intraoperative complications.Complications and surgical proceduresIntraoperative complications such as bowel injury,ureter injury,intraoperative hemorrhages,and organ injury were recorded.Medical records,videos of the operations,and their associated complications were studied.In particular, the tilt angles of the laparoscopic view shown on the monitor were measured using the method described below.In our study,organ injuries were defined as problems in which further surgical procedures were needed.Intraoper-ative hemorrhage as a complication was recorded when specific additional treatments were applied,including active bleeding rather than oozing,hemostating procedure (controlled bleeding by compression,clamps and ligatures)over5min,blood loss of[10ml,blood transfusion,vas-cular surgery,or conversion to open surgery.Postoperative complications were excluded because of this study’s aim.The incidence of complication for each surgical procedure was calculated.In patients who underwent attempted laparoscopic resections,the peritoneal cavity was accessed by puncture or open method,and carbon dioxide was insufflated to maintain an intraperitoneal pressure of12–14mm Hg. Dissection was performed in the majority of patients by ultrasonic dissectors or with electric hook.Vessels were controlled with endoscopic staplers or absorbable clips intracorporeally in most circumstances.After bowel mobilization and vessel division,tumor-bearing segments were retrieved through an incision at a convenient site with adequate wound protection.A left-sided or rectal anasto-mosis was performed with a circular stapler that was inserted transanally.Here,rectal mobilization and tran-section followed the same principle as in open surgery.Conversion was defined as the need for a premature abdominal incision for bowel mobilization and/or vascular control.The necessity for an abdominal incision to deal with any intraoperative complication was also considered to be conversion.Measurement of tilt of laparoscopic viewDuring laparoscopic surgery,the views of the surgicalfield shown on the monitor are captured by the laparoscope;they will be tilted in accordance with the axial rotation of the camera.Therefore,the rotational angle of the camera can be calculated by measuring the tilt of the view on the screen.The procedures are as follows.First,draw a base-line(0°)parallel to the top edge of the screen on the screen as a reference orientation;second,draw another line,which represents the actual orientation of operating site(usually based on the vertical direction of gravity);and third, measure the angle between the two lines by a protractor or the MB-Ruller software program(Markus Bader,MB Software Solutions),which will be the tilt angle of camera. The tilt angle must be between0°(no camera rotation)and 180°(camera turned upside down).The actual orientation of the operating site was determined by the transversal axis of several anatomic landmarks,including bladder,uterus, and ridge of sacral bone.Figure1shows a pelvic cavity without rotation.The method to determine the angle is illustrated in Fig.2.Time point to calculate tilt angleVideos of each case were reviewed in their entirety.Video footage was suspended to calculate the tilt angle at the following time points:(1)occurrence of intraoperativecomplication (e.g.,bowel lesions,bladder injury,vaginal injury,urethral injury,bleeding);(2)bowel mobilization and vessel division (e.g.,inferior mesenteric artery,inferior mesenteric vein,ureter);and (3)ligation of vessels (e.g.,inferior mesenteric artery,inferior mesenteric vein).Grouping informationPatients with intraoperative complications were classified as the complication group,and those who received suc-cessful laparoscopic procedures comprised the control group.Patients were also categorized into four groups in chronological order (groups 1–3,100cases each group;and group 4,98cases).A consultation was held on the incidence of intraoper-ative injury after the first 100cases,and then the gravityline strategy was calculated and applied to the last 298patients.Keeping the camera in the gravity direction was emphasized in the gravity line strategy.It included three key points.First,the laparoscopic view shown on the screen should always be kept in accordance with the actual gravity direction.Second,the camera orientation must be in gravity direction.Third,the tilt angle should be con-trolled within 15°at least if the gravity direction was not able to be performed.Statistical analysisNonparametric statistical analysis was performed by the Chi square test,Fisher’s exact test,and the Mann–Whitney test,where appropriate,by SPSS 11.0software (IBM,Ar-monk,NY).ResultsIn the 6-year period between September 2006and June 2012,a total of 425laparoscopic procedures were per-formed;398cases were included in the study because operation videos of 27cases were not available.The dif-ferent diagnoses and surgical procedures performed are listed in Table 1.The population of this study consisted of patients ranging in age from 22to 82years (mean,49.8years).There were 191women (62%)and 207men (38%).The average BMI was 25.12±2.35kg/m 2(range,18.1–32.2kg/m 2).The mean duration of hospitalization was 8.5±9.7days (range,7–27days).Demographic and clinical data are listed in Table 2.Patient-,procedure-,and surgeon-specific factors were considered,including age,gender,BMI,diagnosis,Amer-ican Society of Anesthesiology classification score,oper-ative procedure,operative time,cancer staging according to the preoperative and perioperative clinical findings,and histologic tumor,node,metastasis classification for colo-rectal cancer.Intraoperative factors included thepresenceFig.1View of pelvic cavity (resection of rectum),baseline (0°)Fig.2Determination of tilt angle in the view (pelvic cavity,resection of rectum)Table 1Indications for laparoscopic procedures Indicationn (%)Sigmoid colon carcinoma 88(22.1)Sigmoid colon benign disease 4(1)Rectal carcinoma 299(75.1)Rectal benign disease 7(1.8)LAR 308(77.4)APR90(22.6)Conversion to laparotomy (among LAR and APR)11(2.7)LAR low anterior resection,APR abdominal pelvic resectionof intra-abdominal phlegmon,abscess,enteric-relatedfis-tulae,and adhesive tenacity.There was no significant dif-ference between the complication and control groups.Data for complications and the tilt angle of the laparo-scopic view are provided in Table3.Control groupIn total,365videos of successful laparoscopic procedures were reviewed.The patients were evaluated in terms of different tilt angles of the laparoscopic view.Among these, 341cases(93.4%)showed a tilt angle of less than15°and 24cases(6.5%)between15°and30°;no case had a tilt angle of more than30°(Table3).Complication groupIntraoperative complications were observed in33patients (8.29%),including ureter injuries(n=8),bladder injuries (n=3),vaginal injuries(n=3),and bleeding episodes (n=26).Multiple intraoperative complications were documented in4cases.Thirty-three videos with intraoperative complications were reviewed.In3cases(9.1%)the tilt angles of the laparoscopic view were\15°,for24cases(72.7%)between 15°and30°,and[30°in6cases(18.2%)(Table3).Results of statistical analysisThe Fisher’s exact test revealed that the percentage associ-ated with the rotational angle of the control group significantly differed from that of complication group (p\0.001).Patients without complications(n=365)had an increased rate when the rotational angle was\15°(93.4%)compared with patients in the complication group (9.1%)(p\0.001).Rates of the tilt angle between15°and 30°in the control group were significantly decreased in comparison to the complication group(6.5vs.72.7%) (p\0.001).There was also a statistically significant dif-ference between the two groups when the tilt angle was[30°(control0%plication18.2%;p\0.001)(Table3).When we analyzed the number of operations,there was a high incidence of intraoperative injury in thefirst group (p\0.05);the rate of tilt angle[15°(26%)was signifi-cantly increased compared with the other three groups (9–11%)(p\0.05).There was no case with a rotational angle of[30°in groups2–4,and the incidence of intra-operative injury decreased to a steadily low percentage (6.1–15.2%)(p\0.05)(Table4).DiscussionInexperienced camera drivers may lose a critical view during parts of an operation[6,7,18]because of their ignorance.Sometimes it is a result of not showing the surgeon the anatomic area that needs to be visualized.Also, tilt vision is shown on the viewing screen by the rotation ofTable2Demographic and clinical characteristics of patientst test,proportion test and Mann–Whitney test were performed to generate p valuesp values less than0.05are statistically significantBMI body mass index Characteristic Complication(n=33)Control(n=365)p valueAge(y),mean±SD(range)53.12±8.17(26–72)49.7±16.65(22–82)[0.05 Sex,M/F18/15189/176[0.05 BMI(kg/m2),mean±SD24.34±1.4725.17±2.67[0.05 Obese(BMI C30kg/m2),n(%)2(6.0%)21(5.8%)[0.05 Malnutrition(BMI B17kg/m2),n(%)1(3.0%)5(1.4%)[0.05 Hemoglobin(g/L),mean±SD(range)128.3±13.8125.4±17.3[0.05 Cancer/benign disease32/1355/10[0.05 Operating time(min),mean±SD(range)165±45.3(133–256)138±23.7(92–243)\0.01 Length of stay(d),mean±SD14.6±9.98.3±9.8\0.01Table3Cases with or without complication at different tilt angles Tilt angle Control,n(%)Complication,n(%)p value\15°341(93.4)3(9.1)\0.001 15°–30°24(6.5)24(72.7)\0.001 [30°0(0)6(18.2)\0.001 Total365(100)33(100)Table4Intraoperative complications and tilt angle of groups in chronological orderGroup Complication,n(%)Tilt angle,n(%)\15°15°–30°[30°1(cases1–100)24(72.7)*74(74)*20(20)*6(6)* 2(cases101–200)5(15.2)91(91)9(9)0(0) 3(cases201–300)2(6.1)89(89)11(11)0(0) 4(cases301–398)2(6.1)89(90.8)9(9.2)0(0) Fisher’s exact test was performed*Statistically significant(p\0.05)compared with other groupsthe camera.Camera rotation may have a detrimental effect on performance and may affect the surgeon’s judgment [19–21]because laparoscopic surgery is totally dependent on a visual view[9,10].In our study,398videos of APR and LAR procedures were reviewed.Tilt views were frequently observed on the screen in the operation videos.In addition,tilt views caused by unintentional camera rotation have also been shown in surgical videos presented at academic confer-ences and in teaching videos;only some of them were properly adjusted.All these examples suggest that surgeons do not pay enough attention to the axial camera rotation. Complication and control groupsGenerally,laparoscopic cameras can be rotated axially at any degree(range,0°to180°,usually0°to30°)and the intraoperative view changed accordingly[16,17,21].In our study,tilt views existed in all of the operation videos both groups.There were more cases of bigger rotational angles in the complication group than in the control group. In the complication group,tilt angles of[15°were observed in most cases(90.9%),and\15°existed in a decided minority(9.1%).In the control group,the per-centage of tilt angle of[15°was much lower(6.5%),and tilt angle of\15°was much higher(93.4%).There was no case of a tilt angle exceeding30°in the control group.The results indicate that tilt view increased the risk of intra-operative complications.It is interesting to note that intraoperative complications happened more often when the tilt of the laparoscopic view was15°–30°(72.7%)than tilt angles exceeding30°(18.2%).This could be attributed to the obvious difficulty of performing operations at tilt angles exceeding30°.In addition,such rotational views are much more easily rec-ognized by surgeons.Therefore,tilt angles of15°–30°comprise the most dangerous rotations for laparoscopic surgeries.The tilt views were mainly the result of inexperienced camera operators,who ignored the importance of proper camera direction.In addition,neither the camera operators nor the surgeons were good at controlling the cameras in the proper direction.Groups in chronological orderPatients were also categorized into four groups(100cases in each group)in chronological order.We held a consul-tation after thefirst100cases and analyzed the relationship between the incidence of intraoperative injury and the tilt of laparoscopic view.We were aware of the negative effects of tilt on the complication rate;we then constructed the gravity line strategy and applied it to the later cases. Keeping the laparoscopic camera in proper direction was emphasized in the last three groups.In thefirst100cases,apparently tilted views exceeding 15°were observed in each case several times during the whole operation;most were ignored and were not corrected to a suitable direction.On the contrary,there was a low incidence of obvious camera rotation in groups2–4,and tilted views were rectified in time in most cases.The incidence of intraoperative injury in group1(cases1–100) was higher(n=24,72.7%),along with a significantly increased rate of tilt angle of[15°(26%)than the other three groups(cases101–398,[15°,9%–11%)(p\0.05). There was no case of a tilt angle of[30°in groups2–4,and the incidence of intraoperative injury decreased to a stea-dily low percentage(5–7%)(p\0.05).Surgeons and camera operators who did not pay enough attention to camera rotation were related to a bigger tilt angle and a higher incidence of intraoperative injuries.The learning curve is considered to be a factor in the incidence of intraoperative complications.Three surgeons andfive camera operators were involved in our study.Two doctors had already completedfive procedures and one doctor had completed10procedures before the study.After thefirst100cases,two surgeons and three camera opera-torsfinished their learning curve with50cases.We think that the accumulation of experience in laparoscopic surgery helps decrease the incidence of intraoperative injury.The decline in the complication rate for the last three groups indicates that the gravity line strategy is a useful principle in laparoscopic colorectal surgery.Inexperienced camera drivers may lose critical vision or get a tilted view[16,21].The tilted view may make more it more difficult for the surgeon to identify anatomic structures[13,21].A higher risk of injury may be the result if the surgeon is not aware of the rotation of the surgical view[13].The rotation of the laparoscope is not only critical to experienced surgeons but also plays an important role in the procedures performed by less expe-rienced surgeons[14,15].We propose that the tilt of the laparoscopic view may mislead the surgeon and may be an important factor associated with accidental injury.We also noted that a rotation of\15°may be sufficient to prevent intraoperative injuries.Thus,keeping the laparoscopic view from rotating[15°may be a crucial criterion for a safe laparoscopic procedure.How,then,can novice surgeons keep the laparoscopic view in the appropriate direction?They require some practical criteria to follow.On the basis of the analysis of videos of thefirst100surgeries,we suggest that surgeons ought to abide by the gravity line.Tilt angle and gravity line strategyCommonly,laparoscopic surgical experience is derived from the performance of open surgeries.While performing surgeries,surgeons have the established perception of the relative localization of the operating site [22].Following the habit of the positional perception,the direction of gravity should be taken as the vertical coordinate of the basic reference for the operating procedure in the surgeon’s unconscious mind.This means that an object (e.g.,blood)should be always falling downward as a result of pared to open surgeries,laparoscopic surgeons viewthe operating site only from the visualization provided by the monitor [23,24].It is easy to understand that the sur-gical field shown on the monitor may be tilted when the camera is rotated.For example,a drop of blood may be seen falling from the left upper part of the screen to the right lower part instead of actually falling downward.This experience in perception of anatomic localization may mislead a surgeon,who may dissect tissue along the wrong direction if he or she has no awareness of this false front [25,26].For example,the pelvic ureter may be injured from a wrong incision direction as a result of the mis-leading tilted view when the overlying peritoneum is dis-sected in the mobilization of the rectum.Figures 3and 4show a wrong incision because of a rotational view,which may mislead surgeons to make a risky decision on the ureter.Consequently,it is crucial to keep the camera orienta-tion in the direction of gravity,in accordance with open surgeries.This should be a basic principle abided by camera operators and surgeons during laparoscopic pro-cedures.Therefore,we propose the gravity line strategy as a solution to looking at the tilt view according to the visual habit of open surgery.The gravity line strategy includes three points.First,the laparoscopic view shown on the monitor should always be kept in accordance with the direction of gravity.Second,the camera orientation must be in the direction of gravity.Finally,the tilt angle should be controlled within 15°at least if gravity direction cannot be obtained.Otherwise,an increased risk of wrong judg-ments regarding anatomical planes—and consequently an incidence of intraoperative complications—may be con-fronted.We recommend two strategies to surgeons and camera holders in following the principle of gravity line.First,camera holders must keep the ‘‘zero point’’displayed on the laparoscopic camera up or at a rotation of \15°;and second,surgeons and camera holders may adjust laparo-scope orientation by consulting anatomical landmarks,including bladder,uterus,and ridge of sacral bone.We thus recommend the gravity line strategy as a basic criterion for laparoscopic surgery;this creates an effective reference,permitting the surgeon to gain a proper percep-tion of the anatomical structure.Intraoperative complica-tions might then be decreased by the timely adjustment of the camera’s orientation.The gravity line strategy is criti-cal for surgeons and residents to understand as they develop their laparoscopic skills.Acknowledgments Supported in part by Natural Science Founda-tion of Hei Long Jiang Province (2007–64),Hei Long Jiang Post-doctoral Financial Assistance (LBH-Z05184),and the Wujieping Academician Foundation (320.6750.12188).Disclosures A.Zhu,C.Yuan,D.Piao,T.Jiang,and H.Jiang have no conflicts of interest or financial ties todisclose.Fig.3View without rotation (pelvic cavity,resection of rectum).Black line trace of ureter,blue line correct incision line on the overlying peritoneum.There is a distance between the 2lines,so it is safe to incise the overlying peritoneum along the bluelineFig.4Tilt view after camera rotation (pelvic cavity,resection of rectum).black line new trace of ureter,blue line same incision line as in Fig.3.We get a crossover of the 2line,dissecting along the blue line may lead to ureter injuryReferences1.Berguer R(1999)Surgery and ergonomics.Arch Surg134:1011–10162.Luglio G,Nelson H(2010)Laparoscopy for colon cancer:state ofthe art.Surg Oncol Clin N Am19:777–7913.Inoue T,Kinoshita H,Satou M,Oguchi N,Kawa G,MugurumaK,Murota T,Matsuda T(2010)Complications of urologic lap-aroscopic surgery:a single institute experience of1017proce-dures.J Endourol24:253–2604.Lebeau T,Roupreˆt M,Ferhi K,Chartier-Kastler E,Richard F,Bitker MO,Vaessen C(2010)Assessing the complications of laparoscopic robot-assisted surgery:the case of radical prosta-tectomy.Surg Endosc25:536–5425.Strasberg SM,Hertl M,Soper NJ(1995)An analysis of theproblem of biliary injury during laparoscopic cholecystectomy.J Am Coll Surg180:101–1256.Schlachta CM,Mamazza J,Seshadri PA,Cadeddu M,Poulin EC(2000)Determinants of outcomes in laparoscopic colorectal surgery:a multiple regression analysis of416resections.Surg Endosc14:258–2637.Khoury W,Kiran RP,Jessie T,Geisler D,Remzi FH(2009)Is thelaparoscopic approach to colectomy safe for the morbidly obese?Surg Endosc24:1336–13408.Shin EJ,Kalloo AN(2009)Transcolonic NOTES:currentexperience and potential implications for urologic applications.J Endourol23:743–7469.Duff WM(2006)Avoiding misidentification injuries in laparo-scopic cholecystectomy:use of cystic duct marking technique in intraoperative cholangiography.J Am Coll Surg203:257–261 10.Jones DB,Brewer JD,Soper NJ(1996)The influence of three-dimensional video systems on laparoscopic task performance.Surg Laparosc Endosc6:191–19711.Strasberg SM(2005)Biliary injury in laparoscopic surgery:part1.Processes used in determination of standard of care in misi-dentification injuries.J Am Coll Surg201:598–60312.Hanna G,Shimi S,Cuschieri A(1998)Randomized study ofinfluence of two-dimensional versus three-dimensional imaging on performance of laparoscopic ncet351:249–251 13.Conrad J,Shah AH,Divino CM,Schluender S,Gurland B,Shlasko E,Szold A(2006)The role of mental rotation and memory scanning on the performance of laparoscopic skills:a study on the effect of camera rotational angle.Surg Endosc20:504–51014.Sarker SJ,Telfah MM,Onuba L,Patel BP(in press)Objectiveassessment of skills acquisition during laparoscopic surgery courses.Surg Innov15.Honeck P,Wendt-Nordahl G,Rassweiler J,Knoll T(2012)Three-dimensional laparoscopic imaging improves surgical per-formance on standardized ex vivo laparoscopic tasks.J Endourol 26:1085–108816.Nakamoto M,Ukimura O,Faber K,Gill IS(2012)Current pro-gress on augmented reality visualization in endoscopic surgery.Curr Opin Urol22:121–12617.Gallagher AG,Al-Akash M,Seymour NE,Satava RM(2009)Anergonomic analysis of the effects of camera rotation on laparo-scopic performance.Surg Endosc23:2684–269118.Autorino R,Haber GP,Stein RJ,Rane A,De Sio M,White MA,Yang B,de la Rosette JJ,Kaouk JH,Laguna M(2010)Laparo-scopic training in urology critical analysis of current evidence.J Endourol24:1377–139019.Vettoretto N,Saronni C,Harbi A,Balestra L,Taglietti L,Gi-ovanetti M(2010)Critical view of safety during laparoscopic cholecystectomy.JSLS15:322–32520.Machado NO(2011)Biliary complications postlaparoscopiccholecystectomy:mechanism,preventive measures,and approach to management:a review.Diagn Ther Endosc2011:967017 21.Breedveld P,Wentink M(2001)Eye–hand coordination in lap-aroscopy—an overview of experiments and supporting aids.Minim Invasive Ther Allied Technol10:155–16222.Risucci DA(2002)Visual spatial perception and surgical com-petence.Am J Surg184:291–29523.Bittner JG,Hathaway CA,Brown JA(2008)Three-dimensionalvisualisation and articulating instrumentation:impact on simu-lated laparoscopic tasks.J Minim Access Surg4:31–3824.Bhayani SB,Andriole GL(2005)Three-dimensional(3D)vision:does it improve laparoscopic skills?an assessment of a3D head-mounted visualization system.Rev Urol7:211–21425.Cheah WK,Lenzi JE,So J,Dong F,Kum CK,Goh P(2001)Evaluation of a head-mounted display(HMD)in the performance of a simulated laparoscopic task.Surg Endosc15:990–991 26.Bishop PO,Kozak W,Vakkur GJ(1962)Some quantitativeaspects of the cat’s eye:axis and plane of reference,visualfield co-ordinates and optics.J Physiol163:466–502。

相关文档
最新文档