2018年高考数学 复习专题测试课件:第五章 平面向量 §5.3 平面向量的平行与垂直及平面向量的应用 [恢复]

合集下载

2018高考数学大一轮复习 第五章 平面向量教师用书 理

2018高考数学大一轮复习 第五章 平面向量教师用书 理

第五章⎪⎪⎪ 平面向量第一节平面向量的概念及线性运算突破点(一) 平面向量的有关概念[典例] (1)设a ,b 都是非零向量,下列四个条件中,使|a |=b |b |成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |(2)设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3[解析] (1)因为向量a |a |的方向与向量a 相同,向量b |b |的方向与向量b 相同,且a|a |=b |b |,所以向量a 与向量b 方向相同,故可排除选项A ,B ,D.当a =2b 时,a |a |=2b |2b |=b|b |,故a =2b 是a |a |=b|b |成立的充分条件. (2)向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.[答案] (1)C (2)D [易错提醒](1)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小; (2)大小与方向是向量的两个要素,分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上.能力练通 抓应用体验的“得”与“失” 1.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =DC 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )A .②③B .①②C .③④D .①④解析:选A ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB =DC ,∴|AB |=|DC |且AB ∥DC .又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB ∥DC 且|AB |=|DC |,因此,AB =DC .③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.故选A.2.给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③λa =0(λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的个数为( )A .1B .2C .3D .4解析:选C ①错误,两向量共线要看其方向而不是起点或终点.②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a =0时,不论λ为何值,λa =0.④错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.错误的命题有3个,故选C.3.如图,设O 是正六边形ABCDEF 的中心,则图中与OC 相等的向量有________.答案:AB ,ED ,FO4.如图,△ABC 和△A ′B ′C ′是在各边的13处相交的两个全等的等边三角形,设△ABC的边长为a ,图中列出了长度均为a3的若干个向量,则(1)与向量GH 相等的向量有________;(2)与向量GH 共线,且模相等的向量有________; (3)与向量EA 共线,且模相等的向量有________. 解析:向量相等⇔向量方向相同且模相等. 向量共线⇔表示有向线段所在的直线平行或重合.答案:(1) LB ',HC (2)EC ',LE ,LB ',GB ,HC (3)EF ,FB ,HA ',HK ,KB '突破点(二) 平面向量的线性运算1.向量的线性运算2.平面向量共线定理向量b 与a (a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa .[例1] (1)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD =( ) A.13b +23c B.53c -23b C.23b -13c D.23b +13c (2)在△ABC 中,N 是AC 边上一点且AN =12NC ,P 是BN 上一点,若AP =m AB +29AC ,则实数m 的值是________.[解析] (1)由题可知BC =AC -AB =b -c ,∵BD =2DC ,∴BD =23BC =23(b-c ),则AD =AB +BD =c +23(b -c )=23b +13c ,故选D.(2)如图,因为AN =12NC ,所以AN =13AC ,所以AP =m AB +29AC =m AB +23AN .因为B ,P ,N 三点共线,所以m +23=1,则m =13.[答案] (1)D (2)13[方法技巧]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较,观察可知所求.平面向量共线定理的应用[例2] 设两个非零向量a 和b 不共线.(1)若AB =a +b ,BC =2a +8b ,CD =3(a -b ).求证:A ,B ,D 三点共线. (2)试确定实数k ,使ka +b 和a +kb 共线.[解] (1)证明:因为AB =a +b ,BC =2a +8b ,CD =3(a -b ),所以BD =BC +CD =2a +8b +3(a -b )=5(a +b )=5AB ,所以AB ,BD 共线. 又AB 与BD 有公共点B , 所以A ,B ,D 三点共线. (2)因为ka +b 与a +kb 共线,所以存在实数λ,使ka +b =λ(a +kb ),即⎩⎪⎨⎪⎧k =λ,1=λk ,解得k =±1.即k =1或-1时,ka +b 与a +kb 共线. [方法技巧]平面向量共线定理的三个应用(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB =λAC ,AB 与AC 有公共点A ,则A ,B ,C 三点共线.(3)求参数的值:利用向量共线定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.能力练通 抓应用体验的“得”与“失”1.[考点一]如图所示,下列结论正确的是( )①PQ =32a +32b ;②PT =32a -b ;③PS =32a -12b ;④PR =32a +b . A .①② B .③④ C .①③D .②④解析:选C 根据向量的加法法则,得PQ =32a +32b ,故①正确;根据向量的减法法则,得PT =32a -32b ,故②错误;PS =PQ +QS =32a +32b -2b =32a -12b ,故③正确;PR =PQ+QR =32a +32b -b =32a +12b ,故④错误.故选C.2.[考点二]已知a ,b 是不共线的向量,AB =λa +b ,AC =a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:选D ∵A ,B ,C 三点共线,∴AB ∥AC ,设AB =m AC (m ≠0),则λa +b=m (a +μb ),∴⎩⎪⎨⎪⎧λ=m ,1=m μ, ∴λμ=1,故选D.3.[考点一]在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB ,BC 分别为a ,b ,则AH =( )A.25a -45b B.25a +45b C .-25a +45bD .-25a -45b解析:选B 如图,过点F 作BC 的平行线交DE 于G ,则G 是DE的中点,且GF =12EC =14BC ,∴GF =14AD ,则△AHD ∽△FHG ,从而HF =14AH ,∴AH =45AF ,AF =AD +DF =b +12a ,∴AH =45⎝ ⎛⎭⎪⎫b +12a =25a +45b ,故选B.4.[考点二]已知a ,b 是两个不共线的非零向量,且a 与b 起点相同.若a ,tb ,13(a +b )三向量的终点在同一直线上,则t =________.解析:∵a ,tb ,13(a +b )三向量的终点在同一条直线上,且a 与b 起点相同.∴a -tb与a -13(a +b )共线,即a -tb 与23a -13b 共线,∴存在实数λ,使a -tb =λ⎝ ⎛⎭⎪⎫23a -13b ,∴⎩⎪⎨⎪⎧1=23λ,t =13λ,解得λ=32,t =12,若a ,tb ,13(a +b )三向量的终点在同一条直线上,则t=12. 答案:12[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC =3CD ,则( ) A .AD =-13AB +43ACB .AD =13AB -43ACC .AD =43AB +13ACD .AD =43AB -13AC解析:选A AD =AC +CD =AC +13BC =AC +13(AC -AB )=43AC -13AB=-13AB +43AC ,故选A.2.(2014·新课标全国卷Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB +FC =( )A .AD B.12AD C .BC D.12BC解析:选A EB +FC =12(AB +CB )+12(AC +BC )=12(AB +AC )=AD ,故选A. 3.(2015·新课标全国卷Ⅱ)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解析:∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ),即λa +b =ta +2tb ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.答案:12[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.(2017·杭州模拟)在△ABC 中,已知M 是BC 中点,设CB =a ,CA =b ,则AM =( )A.12a -b B.12a +b C .a -12bD .a +12b解析:选A AM =AC +CM =-CA +12CB =-b +12a ,故选A.2.已知O ,A ,B ,C 为同一平面内的四个点,若2AC +CB =0,则向量OC 等于( ) A.23 OA -13OB B .-13OA +23OBC .2OA -OBD .-OA +2OB解析:选C 因为AC =OC -OA ,CB =OB -OC ,所以2AC +CB =2(OC -OA )+(OB -OC )=OC -2OA +OB =0,所以OC =2OA -OB .3.在四边形ABCD 中,AB =a +2b ,BC =-4a -b ,CD =-5a -3b ,则四边形ABCD 的形状是( )A .矩形B .平行四边形C .梯形D .以上都不对解析:选C 由已知得,AD =AB +BC +CD =a +2b -4a -b -5a -3b =-8a -2b=2(-4a -b )=2BC ,故AD ∥BC .又因为AB 与CD 不平行,所以四边形ABCD 是梯形.4.已知向量a ,b ,c 中任意两个都不共线,但a +b 与c 共线,且b +c 与a 共线,则向量a +b +c =( )A .aB .bC .cD .0解析:选D 依题意,设a +b =mc ,b +c =na ,则有(a +b )-(b +c )=mc -na ,即a -c =mc -na .又a 与c 不共线,于是有m =-1,n =-1,a +b =-c ,a +b +c =0.5.已知△ABC 和点M 满足MA +MB +MC =0.若存在实数m 使得AB +AC =m AM 成立,则m =________.解析:由MA +MB +MC =0知,点M 为△ABC 的重心,设点D 为底边BC 的中点,则AM =23AD =23×12(AB +AC )=13(AB +AC ),所以AB +AC =3AM ,故m =3.答案:3[练常考题点——检验高考能力]一、选择题1.设M 是△ABC 所在平面上的一点,且MB +32MA +32MC =0,D 是AC 的中点,则|MD ||BM |的值为( )A.13B.12C .1D .2解析:选A ∵D 是AC 的中点,如图,延长MD 至E ,使得DE =MD ,∴四边形MAEC 为平行四边形,∴MD =12ME =12(MA +MC ),∴MA +MC =2MD .∵MB +32MA +32MC =0,∴MB =-32(MA+MC )=-3MD ,∴BM =3MD ,∴|MD ||BM |=|MD ||3MD |=13,故选A.2.在△ABC 中,BD =3DC ,若AD =λ1AB +λ2AC ,则λ1λ2的值为( )A.116B.316C.12D.109解析:选 B 由题意得,AD =AB +BD =AB +34BC =AB +34(AC -AB )=14AB +34AC ,∴λ1=14,λ2=34,∴λ1λ2=316.3.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC =2BD , CE =2EA ,AF =2FB ,则AD +BE +CF 与BC ( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD =AB +BD =AB +13BC ,BE =BA +AE =BA +13AC ,CF =CB +BF =CB +13BA ,因此AD +BE +CF =CB +13(BC +AC -AB )=CB +23BC =-13BC ,故AD +BE +CF 与BC 反向平行.4.已知点O 为△ABC 外接圆的圆心,且OA +OB +CO =0,则△ABC 的内角A 等于( )A .30°B .45°C .60°D .90°解析:选A 由OA +OB +CO =0,得OA +OB =OC ,由O为△ABC 外接圆的圆心,可得|OA |=|OB |=|OC |.设OC 与AB 交于点D ,如图,由OA +OB =OC 可知D 为AB 的中点,所以OC =2OD ,D 为OC 的中点.又由|OA |=|OB |可知OD ⊥AB ,即OC ⊥AB ,所以四边形OACB 为菱形,所以△OAC 为等边三角形,即∠CAO =60°,故A =30°.5.已知点G 是△ABC 的重心,过点G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM =x AB ,AN =y AC ,则xyx +y的值为( ) A .3 B.13 C .2 D.12解析:选B 由已知得M ,G ,N 三点共线,所以AG =λAM +(1-λ)AN =λx AB +(1-λ)y AC .∵点G 是△ABC 的重心,∴AG =23×12(AB +AC )=13(AB +AC ),∴⎩⎪⎨⎪⎧λx =13,-λy =13,即⎩⎪⎨⎪⎧λ=13x,1-λ=13y,得13x +13y =1,即1x +1y =3,通分得x +y xy=3,∴xy x +y =13. 6.若点M 是△ABC 所在平面内的一点,且满足5AM =AB +3AC ,则△ABM 与△ABC的面积的比值为( )A.15B.25C.35D.45解析:选C 设AB 的中点为D ,如图,连接MD ,MC ,由5AM =AB+3AC ,得5AM =2AD +3AC ①,即AM =25AD +35AC ,即25+35=1,故C ,M ,D 三点共线,又AM =AD +DM ②,①②联立,得5DM =3DC ,即在△ABM 与△ABC 中,边AB 上的高的比值为35,所以△ABM 与△ABC的面积的比值为35.二、填空题7.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC =a ,CA =b ,给出下列命题:①AD =12a -b ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确命题的个数为________.解析:由BC =a ,CA =b 可得AD =12CB +AC =-12a -b ,BE =BC +12CA =a+12b ,CF =12(CB +CA )=12(-a +b )=-12a +12b ,AD +BE +CF =-12a -b +a +12b -12a +12b =0,所以①错,②③④正确.所以正确命题的个数为3. 答案:38.若|AB |=|AC |=|AB -AC |=2,则|AB +AC |=________.解析:∵|AB |=|AC |=|AB -AC |=2,∴△ABC 是边长为2的正三角形,∴|AB +AC |为△ABC 的边BC 上的高的2倍,∴|AB +AC |=2×2sin π3=2 3.答案:2 39.若点O 是△ABC 所在平面内的一点,且满足|OB -OC |=|OB +OC -2OA |,则△ABC 的形状为________.解析:因为OB +OC -2OA =OB -OA +OC -OA =AB +AC ,OB -OC =CB =AB -AC ,所以|AB +AC |=|AB -AC |,即AB ·AC =0,故AB ⊥AC ,△ABC 为直角三角形.答案:直角三角形10.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE =AD +μAB ,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB =2DC .∵点E 在线段CD 上,∴DE =λDC (0≤λ≤1).∵AE =AD +DE ,又AE =AD +μAB =AD +2μDC =AD +2μλDE ,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎢⎡⎦⎥⎤0,12.答案:⎣⎢⎡⎦⎥⎤0,12三、解答题11.如图,以向量OA =a ,OB =b 为邻边作▱OADB ,BM =13BC , CN =13CD ,用a ,b 表示OM , ON ,MN .解:∵BA =OA -OB =a -b ,BM =16BA =16a -16b ,∴OM =OB +BM =b +⎝ ⎛⎭⎪⎫16a -16b =16a +56b .又∵OD =a +b ,∴ON =OC +13CD =12OD +16OD=23OD =23a +23b , ∴MN =ON -OM =23a +23b -16a -56b =12a -16b .综上,OM =16a +56b ,ON =23a +23b ,MN =12a -16b .12.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE =23AD ,AB =a ,AC =b . (1)用a ,b 表示向量AD ,AE ,AF ,BE ,BF ; (2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD =12AG ,连接BG ,CG ,得到▱ABGC ,如图, 所以AG =AB +AC =a +b ,AD =12AG =12(a +b ), AE =23AD =13(a +b ), AF =12AC =12b ,BE =AE -AB =13(a +b )-a =13(b -2a ), BF =AF -AB =12b -a =12(b -2a ).(2)证明:由(1)可知BE =23BF ,又因为BE ,BF 有公共点B , 所以B ,E ,F 三点共线. 第二节平面向量基本定理及坐标表示突破点(一) 平面向量基本定理平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.本节主要包括2个知识点: 1.平面向量基本定理; 2.平面向量的坐标表示.[例1] 如果e 1,e 2是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .e 1与e 1+e 2B .e 1-2e 2与e 1+2e 2C .e 1+e 2与e 1-e 2D .e 1+3e 2与6e 2+2e 1[解析] 选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧1=λ,1=0无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧ 1=λ,-2=2λ无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧1=λ,1=-λ无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量,不能作为平面内所有向量的一组基底.[答案] D[易错提醒]某平面内所有向量的一组基底必须是两个不共线的向量,不能含有零向量.平面向量基本定理的应用[例2] (2016·江西南昌二模)如图,在△ABC 中,设AB =a ,AC =b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP=( )A.12a +12b B.13a +23b C.27a +47b D.47a +27b [解析] 如图,连接BP ,则AP =AC +CP =b +PR ,①AP =AB +BP =a +RP -RB ,②①+②,得2AP =a +b -RB ,③又RB =12QB =12(AB -AQ )=12⎝ ⎛⎭⎪⎫a -12 AP ,④将④代入③,得2AP =a +b -12⎝ ⎛⎭⎪⎫a -12 AP ,解得AP =27a +47b .[答案] C [方法技巧]平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.能力练通 抓应用体验的“得”与“失”1.[考点二](2017·潍坊模拟)在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB =a ,AC =b ,则PQ =( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选 A 由题意知PQ =PB +BQ =23AB +13BC =23AB +13(AC -AB )=13AB +13AC =13a +13b ,故选A.2.[考点一](2016·泉州调研)若向量a ,b 不共线,则下列各组向量中,可以作为一组基底的是( )A .a -2b 与-a +2bB .3a -5b 与6a -10bC .a -2b 与5a +7bD .2a -3b 与12a -34b解析:选C 不共线的两个向量可以作为一组基底.因为a -2b 与5a +7b 不共线,故a -2b 与5a +7b 可以作为一组基底.3.[考点二]如图,在△OAB 中,P 为线段AB 上的一点,OP =x OA+y OB ,且BP =2PA ,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP =OB +BP ,又BP =2PA ,所以OP =OB +23BA =OB+23(OA -OB )=23OA +13OB ,所以x =23,y =13. 4.[考点二](2017·绵阳诊断)在△ABC 中,AN =12AC ,P 是BN 上一点,若AP =m AB+38AC ,则实数m 的值为________. 解析:∵B ,P ,N 三点共线,∴AP =t AB +(1-t )AN =t AB +12(1-t )AC ,又∵AP =m AB +38AC ,∴⎩⎪⎨⎪⎧m =t ,12-t =38,解得m =t =14.答案:14突破点(二) 平面向量的坐标表示1.平面向量的坐标运算(1)向量加法、减法、数乘的坐标运算及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则:a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法若向量的起点是坐标原点,则终点坐标即为向量的坐标.一般地,设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1).2.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.平面向量的坐标运算[例1] 已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c ,且CM =3c ,CN =-2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN 的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.即所求实数m 的值为-1,n 的值为-1. (3)设O 为坐标原点, ∵CM =OM -OC =3c ,∴OM =3c +OC =(3,24)+(-3,-4)=(0,20), 即M (0,20).又∵CN =ON -OC =-2b ,∴ON =-2b +OC =(12,6)+(-3,-4)=(9,2), 即N (9,2).∴MN =(9,-18). [方法技巧]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.平面向量共线的坐标表示[例2] 已知a =(1,0),b =(2,1).(1)当k 为何值时,ka -b 与a +2b 共线;(2)若AB =2a +3b ,BC =a +mb ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1), ∴ka -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵ka -b 与a +2b 共线,∴2(k -2)-(-1)×5=0, ∴k =-12.(2)AB =2a +3b =2(1,0)+3(2,1)=(8,3),BC =a +mb =(1,0)+m (2,1)=(2m +1,m ).∵A ,B ,C 三点共线,∴AB ∥BC ,∴8m -3(2m +1)=0, ∴m =32.[方法技巧]向量共线的坐标表示中的乘积式和比例式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,这是代数运算,用它解决平面向量共线问题的优点在于不需要引入参数“λ”,从而减少了未知数的个数,而且它使问题的解决具有代数化的特点和程序化的特征.(2)当x 2y 2≠0时,a ∥b ⇔x 1x 2=y 1y 2,即两个向量的相应坐标成比例,这种形式不易出现搭配错误.(3)公式x 1y 2-x 2y 1=0无条件x 2y 2≠0的限制,便于记忆;公式x 1x 2=y 1y 2有条件x 2y 2≠0的限制,但不易出错.所以我们可以记比例式,但在解题时改写成乘积的形式.能力练通 抓应用体验的“得”与“失”1.[考点一]若向量a =(2,1),b =(-1,2),c =⎝ ⎛⎭⎪⎫0,52,则c 可用向量a ,b 表示为( )A.12a +b B.-12a -bC.32a +12b D.32a -12b解析:选 A 设c =xa +yb ,则⎝ ⎛⎭⎪⎫0,52=(2x -y ,x +2y ),所以⎩⎪⎨⎪⎧2x -y =0,x +2y =52,解得⎩⎪⎨⎪⎧x =12,y =1,则c =12a +b .2.[考点一]已知点M (5,-6)和向量a =(1,-2),若MN =-3a ,则点N 的坐标为( ) A .(2,0) B .(-3,6) C .(6,2) D .(-2,0) 解析:选A MN =-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN =(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧x -5=-3,y +6=6,解得⎩⎪⎨⎪⎧x =2,y =0,即N (2,0).3.[考点二]已知向量OA =(k,12),OB =(4,5),OC =(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23 B.43 C.12 D.13解析:选A AB =OB -OA =(4-k ,-7),AC =OC -OA =(-2k ,-2).∵A ,B ,C 三点共线,∴AB ,AC 共线,∴-2×(4-k )=-7×(-2k ),解得k =-23.4.[考点二]已知梯形ABCD ,其中AB ∥DC ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥DC ,∴DC =2AB .设点D 的坐标为(x ,y ),则DC =(4-x ,2-y ),AB =(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).答案:(2,4)5.[考点二]已知OA =a ,OB =b ,OC =c ,OD =d , OE =e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),那么t 为何值时,C ,D ,E 三点共线?解:由题设知,CD =OD -OC =d -c =2b -3a ,CE =OE -OC =e -c =t (a +b )-3a =(t -3)a +tb .C ,D ,E 三点共线的充要条件是存在实数k ,使得CE =k CD ,即(t -3)a +tb =-3ka +2kb , 整理得(t -3+3k )a =(2k -t )b . 若a ,b 共线,则t 可为任意实数;若a ,b 不共线,则有⎩⎪⎨⎪⎧t -3+3k =0,2k -t =0,解得t =65.综上,可知a ,b 共线时,t 可为任意实数;a ,b 不共线时,t =65.[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)解析:选A 设C (x ,y ),则AC=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y -1=-3,解得⎩⎪⎨⎪⎧x =-4,y =-2,从而BC =(-4,-2)-(3,2)=(-7,-4).故选A.2.(2016·全国甲卷)已知向量a =(m,4),b =(3,-2),且a∥b ,则m =________. 解析:∵a =(m,4),b =(3,-2),a∥b ,∴-2m -4×3=0.∴m =-6. 答案:-6[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若向量AB =(2,4),AC =(1,3),则BC =( ) A .(1,1) B .(-1,-1) C .(3,7)D .(-3,-7)解析:选B 由向量的三角形法则,BC =AC -AB =(1,3)-(2,4)=(-1,-1).故选B.2.(2017·丰台期末)已知向量a =(3,-4),b =(x ,y ),若a ∥b ,则( ) A .3x -4y =0 B .3x +4y =0 C .4x +3y =0D .4x -3y =0解析:选C 由平面向量共线基本定理可得3y +4x =0,故选C.3.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).4.若AC 为平行四边形ABCD 的一条对角线,AB =(3,5),AC =(2,4),则AD =( ) A .(-1,-1) B .(5,9) C .(1,1)D .(3,5)解析:选A 由题意可得AD =BC =AC -AB =(2,4)-(3,5)=(-1,-1). 5.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 解析:AB =(a -1,3),AC =(-3,4),据题意知AB ∥AC ,∴4(a -1)=3×(-3),即4a =-5,∴a =-54.答案:-54[练常考题点——检验高考能力]一、选择题1.已知平面向量a =(1,-2),b =(2,m ),若a ∥b ,则3a +2b =( ) A .(7,2) B .(7,-14) C .(7,-4) D .(7,-8)解析:选B ∵a ∥b ,∴m +4=0,∴m =-4,∴b =(2,-4),∴3a +2b =3(1,-2)+2(2,-4)=(7,-14).2.设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2D .0解析:选B 因为a 与b 方向相反,所以b =ma ,m <0,则有(4,x )=m (x,1),∴⎩⎪⎨⎪⎧4=mx ,x =m ,解得m =±2.又m <0,∴m =-2,x =m =-2.3.已知在平行四边形ABCD 中,AD =(2,8),AB =(-3,4),对角线AC 与BD 相交于点M ,则AM =( )A.⎝ ⎛⎭⎪⎫-12,-6B.⎝ ⎛⎭⎪⎫-12,6C.⎝ ⎛⎭⎪⎫12,-6 D.⎝ ⎛⎭⎪⎫12,6 解析:选B 因为在平行四边形ABCD 中,有AC =AB +AD ,AM =12AC ,所以AM=12(AB +AD )=12[(-3,4)+(2,8)]=12×(-1,12)=⎝ ⎛⎭⎪⎫-12,6,故选B.4.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d =( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析:选D 设d =(x ,y ),由题意知4a =4(1,-3)=(4,-12),4b -2c =4(-2,4)-2(-1,-2)=(-6,20),2(a -c )=2[(1,-3)-(-1,-2)]=(4,-2),又4a +(4b -2c )+2(a -c )+d =0,所以(4,-12)+(-6,20)+(4,-2)+(x ,y )=(0,0),解得x =-2,y =-6,所以d =(-2,-6).5.已知平行四边形ABCD 中,AD =(3,7),AB =(-2,3),对角线AC 与BD 交于点O ,则CO 的坐标为( )A.⎝ ⎛⎭⎪⎫-12,5B.⎝ ⎛⎭⎪⎫12,5C.⎝ ⎛⎭⎪⎫12,-5 D.⎝ ⎛⎭⎪⎫-12,-5 解析:选D AC =AB +AD =(-2,3)+(3,7)=(1,10).∴OC =12AC =⎝ ⎛⎭⎪⎫12,5.∴CO =⎝ ⎛⎭⎪⎫-12,-5.6.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC |=2,若OC =λOA +μOB ,则λ+μ=( )A .2 2 B. 2 C .2D .4 2解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC =λOA +μOB ,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.二、填空题7.在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若 PA =(4,3),PQ =(1,5),则BC =________.解析:AQ =PQ -PA =(1,5)-(4,3)=(-3,2),∴AC =2AQ =2(-3,2)=(-6,4).PC =PA +AC =(4,3)+(-6,4)=(-2,7),∴BC =3PC =3(-2,7)=(-6,21).答案:(-6,21)8.已知向量AC ,AD 和AB 在正方形网格中的位置如图所示,若AC =λAB +μAD ,则λμ=________.解析:建立如图所示的平面直角坐标系xAy ,则AC =(2,-2),AB =(1,2),AD =(1,0),由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.答案:-39.P ={a |a =(-1,1)+m (1,2),m ∈R},Q ={b |b =(1,-2)+n (2,3),n ∈R}是两个向量集合,则P ∩Q 等于________.解析:P 中,a =(-1+m,1+2m ),Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧-1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23).答案:{(-13,-23)}10.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB =λAM +μAN ,则λ+μ=________.解析:由AB =λAM +μAN ,得AB =λ·12(AD +AC )+μ·12(AC +AB ),则⎝⎛⎭⎪⎫μ2-1AB +λ2AD +λ2+μ2AC =0,得⎝ ⎛⎭⎪⎫μ2-1AB +λ2AD +⎝ ⎛⎭⎪⎫λ2+μ2⎝ ⎛⎭⎪⎫AD +12 AD =0,得⎝ ⎛⎭⎪⎫14λ+34μ-1AB +⎝ ⎛⎭⎪⎫λ+μ2AD =0.又因为AB ,AD 不共线,所以由平面向量基本定理得⎩⎪⎨⎪⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎪⎨⎪⎧λ=-45,μ=85.所以λ+μ=45. 答案:45三、解答题11.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA =a ,BC =b ,试用a ,b 为基底表示向量EF ,DF ,CD .解:EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a , CD =CF +FD =-12b -⎝ ⎛⎭⎪⎫16b -a =a -23b .12.给定两个长度为1的平面向量OA 和OB ,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC =x OA +y OB ,其中x ,y ∈R ,求x +y 的最大值.解:以O 为坐标原点,OA 所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B -12,32,设∠AOC =αα∈0,2π3,则C (cos α,sin α),由OC =x OA +y OB ,得⎩⎪⎨⎪⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin ⎝ ⎛⎭⎪⎫α+π6,又α∈⎣⎢⎡⎦⎥⎤0,2π3,则α+π6∈⎣⎢⎡⎦⎥⎤π6,5π6.所以当α+π6=π2,即α=π3时,x +y 取得最大值2.第三节平面向量的数量积及其应用突破点(一) 平面向量的数量积1.向量的夹角(1)定义:已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB 就是向量a 与b 的夹角.(2)范围:设θ是向量a 与b 的夹角,则0°≤θ≤180°.(3)共线与垂直:若θ=0°,则a 与b 同向;若θ=180°,则a 与b 反向;若θ=90°,则a 与b 垂直.2.平面向量的数量积(1)定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. (3)坐标表示:若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律).1.利用坐标计算数量积的步骤第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用;第二步,根据数量积的坐标公式进行运算即可.本节主要包括3个知识点: 1.平面向量的数量积; 2.平面向量数量积的应用;3.平面向量与其他知识的综合问题.2.根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解.[典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12C.32D.52(2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16DC ,则AE ·AF 的值为________.[解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =⎝ ⎛⎭⎪⎫-12,1,所以a ·b=-1×⎝ ⎛⎭⎪⎫-12+2×1=52.(2)取BA ,BC 为一组基底,则AE =BE -BA =23BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =⎝ ⎛⎭⎪⎫23 BC -BA ·⎝ ⎛⎭⎪⎫-712 BA +BC =712|BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918.[答案] (1)D (2)2918[易错提醒](1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”.能力练通 抓应用体验的“得”与“失”1.已知AB =(2,1),点C (-1,0),D (4,5),则向量AB 在CD 方向上的投影为( ) A .-322B .-3 5 C.322D .3 5解析:选C 因为点C (-1,0),D (4,5),所以CD =(5,5),又AB =(2,1),所以向量AB 在CD 方向上的投影为|AB |cos 〈AB ,CD 〉=AB ·CD |CD |=1552=322.2.在边长为1的等边△ABC 中,设BC =a ,CA =b ,AB =c ,则a ·b +b ·c +c ·a =( )A .-32B .0 C.32D .3解析:选 A 依题意有a ·b +b ·c +c ·a =1×1×cos 120°+1×1×cos 120°+1×1×cos 120°=⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12=-32. 3.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD ·CD =( ) A .-32a 2B .-34a 2C.34a 2 D.32a 2 解析:选 D 如图所示,∵BD =BA +BC ,CD =BA ,∴BD ·CD =(BA +BC )·BA =BA 2+BC ·BA =a 2+a ·a cos60°=32a 2.故选D.4.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________. 解析:因为a =(-2,-6),所以|a |=-2+-2=210,又|b|=10,向量a 与b 的夹角为60°,所以a ·b =|a||b|cos 60°=210×10×12=10.答案:105.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB =4AC ,则OC ·(OB -OA )=________.解析:由已知得|AB |=2,|AC |=24, 则OC ·(OB -OA )=(OA +AC )·AB =OA ·AB +AC ·AB =1×2cos 3π4+24×2=-12.答案:-12突破点(二) 平面向量数量积的应用平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.1.第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC(2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 D.152[解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D.(2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0. ∵a =(k,3),b =(1,4),c =(2,1), ∴2a -3b =(2k -3,-6).∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0. ∴k =3.[答案] (1)D (2)C [易错提醒]x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.平面向量模的相关问题(1)a 2=a ·a =|a |2; (2)|a ±b |=a ±b2=a 2±2a ·b +b 2.[例2] (1)(2017·衡水模拟)已知|a |=1,|b |=2,a 与b 的夹角为π3,那么|4a -b |=( )A .2B .6C .2 3D .12(2)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.[解析] (1)|4a -b |2=16a 2+b 2-8a ·b =16×1+4-8×1×2×cos π3=12.∴|4a -b |=2 3.(2)∵e 1·e 2=12,∴|e 1||e 2e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°.由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.[答案] (1)C (2)233[方法技巧]求向量模的常用方法(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2. (2)若向量a,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.平面向量的夹角问题求解两个非零向量之间的夹角的步骤第一步 由坐标运算或定义计算出这两个向量的数量积 第二步 分别求出这两个向量的模第三步根据公式cos 〈a ,b 〉=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解出这两个向量夹角的余弦值第四步 根据两个向量夹角的范围是[0,π]及其夹角的余弦值,求出这两个向量的夹角[例3] (1)若非零向量a ,b 满足|a |=22|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π(2)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.[解析] (1)由(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0. 又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a ||b |cos θ-2|b |2=0,∴83|b |2-223|b |2·cos θ-2|b |2=0. ∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)∵a 2=(3e 1-2e 2)2=9+4-2×3×2×13=9,b 2=(3e 1-e 2)2=9+1-2×3×1×13=8,a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8,∴cos β=a ·b |a ||b |=83×22=223. [答案] (1)A (2)223[易错提醒](1)向量a ,b 的夹角为锐角⇔a ·b >0且向量a ,b 不共线. (2)向量a ,b 的夹角为钝角⇔a ·b <0且向量a ,b 不共线.能力练通 抓应用体验的“得”与“失”1.[考点一]若向量a ,b 满足:|a |=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ) A .2 B. 2 C .1 D.22解析:选B 由题意知⎩⎪⎨⎪⎧a +b a =0,a +bb =0,即⎩⎪⎨⎪⎧a 2+b ·a =0,①2a ·b +b 2=0,②将①×2-②得,2a 2-b 2=0,∴b 2=|b |2=2a 2=2|a |2=2,故|b |= 2.2.[考点三]已知|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为( ) A .30° B .60° C .120°D .150°解析:选C 设向量a 与b 的夹角为θ,∵c =a +b ,c ⊥a ,∴c ·a =(a +b )·a =a 2+a ·b =0,∴|a |2=-|a ||b |·cos θ,∴cos θ=-|a |2|a ||b |=-|a ||b |=-12,∴θ=120°.3.[考点二](2016·兰州一模)设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( )A. 5B.10 C .2 5D .10解析:选B ∵a ⊥b ,∴a ·b =0,即x -2=0,解得x =2,∴a +b =(3,-1),于是|a+b |=10,故选B.4.[考点三](2017·湖北八校联考)已知向量a =(3,1),b =(1,3),c =(k ,-2),若(a -c )∥b ,则向量a 与向量c 的夹角的余弦值是( )A.55B.15 C .-55D .-15解析:选A 由已知得a -c =(3-k,3), ∵(a -c )∥b ,∴3(3-k )-3=0,∴k =2,即c =(2,-2),∴cos 〈a ,c 〉=a ·c |a ||c |=3×2+-10×22=55. 5.[考点一]已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量ka -b 垂直,则k =________.解析:∵a 与b 为两个不共线的单位向量, ∴|a |=|b |=1, 又a +b 与ka -b 垂直, ∴(a +b )·(ka -b )=0, 即ka 2+ka ·b -a ·b -b 2=0,∴k -1+ka ·b -a ·b =0,即k -1+k cos θ-cos θ=0(θ为a 与b 的夹角),∴(k -1)(1+cos θ)=0.又a 与b 不共线,∴cos θ≠-1,∴k =1. 答案:16.[考点二](2017·泰安模拟)已知平面向量a ,b 满足|b |=1,且a 与b -a 的夹角为120°,则a 的模的取值范围为________.解析:在△ABC 中,设AB =a ,AC =b ,则b -a =AC -AB =BC ,∵a 与b -a 的夹角为120°,∴B =60°,由正弦定理得1sin 60°=|a |sin C ,∴|a |=sin C sin 60°=233sin C ,∵C ∈⎝ ⎛⎭⎪⎫0,2π3,∴sin C ∈(0,1],∴|a |=⎝⎛⎦⎥⎤0,233. 答案:⎝⎛⎦⎥⎤0,233突破点(三) 平面向量与其他知识的综合问题平面向量集数与形于一体,是沟通代数、几何与三角函数的一种非常重要的工具.在高考中,常将它与三角函数问题、解三角形问题、几何问题等结合起来考查.。

2018版高考数学(理)一轮复习文档第五章平面向量5-4平面向量的综合应用Word版含解析

2018版高考数学(理)一轮复习文档第五章平面向量5-4平面向量的综合应用Word版含解析

1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).3.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为:Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( × )(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) (4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )1.(教材改编)已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62,∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.2.已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4 D .3答案 D解析 在△ABC 中,由余弦定理可得,AB 2+AC 2-2AB ·AC ·cos A =BC 2,又AB →·AC →=|AB →|·|AC →|·cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC→=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.3.(2017·武汉质检)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4, 即x +2y =4.4.(2016·银川模拟)已知向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 答案 4解析 设a 与b 夹角为α, ∵|2a -b |2=4a 2-4a·b +b 2 =8-4|a||b |cos α=8-8cos α, ∵α∈[0,π],∴cos α∈[-1,1], ∴8-8cos α∈[0,16],即|2a -b |2∈[0,16], ∴|2a -b |∈[0,4]. ∴|2a -b |的最大值为4.5.已知一个物体在大小为6 N 的力F 的作用下产生的位移s 的大小为100 m ,且F 与s 的夹角为60°,则力F 所做的功W =________ J. 答案 300解析 W =F ·s =|F ||s |cos 〈F ,s 〉 =6×100×cos 60°=300(J).题型一 向量在平面几何中的应用例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA→+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 答案 (1)12(2)C解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰非等边三角形 D .三边均不相等的三角形(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)AB →|AB →|,AC →|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为(AB →|AB →|+AC →|AC →|)·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|·⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形. (2)以D 为原点,分别以DA ,DC 所在直线为x 轴、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ),P A →=(2,-y ),PB →=(1,a -y ), 则P A →+3PB →=(5,3a -4y ), 即|P A →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|P A →+3PB →|2的最小值为25.故|P A →+3PB →|的最小值为5. 题型二 向量在解析几何中的应用例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx =________________________________________________________________________. 答案 (1)2x +y -3=0 (2)±3解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx=±3.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.(2016·合肥模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →, ∵PO →与PC →共线且方向相反,∴当大小相等时,乘积最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-92.题型三 向量的其他应用 命题点1 向量在不等式中的应用 例3 已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是________. 答案 18解析 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界),观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18.命题点2 向量在解三角形中的应用例4 (2016·合肥模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于( ) A.45 B.34 C.35 D.74答案 C解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴△ABC 最小角为角A , ∴cos A =b 2+c 2-a 22bc=169a 2+259a 2-a 22×43a ×53a =45,∴sin A =35,故选C.命题点3 向量在物理中的应用例5 如图,一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .27B .2 5C .2D .6答案 A解析 如题图所示,由已知得F 1+F 2+F 3=0,则F 3=-(F 1+F 2),即F 23=F 21+F 22+2F 1·F 2=F 21+F 22+2|F 1|·|F 2|·cos 60°=28.故|F 3|=27. 思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.(1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.(2)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 (1)3 (2)3解析 (1)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3. (2)∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3), ∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,即在⎩⎨⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,z max =3.三审图形抓特点典例 (2016·太原一模)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6E 为函数图象的对称中心,C 为图象最低点―――――――――――→作出点C 的对称点MD 、B 两点对称 CD 和MB 对称―――――――――――→CD →在x 轴上的投影是π12BM 在x 轴上的投影OF =π12――――――→A (-π6,0),AF =π4―→T =π―→ω=2――――――――→y =sin (2x +φ)和y =sin 2x 图象比较φ2=π6―→φ=π3解析 由E 为该函数图象的一个对称中心,作点C 的对称点M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →在x 轴上的投影为π12,知OF =π12.又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 A1.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0, 即AC →·(BC →+BA →+CA →)=0, 2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.(2016·山东)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94答案 B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0, 即t m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0, 由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.3.(2016·南宁模拟)已知向量a =(cos α,-2),b =(sin α,1)且a ∥b ,则sin 2α等于( ) A .3B .-3C.45 D .-45答案 D解析 由a ∥b 得cos α+2sin α=0,∴cos α=-2sin α,又sin 2α+cos 2α=1, ∴5sin 2α=1,sin 2α=15,cos 2α=45,sin 2α=2sin αcos α=-cos 2α=-45.4.(2016·武汉模拟)设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m·n =1+cos(A +B ),则C 等于( ) A.π6 B.π3 C.2π3 D.5π6答案 C解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3. 5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 答案 D解析 ∵P A →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴P A →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.*6.若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________. 答案 ⎣⎡⎦⎤π6,5π6解析 如图,向量α与β在单位圆O 内,由于|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,故以向量α,β为两边的三角形的面积为14,故β的终点在如图所示的线段AB 上(α∥AB →,且圆心O 到AB 的距离为12),因此夹角θ的取值范围为⎣⎡⎦⎤π6,5π6.7.在菱形ABCD 中,若AC =4,则CA →·AB →=________. 答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得:a 2=16+a 2-8a cos θ,∴a cos θ=2, ∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.8.已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为______. 答案3解析 ∵|a +b |2-|a -b |2=4a·b =4|a ||b |cos π3=4>0,∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a·b =3, ∴|a -b |= 3.9.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a ·b x 在R 上有极值,则向量a 与b的夹角的范围是__________. 答案 ⎝⎛⎦⎤π3,π解析 设a 与b 的夹角为θ. ∵f (x )=13x 3+12|a |x 2+a ·b x ,∴f ′(x )=x 2+|a |x +a ·b . ∵函数f (x )在R 上有极值,∴方程x 2+|a |x +a ·b =0有两个不同的实数根,即Δ=|a |2-4a ·b >0,∴a ·b <a 24,又∵|a |=2|b |≠0,∴cos θ=a ·b |a ||b |<a 24a 22=12,即cos θ<12,又∵θ∈[0,π],∴θ∈⎝⎛⎦⎤π3,π.*10.已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是________. 答案 6解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1, ∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HF =HE =HC 2-CE 2=16-4=23,sin ∠CHE =CE CH =12,∴cos ∠EHF =cos 2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|·cos ∠EHF =23×23×12=6.11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点, 设A (a,0),Q (0,b )(b >0),则P A →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由P A →·AM →=0,得a (x -a )+3y =0.① 由AM →=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=⎝⎛⎭⎫32x ,32(y -b ), ∴⎩⎨⎧x -a =32x ,y =32y -32b ,∴⎩⎨⎧a =-x 2,b =y3.∴b >0,y >0,把a =-x 2代入①,得-x2⎝⎛⎭⎫x +x 2+3y =0, 整理得y =14x 2(x ≠0).∴动点M 的轨迹方程为y =14x 2(x ≠0).12.已知角A ,B ,C 是△ABC 的内角,a ,b ,c 分别是其所对边长,向量m =(23sin A2,cos 2A 2),n =(cos A2,-2),m ⊥n .(1)求角A 的大小; (2)若a =2,cos B =33,求b 的长. 解 (1)已知m ⊥n ,所以m·n =(23sin A 2,cos 2A 2)·(cos A2,-2)=3sin A -(cos A +1)=0,即3sin A -cos A =1,即sin(A -π6)=12,因为0<A <π,所以-π6<A -π6<5π6.所以A -π6=π6,所以A =π3.(2)在△ABC 中,A =π3,a =2,cos B =33,sin B =1-cos 2B =1-13=63.由正弦定理知a sin A =bsin B ,所以b =a ·sin Bsin A =2×6332=423.*13.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC →-12PQ →)=0.(1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任意一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(2-x )2+(-y )2-14(8-x )2=0,化简得x 216+y 212=1.∴动点P 在椭圆上,其轨迹方程为x 216+y 212=1.(2)∵PE →=PN →+NE →,PF →=PN →+NF →, 且NE →+NF →=0.∴PE →·PF →=PN →2-NE →2=(-x )2+(1-y )2-1 =16(1-y 212)+(y -1)2-1=-13y 2-2y +16=-13(y +3)2+19.∵-23≤y ≤2 3.∴当y =-3时,PE →·PF →的最大值为19, 当y =23时,PE →·PF →的最小值为12-4 3. 综上,PE →·PF →的最大值为19,最小值为12-4 3.。

2018年高考数学课标通用(理科)一轮复习配套课件:第五章 平面向量5-1

2018年高考数学课标通用(理科)一轮复习配套课件:第五章 平面向量5-1

考点 1
平面向量的有关概念
向量的有关概念
方向 的量叫做向量, (1)向量: 既有大小又有________ 向量的大小
模 叫做向量的________ .
(2)零向量:长度为________ 的向量,其方向是任意的. 0
1 个单位 的向量. (3)单位向量:长度等于__________
相反 的非零向量, (4)平行向量: 方向相同或________ 又叫共线向
①若|a|=|b|,则 a=b; → → ②若 A,B,C,D 是不共线的四点,则“AB=DC”是 “四边形 ABCD 为平行四边形”的充要条件; ③若 a=b,b=c,则 a=c; ④若 a∥b,b∥c,则 a∥c. 其中正确命题的序号是( A ) A.②③ B.②④ C.③④ D.②③④
[解析] 一定相同.
[解析]
→ → → 在△CEF 中,有EF=EC+CF.
→ 1→ 因为点 E 为 DC 的中点,所以EC= DC. 2 因为点 F 为 BC 的一个三等分点, → 2→ 所以CF= CB. 3 → 1 → 2 → 1→ 2 → 1→ 2 → 所以EF= DC+ CB= AB+ DA= AB- AD,故选 D. 2 3 2 3 2 3
③正确.∵a=b,∴a,b 的长度相等且方向相同, 又 b=c,∴b,c 的长度相等且方向相同, ∴a,c 的长度相等且方向相同,故 a=c. ④不正确.当 b=0 时,a,c 可能不平行. 综上所述,正确命题的序号是②③.
பைடு நூலகம்
(2)给出下列命题: ①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若 λa=0(λ 为实数),则 λ 必为零; ④已知 λ,μ 为实数,若 λa=μb,则 a 与 b 共线. 其中错误命题的个数为( C ) A.1 C.3 B.2 D.4

2018届高三数学二轮题复习课件:-平面向量

2018届高三数学二轮题复习课件:-平面向量

4.(2017·江苏卷)已知向量 a=(cos x,sin x),b=(3,- 3),x∈[0,π]. (1)若 a∥b,求 x 的值; (2)记 f(x)=a·b,求 f(x)的最大值和最小值以及对应的 x 的值.
解 (1)∵a∥b,∴3sin x=- 3cos x,
∴3sin x+ 3cos x=0,即 sinx+π6=0. ∵0≤x≤π,∴π6≤x+π6≤76π,∴x+π6=π,∴x=56π. (2)f(x)=a·b=3cos x- 3sin x=-2 3sinx-π3. ∵x∈[0,π],∴x-π3∈-π3,23π,∴- 23≤sinx-π3≤1, ∴-2 3≤f(x)≤3,
=-3
2
3,则向量
a,b
π 的夹角为___6_____.
解析 (1)建立如图所示坐标系,则 B1t ,0,C(0, t),A→B=1t ,0,A→C=(0,t),
→→
→ 则AP=
AB →
+4→AC=t1t ,0+4t (0,t)=(1,4).
|AB| |AC|
∴点 P(1,4), 则P→B·P→C=1t -1,-4·(-1,t-4)
【训练 2】 (1)(2015·福建卷)已知A→B⊥A→C,|A→B|=1t ,|A→C|=t,若点 →→
→ AB 4AC → → P 是△ABC 所在平面内的一点,且AP= → + → ,则PB·PC的最
|AB| |AC|
大值等于( A )
A.13
B.15
C.19
D.21
(2)(2017·郴州二模)已知 a,b 均为单位向量,且(2a+b)·(a-2b)
(x2-x1)2+(y2-y1)2.
(3)若 a=(x1,y1),b=(x2,y2),θ 为 a 与 b 的夹角, 则 cos θ=|aa|·|bb|= x21x+1x2y+12 yx122y+2 y22.

高三数学一轮复习基础过关5.3平面向量的数量积PPT课件

高三数学一轮复习基础过关5.3平面向量的数量积PPT课件

5 ,|a|cos
θ
=|a|
ab |a ||b |
2 (4) 3 7 13 65 .
(4)2 72
65 5
2.若|a|=2cos 15°,|b|=4sin 15°,a,b的夹角为
30°,则a·b等于
( B)
A. 3
B. 3
C. 2 3
D. 1
2
2
解析 a b | a || b | cos 30
§5.3 平面向量的数量积
基础知识 自主学习
要点梳理
1.平面向量的数量积 已知两个非零向量a和b,它们的夹角为θ ,则数量 |a |·|b|cos θ 叫做a与b的数量积(或内积),记 作a ·b=|a ||b|·cos θ .
规定:零向量与任一向量的数量积为 0 . 两个非零向量a与b垂直的充要条件是 a ·b=0 ,两非 零向量a与b平行的充要条件是 a ·b=±|a ||b| .
4.一般地,(a·b)c≠(b·c)a即乘法的结合律不成 立.因a·b是一个数量,所以(a·b)c表示一个与c 共线的向量,同理右边(b·c)a表示一个与a共线 的向量,而a与c不一定共线,故一般情况下(a·b)c ≠(b·c)a.
失误与防范
1. 零 向 量 :(1)0 与 实 数 0 的 区 别 , 不 可 写 错 : 0a=0≠0,a+(-a)=0≠0,a·0=0≠0;(2)0的方向是任 意的,并非没有方向,0与任何向量平行,我们只 定义了非零向量的垂直关系.
·sin(
π -θ )=sin
θ cos
2 θ -sin θ
cosθ =0.
∴a⊥b. 2
(2)解 由x⊥y得x·y=0,
即[a+(t2+3)b]·(-ka+tb)=0,

2018版高考数学全国人教B版理大一轮复习课件:第五章

2018版高考数学全国人教B版理大一轮复习课件:第五章

(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的 运算结果是向量.( )
(4)若 a· b>0,则 a 和 b 的夹角为锐角;若 a· b<0,则 a 和 b 的 夹角为钝角.( ) )
(5)a· b=a· c(a≠0),则 b=c.(
解析 (1)两个向量夹角的范围是[0,π]. (4)若a· b>0,a和b的夹角可能为0;若a· b<0,a和b的夹角可能为π. (5)由a· b=a· c(a≠0)得|a||b|· cos〈a,b〉=|a||c|· cos〈a,c〉,所以 向量b和c不一定相等. 答案 (1)× (2)√ (3)√ (4)× (5)×
2.向量在轴上的正射影
已知向量 a 和轴 l(如图),作 =a,过点 O,A 分别作轴 l 的垂线,垂足分别为 O1,A1,则________叫做向量 a 在轴 射影 ,该射影在轴 l 上的坐标,称作 a l 上的正射影(简称_____) 数量 或在轴 l 的方向上的______ 数量 . 在轴 l 上的_____ =a 在轴 l 上正射影的坐标记作 al,向量 a 的方向与轴 l 的正向所成的角为 θ,则由三角函数中的余弦定义有 al= |a|cos θ __________ .
第3讲
平面向量的数量积及其应用
最新考纲
1.理解平面向量数量积的含义及其物理意义;
2.了解平面向量的数量积与向量投影的关系; 3.掌握数量
积的坐标表达式,会进行平面向量数量积的运算; 4.能运 用数量积表示两个向量的夹角,会用数量积判断两个平面 向量的垂直关系.5.会用向量的方法解决某些简单的平面几 何问题;6.会用向量方法解决简单的力学问题与其他一些 实际问题.
2.(2015· 全国Ⅱ卷)向量a=(1,-1),b=(-1,2),则(2a+b)· a等 于( A.-1 解析 ) B.0 C.1 D.2

【高考数学】2018最新高三数学课标一轮复习课件:5.4 平面向量的应用(专题拔高配套PPT课件)


第五章
知识梳理 双击自测
5.4 平面向量的应用
考情概览 知识梳理 核心考点 学科素养
-3-
1.向量在平面几何中的应用
问题类型 线平行、点共 线等问题 垂直问题 夹角问题 长度问题 所用知识 共线向 量定理 数量积的 运算性质 数量积 的定义 数量积 的定义 公式表示 a∥b⇔a=λb⇔x1y2-x2y1=0 , 其中 a=(x1,y1),b=(x2,y2) a⊥b⇔a· b=0⇔x1x2+y1y2=0 , a=(x1,y1),b=(x2,y2),其中 a,b 为非零 向量 cos θ=
关闭
由 2������������ + ������������ + ������������ =0, 得������������ + ������������ =0, 所以 BC 为圆 O 的直径. π 又|������������|=|������������|=1, 所以在 Rt△ABC 中, AB⊥AC, ∠ACB= .故������������ ·������������ = 3 3
解析 答案
第五章
知识梳理 双击自测
5.4 平面向量的应用
考情概览 知识梳理 核心考点 学科素养
-7-
3.若△ABC 外接圆的半径为 1,圆心为 O,且 2������������ + ������������ + ������������=0,|������������|=|������������|,则������������ ·������������= .
第五章
知识梳理 双击自测
5.4 平面向量的应用
考情概览 知识梳理 核心考点 学科素养
-5-
1.在四边形 ABCD 中,������������=(2,4),������������=(-6,3),则该四边形的面积为 ( ) A.3 5 B.2 5 C.5 D.15

2018全国卷高考复习平面向量(知识总结+题型)

第一部分平面向量的概念及线性运算向量a( a z 0)与b共线的充要条件是存在唯一一个实数入,使得bi a.【基础练习】1. 判断正误(在括号内打或“X”)⑴零向量与任意向量平行.()(2)若a// b, b// c,贝U a// c.()⑶向量云B与向量6D是共线向量,贝y A B, C, D四点在一条直线上.()(4)当两个非零向量a, b共线时,一定有b=入a,反之成立.()⑸在厶ABC中, D是BC中点,则A D= 2(心A B.()2. 给出下列命题:①零向量的长度为零,方向是任意的;②若③向量ABW BA相等.则所有正确命题的序号是()A.①B.③C.①③D.①②3.(2017•枣庄模拟)设D ABC所在平面内一点,K D= —4A C若目C= X D C X€ R), 则X =()A.2B.3C. —2D. —34.(2015 •全国n卷)设向量a, b不平行,向量入a+ b与a+ 2b平行,则实数X =5.(必修4P92A12改编)已知?ABCD勺对角线AC和BD相交于Q且OA= a,O B= b,则张 _____ BC= ______ (用a, b 表示).1 26.(2017 •嘉兴七校联考)设D, E分别是△ ABC的边AB BC上的点,AD= -AB BE=§BC若DE= 入l AB+ 入2AC 入 1 , 入2为实数),贝V 入 1 = _____________ , 入2= _______________ .考点一平面向量的概念【例1】下列命题中,不正确的是 _________ (填序号).①若I a| = |b| ,则a= b;②若A, B, C, D是不共线的四点,贝厂’AB=承”是“四边形ABCD为平行四边形”的充要条件;③若a= b, b= c,贝V a= c.【训练1】下列命题中,正确的是 _________ (填序号).①有向线段就是向量,向量就是有向线段;②向量a与向量b平行,则a与b的方向相同或相反;③两个向量不能比较大小,但它们的模能比较大小解析①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a与b中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;a, b都是单位向量,则a= b;考点三共线向量定理及其应用【例3】 设两个非零向量a 与b 不共线.(1)若 AB= a + b , BC= 2a + 8b , CD= 3( a — b ).求证:A, B , ⑵ 试确定实数k ,使ka + b 和a + kb 共线.【训练 3】已知向量 AB= a + 3b , BC= 5a + 3b , CD=- 3a + 3b ,则( )A.AB, C 三点共线 B.A, B, D 三点共线 C.A, C D 三点共线D.B, C, D 三点共线第二部分平面向量基本定理与坐标表示1. 平面向量的基本定理如果e 1, e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 对实数入1,入2,使a =入e+入2e 2.其中,不共线的向量 e 1, e 2叫做表示这一平面内所有向量的一组基底.2. 平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解3. 平面向量的坐标运算(1) 向量加法、减法、数乘向量及向量的模 设 a =(X 1, y” , b = (X 2, y 2),贝U③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小 答案③考点二平面向量的线性运算1【例2】(2017 •潍坊模拟)在厶ABC 中, P , Q 分别是AB BC 的三等分点,且 AP= 3AB BQ= 13BC 若AB= a , AC= b ,则 PQ=( )311 A ・3a +3b 1 1B. — 3a +3b 1 1 C.J a -3b1 1 D. - 3a — 3b【训练2】(1)如图,正方形 ABCDK 点 E 是DC 的中点, 靠近B 点的三等分点,那么 EF 等于(A .^AB ^2D 三点共线;a ,有且只有-点F 是BC 的一个A BC.a+ b= (x i + X2, y土y) , a—b= (x i—X2, y i—y2), X a=(入x i, hy , | a| = :x1+y?.(2) 向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标②设A(x i,y i),B(x?,y?),则AB= (x? —X i,y?—y i),| AB = : (x?—X i)?+( y? —y i) 24. 平面向量共线的坐标表示设a= (x i, y i) , b= (x?, y?),贝y a// b? x i y? —x?y i = o.【基础练习】i.(?0i7 •东阳月考)已知向量a= (2 , 4) , b= ( —1 , 1),则2a+ b 等于()A.(5 , 7)B.(5 , 9)C.(3 ,7)D.(3 , 9)2.(20i5 -全国I卷)已知点A(0 , i), B(3 , 2),向量AC= ( —4, —3),则向量BC=( )A.( —7,—4)B.(7 ,4)C.( —1,4)D.(i ,4)3.(20i6 -全国n卷)已知向量a= (m4) , b= (3 , —2),且a / b,则m=4.(必修4Pi0iA3改编)已知?ABCD勺顶点A—i, —2),耳3 , —i) , C(5 , 6),则顶点D的坐标为考点一平面向量基本定理及其应用【例1】(2014 •全国I卷)设D, E, F分别为△ ABC的三边BC CA AB的中点,贝U EB+ F C= ( )A.ADB.[A DC.1B CD. BC >4【训练1】如图,已知AB= a , AC= b , BD= 3DC用a , b表示AD则AD= __ .a DC"考点二平面向量的坐标运算【例2】(1)已知向量a = (5 , 2) , b= ( —4, —3) , c= (x , y),若3a—2b+ c = 0,则c =( ) A.( —23 , —12) B.(23 , 12)C.(7 , 0)D.( —7 , 0)【训练2】(1)已知点A— 1 , 5)和向量a= (2, 3),若AB= 3a ,则点B的坐标为()A.(7 , 4)B.(7 , 14)C.(5 , 4)D.(5 , 14)⑵(2015 •江苏卷)已知向量a= (2 , 1), b= (1 , —2).若na+ nb= (9 , —8)( m n € R),则m—n的值为_________ .考点三平面向量共线的坐标表示【例3】(1)已知平面向量a= (1 , 2), b= ( — 2 , m,且a / b,贝U 2a+ 3b= ___________(2)(必修4P101练习7改编)已知A (2 , 3) , B (4 , — 3),点P 在线段AB 的延长线上,且| AFf =|| Bp ,则点P 的坐标为 ____________单位向量是()⑵若三点A (1 , - 5),政a , — 2) , q — 2, - 1)共线,则实数a 的值为 _____________ .第三部分 平面向量的数量积及其应用1. 平面向量数量积的有关概念⑴ 向量的夹角:已知两个非零向量a 和b ,记O A a , O B- b ,则/ AOB- 0 (0 ° < 0 < 180°)叫做向量a 与b 的夹角.⑵ 数量积的定义:已知两个非零向量a 与b ,它们的夹角为 0,则数量| a || b |cos 0叫做a 与b 的数量积(或内积),记作a • b ,即a • b = | a || b |cos ___ 0,规定零向量与任一向量的数量积为0,即0 • a = 0.⑶数量积几何意义:数量积a • b 等于a 的长度| a |与b 在a 的方向上的投影| b |cos 0的乘积. 2. 平面向量数量积的性质及其坐标表示设向量a = (x i , y i ), b = (X 2, y 2), 0为向量a , b 的夹角.⑴ 数量积:a • b = | a || b |cos 0 = X 1X 2+ y i y 2.(2) 模:| a | = , a • a = , x i + y i . 亠宀 a • bX 1X 2+ y i y 2(3) 夹角:C0S 0= 1 冲=——2222.丨 a ll b | 寸x i + y i •寸X 2 + y 2⑷ 两非零向量 a 丄b 的充要条件:a • b = 0? X 1X 2+ y i y 2= 0.(5)| a • b | <| a || b |(当且仅当 a // b 时等号成立)? | X 1X 2+ yyl w 寸x ;+ y : • p x 2+ y 2. 3. 平面向量数量积的运算律:(1) a - b = b • a (交换律).(2)入a • b = X (a • b ) = a •(入b )(结合律).(3)( a + b ) - c = a - c + b - c (分配律). 【基础练习】1. (2015 •全国 n 卷)向量 a = (1 , — 1), b = ( — 1, 2),则(2a + b ) - a 等于( )A. — 1B.0C.1D.22. (2017 •湖州模拟)已知向量a , b ,其中|a | = 3, | b | = 2,且(a — b )丄a ,则向量a 和b 的 夹角是 ________ .2 n3. (2016 •石家庄模拟)已知平面向量a , b 的夹角为, |a | = 2,|b | = 1,则| a + b | = ________ .【训练3】 (1)(2017 •浙江三市十二校联考)已知点A (1 , 3) , B (4 , — 1),则与AB 同方向的3-4-- D4 - 53 - 5-3 - 5 -4 -4 - 5-3 - 5A35. (必修4P104例1改编)已知I a| = 5, | b| = 4, a与b的夹角0 = 120°,则向量b在向量a方向上的投影为 _________ .6. _______________________________________ (2017 •瑞安一中检测)已知a , b , c 是同一平面内的三个向量,其中 a = (1 , 2) , |b | = 1, 且a + b 与a — 2b 垂直,则向量 a • b =; a 与b 的夹角0的余弦值为 ________________________________ .【考点突破】考点一平面向量的数量积及在平面几何中的应用(用已知表示未知) 【例1】(1)(2015 •四川卷)设四边形ABCD 为平行四边形, 足B M= 3^C 6N = 2hf c 则 AM ・ NM 等于( ) A.20B. 15C.9D.6⑵(2016 •天津卷)已知△ ABC 是边长为1的等边三角形,点连接DE 并延长到点F ,使得DE= 2EF,则AF • BC 的值为(【训练1】(1)(2017 •义乌市调研)在Rt △ ABC 中 , / A = 90° , AB= AC= 2,点D 为AC 的中 点,点E 满足1BE= 3B C 则尺E ・E3D= _____⑵(2017 •宁波质检)已有正方形 ABC 啲边长为1,点E 是AB 边上的动点,贝U 0E- CB 勺值为 ________ ; 6E - [5C 的最大值为 ______ . 考点二平面向量的夹角与垂直【例2】(1)(2016 •全国n 卷)已知向量a = (1 , m ) , b = (3 , — 2),且(a + b )丄b ,则 作( )A. — 8B. — 6C.6D.8⑵ 若向量a = (k , 3), b = (1 , 4), c = (2, 1),已知2a — 3b 与c 的夹角为钝角,贝U k 的取值 范围是_______________ .【训练2】(1)(2016 •全国川卷)已知向量BA= 1 ,右3 , BC= , 2 ,则/ ABC=()A.30 °B.45 °C.60°D.120°2 2 2(2)(2016 •全国I 卷)设向量 a = (m 1) , b = (1 , 2),且 |a + b | = | a | + | b | ,贝 Um ^ .考点三平面向量的模及其应用n【例3】(2017 •云南统一检测)已知平面向量a 与b 的夹角等于—,若|a | = 2 , | b | = 3,则 |2a — 3b | =()| AB = 6, |AD | = 4,若点 M N 满D, E 分别是边AB BC 的中点,11A . —8B.81。

2018届北师大版高三数学一轮复习课件:第五章 平面向


相同 的向量 ____且方向_____ 相等向量 长度相等
相反 的向量 ____且方向_____ 相反向量 长度相等
两向量只有相等或不等, 不能比较大小 0的相反向量为0
2.向量的线性运算
向量运算 定 义
法则(或几何意义)
运算律
求两个 加法 向量和 的运算
(1)交换律: b+a a+b=_____. (2)结合律:
名称 向量 定义 既有大小又有方向的量;向量的大 备注 平面向量是自由向量
小叫做向量的长度(或称模)
零向量 长度为零的向量;其方向是任意的 单位 向量
0 记作___
非零向量a的单位向
长度等于1个单位的向量
a 量为 ± |a|
相反的非零向量 ____或____ 平行向量 方向相同 平行 或 0与任一向量_______ 方向相同或相反的非零向量又 共线 共线向量 叫做共线向量
C,D四点不一定在一条直线上.
答案 (1)√ (2)× (3)× (4)√ (5)√
2.给出下列命题:①零向量的长度为零,方向是任意的; → → ②若 a,b 都是单位向量,则 a=b;③向量AB与BA相等. 则所有正确命题的序号是( A.① B.③ ) C.①③ D.①②
解析
根据零向量的定义可知①正确; 根据单位向量的
答案 ①
规律方法 递性.
(1)相等向量具有传递性, 非零向量的平行也具有传
(2)共线向量即为平行向量,它们均与起点无关. (3)向量可以平移,平移后的向量与原向量是相等向量.解题时, 不要把它与函数图象的移动混为一谈. a a (4)非零向量 a 与 的关系: 是与 a 同方向的单位向量. |a| |a|
→ → → → → BC=OC-OB=-OA-OB=-a-b.

A版2018版高考数学理一轮专题复习课件专题5 平面向量 精品

2.用基底表示其他向量 主要有以下三种方法: 方法一:通过观察图形直接寻求 向量之间的关系. 方法二:采用方程思想. 方法三:建立坐标系,根据向量 的坐标运算求解.
第一步,观察并将待求向量表示成两个 (或多个)相关向量a,b(或a,b,c,…)的和 或差;
第二步,把向量a,b(或a,b,c,…)分别进 行分解,直到用基底表示出向量a,b(或 a,b,c,…) ; 第三步,将a,b(或a,b,c,…)代入第一步 中的式子,从而得到结果.
第一步,把待求向量看作未知量; 第二步,列出方程组; 第三步,用解方程组的方法求解待求向 量.
考点29 平面向量的基本定理及坐标运算
考点29 考法3 平面向量基本定理的应用
1.基底的选择 (1)一组基底有两个向量; (2)这两个向量不共线.
2.用基底表示其他向量 主要有以下三种方法: 方法一:通过观察图形直接寻求 向量之间的关系. 方法二:采用方程思想. 方法三:建立坐标系,根据向量 的坐标运算求解.
3.平面向量的坐标运算
考点29 平面向量的基本定理及坐标运算
平面向量的基本定理及坐标运算
考点29
✓ 考法3 平面向量基本定理的应用
✓ 考法4 平面向量的共线问题 ✓ 考法5 平面向量的坐标表示与运算
考点29 平面向量的基本定理及坐标运算
考点29 考法3 平面向量基本定理的应用
1.基底的选择 (1)一组基底有两个向量; (2)这两个向量不共线.
应注意的是,基底的选择并不唯一,只 要两个向量不共线,都可作为一组基底. 2.平面向量的坐标表示
在平面直角坐标系内,分别取与x轴、y轴 正方向相同的两个单位向量i, j作为基底,对 平面内任一向量a,有且仅有一对实数x,y,使得 a=xi+yj,则实数对(x,y)叫做向量a的直角坐 标,记作a=(x,y),其中x,y分别叫做a在x轴,y 轴上的坐标,相等向量的坐标相同,坐标相同 的向量是相等向量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
1.(2017课标全国Ⅰ文,13,5分)已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m= 答案 7 解析 本题考查向量数量积的坐标运算. ∵a=(-1,2),b=(m,1), ∴a+b=(m-1,3),又(a+b)⊥a, ∴(a+b)· a=-(m-1)+6=0,解得m=7. 2.(2017山东文,11,5分)已知向量a=(2,6),b=(-1,λ).若a∥b,则λ= 答案 -3 解析 本题考查向量平行的条件. ∵a=(2,6),b=(-1,λ),a∥b, ∴2λ-6×(-1)=0,∴λ=-3. .
3 = 2 1 2 , 又sin α1 =sin α2 = 2 4 4 10 10 5

由此得,cos α=cos(π-β), 由0<β<π,得0<π-β<π,
又0<α<π,故α=π-β. 代入sin α+sin β=1可得sin β= ,
1 5 ∴sin α= ,而α>β,所以α= ,β= . 2 6 6 1 2
B组
考点一
统一命题·省(区、市)卷题组
平面向量的平行与垂直
即(a-b)2=a2-2a· b+b2=2.
2 2 又因为a2=b2=| 2 a| =|b| =1,
所以2-2a· b=2,即a· b=0,故a⊥b. (2)因为a+b=(cos α+cos β,sin α+sin β)=(0,1), 所以
cos α cos β 0, sin α sin β 1,
2 3 2 3 m 3 4 2
.
.
.
解析 因为a⊥(ta+b),所以a· (ta+b)=0,即ta2+a· b=0,又因为a=(1,-1),b=(6,-4),所以|a|= 2 ,a· b=1×6+ (-1)×(-4)=10,因此可得2t+10=0,解得t=-5. 评析 本题主要考查向量的数量积运算,向量的模以及两向量垂直的充要条件等基础知识,考查 学生的运算求解能力以及方程#43; ≤θ+ ≤α2+ ,
4 4 4
3 而 <α1+ < <α2+ < ,
4 4 2 4 4
故当θ+ = ,即θ= 时,x=y,此时|a+b|=|a-b|,
4 2 4
所以当a⊥b时,x+y=|a+b|+|a-b|有最大值2 5 .
5 答案 4;2
,最大值是
解析 本题考查向量的线性运算、坐标运算,向量的几何意义,向量绝对值不等式,利用基本不 等式求最值,利用三角代换求最值,考查逻辑推理能力和运算求解能力.
解法一:∵|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|=2,
且|a+b|+|a-b|≥|(a+b)-(a-b)|=2|b|=4, ∴|a+b|+|a-b|≥4,当且仅当a+b与a-b反向时取等号,此时|a+b|+|a-b|取最小值4.
高考数学
(江苏省专用)
§5.3 平面向量的平行与垂直及平面向量的应用
五年高考
A组
(1)若|a-b|= 2 ,求证:a⊥b; (2)设c=(0,1),若a+b=c,求α,β的值. 解析 (1)证明:由题意得|a-b|2=2,
自主命题·江苏卷题组
(2013江苏,15,14分,0.757)已知向量a=(cos α,sin α),b=(cos β,sin β),0<β<α<π.
1 ( 3, 1) (1, λ) ,所以 3 λλ= = = ,解得λ= 3 .
2 1 λ2 2 1 λ2
2
1 λ2
3 3
疑难突破 根据“e1,e2是互相垂直的单位向量”将原问题转化为向量的坐标运算是解决本题 的突破口. 易错警示 对向量的夹角公式掌握不牢而致错. 2.(2017浙江,15,5分)已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是 .
3.(2016课标全国Ⅱ,13,5分)已知向量a=(m,4),b=(3,-2),且a∥b,则m= 答案 -6 解析 因为a∥b,所以 = ,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 4.(2016课标全国Ⅰ,13,5分)设向量a=(x,x+1),b=(1,2),且a⊥b,则x= 答案 - 解析 因为a⊥b,所以x+2(x+1)=0,解得x=- . 易错警示 混淆两向量平行与垂直的条件是造成失分的主要原因. 5.(2016山东,13,5分)已知向量a=(1,-1),b=(6,-4).若a⊥(ta+b),则实数t的值为 答案 -5
1 ≤cos θ≤ 3 , 故可设x= 10 cos θ, 10 10
y= 10 sin θ, ≤sin θ≤ . 设α1,α2为锐角,且sin α1= ,sin α2= , 则有α1≤θ≤α2,
又0<α1< <α2< ,
4 2
1 10 3 10
1 10
3 10
则x+y= 10 (cos θ+sin θ)=2 5 sin θ ,
| a b |2 | a b |2 |a b||a b| ≤ = a 2 b 2 = 5 , 2 2 ∴|a+b|+|a-b|≤2 5 .

当且仅当|a+b|=|a-b|时取等号,此时a· b=0. 故当a⊥b时,|a+b|+|a-b|有最大值2 5 . 解法二:设x=|a+b|,由||a|-|b||≤|a+b|≤|a|+|b|, 得1≤x≤3. 设y=|a-b|,同理,1≤y≤3. 而x2+y2=2a2+2b2=10,
考点二
的值是 答案
3 3
平面向量的综合应用
.
1.(2017山东理,12,5分)已知e1,e2是互相垂直的单位向量.若 3 e1-e2与e1+λe2的夹角为60°,则实数λ
解析 本题考查向量的坐标运算和向量的夹角公式.
3 e1+λe2=(1,λ).根据向量的夹角公式得cos 60°= 由题意不妨设e1=(1,0),e2=(0,1),则 3 e1-e2=( ,-1),
相关文档
最新文档