各种测量方法

合集下载

测绘技术中常用的测量方法介绍

测绘技术中常用的测量方法介绍

测绘技术中常用的测量方法介绍一、全站仪测量全站仪是测绘工程中常用的测量仪器,它能够实现测量、计算和数据处理的一体化功能。

全站仪通过激光束测距、角度测量和数据处理等功能,可以精确测量地表、建筑物、桥梁等各种工程物体的坐标和形状。

在使用全站仪进行测量时,需要设置测量基准点,并确定测量方向和角度。

通过在基准点上放置反射器,全站仪会发送激光束,激光束会被反射器反射回全站仪,从而实现距离和角度的测量,并将数据传输到计算机进行处理。

二、GNSS测量GNSS是一种基于卫星定位的测量技术,包括全球定位系统(GPS)、伽利略导航系统(Galileo)和北斗导航系统(BDS)等。

GNSS测量可以精确测量点的经度、纬度和高度,适用于大范围、高精度的测量任务。

在使用GNSS进行测量时,需要在需要测量的点上设置接收天线,接收来自卫星的信号,并通过信号的强弱和时间差计算出点的坐标。

由于GNSS测量精度受到多种因素的影响,如大气湿度、遮挡物和多径效应等,所以在使用GNSS进行测量时需要进行误差修正和精度评定。

三、导线测量导线测量是一种传统的测量方法,常用于小范围、低精度的测量任务。

导线测量使用金属导线或钢带作为测量线,通过测量线的长度和方位角来确定点的坐标。

在进行导线测量时,需要事先测量线与水平面的夹角,并在需要测量的点上设置有导线垂线。

通过两点之间导线的长度和方位角的测量,可计算出点的坐标。

导线测量适用于地形复杂、精度要求不高的测量任务,具有操作简便、适应性强等优点。

四、激光测距仪测量激光测距仪是一种利用激光束测量距离的仪器,常用于测量点到点之间的距离。

激光测距仪利用激光束的反射时间和光速的知识,通过测量光的往返时间来计算出点的距离。

在使用激光测距仪进行测量时,需要在被测点和测距仪之间设置反射板或反射镜。

激光测距仪会发送一个激光脉冲,脉冲被反射后再次返回激光测距仪,通过计算脉冲的往返时间,可以得到点的距离。

五、数字测图仪测量数字测图仪是一种通过扫描地图或图纸获取坐标和形状信息的仪器。

测量方法有哪些

测量方法有哪些

测量方法有哪些测量是科学研究和工程技术中的重要环节,而测量方法的选择直接影响到测量结果的准确性和可靠性。

在实际的工程和科研中,我们常常需要根据不同的测量对象和测量要求选择合适的测量方法。

下面将介绍一些常见的测量方法,希望能对大家有所帮助。

1. 直接测量法。

直接测量法是指直接使用测量仪器对待测量对象进行测量的方法。

这种方法操作简单,测量结果直观,适用于一些简单的测量任务,比如长度、面积、体积等的测量。

常见的直接测量仪器有尺子、量角器、卷尺、游标卡尺等。

2. 间接测量法。

间接测量法是指通过一些间接的手段来获取待测量对象的测量结果。

这种方法通常需要借助一些物理原理或数学模型来进行推导和计算。

比如利用三角函数关系来计算无法直接测量的高度、距离等;利用浮力原理来测量密度等。

间接测量法在一些特殊的测量任务中具有重要的应用价值。

3. 比较测量法。

比较测量法是指通过将待测量对象与已知标准进行比较来获取测量结果的方法。

这种方法常用于一些精密测量任务,比如质量、密度、硬度等的测量。

常见的比较测量仪器有天平、硬度计、测量投影仪等。

4. 数字化测量法。

数字化测量法是指利用数字化技术对待测量对象进行测量的方法。

这种方法具有高精度、高效率和自动化的特点,适用于一些复杂形状和高精度要求的测量任务。

常见的数字化测量仪器有三坐标测量机、激光测距仪、数字化摄像测量仪等。

5. 统计测量法。

统计测量法是指通过对一定数量的样本进行测量,并对测量结果进行统计分析来获取总体特征的方法。

这种方法常用于对大批量数据进行测量和分析,能够有效地反映总体特征。

常见的统计测量方法有抽样测量、回归分析、方差分析等。

以上就是一些常见的测量方法,每种方法都有其适用的范围和特点。

在实际应用中,我们需要根据具体的测量任务和测量要求来选择合适的测量方法,以确保测量结果的准确性和可靠性。

希望本文能够对大家有所帮助,谢谢阅读!。

测量的方法有哪些

测量的方法有哪些

测量的方法有哪些测量是科学研究和工程实践中的重要手段,通过测量可以获取各种物理量的数值,为科学研究和工程设计提供准确的数据支持。

在实际的测量过程中,我们可以运用多种方法来获取需要的数据,下面将介绍几种常见的测量方法。

首先,我们来介绍一种常见的测量方法——直接测量法。

直接测量法是指通过测量仪器直接获取被测物理量的数值,例如使用尺子、量角器、卷尺等工具来测量长度、角度等物理量。

直接测量法简单、直观,适用于一些简单的测量场景,但在一些复杂的测量场合可能并不适用。

其次,间接测量法也是一种常见的测量方法。

间接测量法是通过测量物体的一些相关量,再利用物理定律或数学关系来推导出所需的物理量,例如利用测量时间和速度来计算距离。

间接测量法适用范围广,可以解决一些直接测量法难以实现的测量问题。

除了直接测量法和间接测量法,统计测量法也是一种重要的测量方法。

统计测量法是通过对一组数据进行统计分析,从中获取所需的物理量,例如平均值、标准差等。

统计测量法在实验研究和数据分析中应用广泛,能够提供对数据整体特征的描述和分析。

此外,仪器测量法也是一种常见的测量方法。

仪器测量法是利用各种精密的测量仪器和设备进行测量,例如使用电子天平、光谱仪、电子显微镜等设备进行精密测量。

仪器测量法能够实现高精度、高分辨率的测量,广泛应用于科学研究和工程技术领域。

最后,图像测量法也是一种新兴的测量方法。

图像测量法利用计算机视觉和图像处理技术,通过对图像进行分析和处理来获取物体的尺寸、形状等信息。

图像测量法具有非接触、自动化的特点,适用于一些特殊的测量场景。

综上所述,测量的方法有直接测量法、间接测量法、统计测量法、仪器测量法和图像测量法等多种。

在实际应用中,我们可以根据具体的测量对象和测量要求选择合适的测量方法,以确保获取准确可靠的测量数据。

通过不同方法的灵活运用,可以更好地满足科学研究和工程实践的测量需求。

卡尺的四种测量方法

卡尺的四种测量方法

卡尺的四种测量方法卡尺是一种常用的测量工具,可以用来测量物体的长度、宽度、高度等尺寸。

在使用卡尺进行测量时,有四种常用的方法:内径测量、外径测量、深度测量和间距测量。

本文将详细介绍这四种测量方法及其应用场景。

一、内径测量内径测量顾名思义就是测量物体内部空间的直径尺寸。

内径测量通常用于测量物体内部细长物品的直径,如管子、管道等。

具体测量方法如下:1. 打开卡尺,将其一支放入物体内部。

2. 确定卡尺测量位置,将另一支移动到物体的内壁紧贴。

3. 读取卡尺刻度值,计算得到内径值。

二、外径测量外径测量用于测量物体表面的直径尺寸,通常被用于测量圆柱体或扁圆形物品的直径,如螺钉、圆柱体等。

具体测量方法如下:1. 打开卡尺,将其夹在物体外侧上下两点。

2. 确定卡尺测量位置,将卡尺另一支移到物体的另一侧点。

3. 读取卡尺刻度值,计算得到外径值。

三、深度测量深度测量用于测量物体的深度、孔深等尺寸,常被用于测量孔壁深度、槽的宽度等。

具体测量方法如下:1. 打开卡尺,用卡尺的悬置支在物体表面定位。

2. 先用卡尺的刻度位置记录第一个测量点,再用卡尺基座指示的长度定位到需测量的深度点。

3. 读取卡尺刻度值,计算得到深度值。

四、间距测量间距测量是卡尺的另一种常用测量方法,也是最简单的测量方法,用于测量物体之间的距离。

间距测量通常用于测量两个物体之间的距离,如墙壁离地面距离等。

具体测量方法如下:1. 打开卡尺,夹住需要测量的两个物体。

2. 定位卡尺另一侧,将其移到另一个物体上。

3. 读取卡尺上的刻度值,计算得出两个物体之间的间距。

以上四种测量方法都需要注意一些细节问题,如正确定位、准确读数等。

此外,卡尺本身也需要经常校准和保养,保证精度和使用寿命。

总之卡尺虽是小巧的测量工具,但其应用范围却非常广泛,每种测量方法都有其特别的应用场景。

当我们正确运用这些测量方法时,能够准确、快速地测量出所需的尺寸,为各行各业的生产、制造和维护等工作提供了很大的便利。

距离测量的不同方法及其适用范围

距离测量的不同方法及其适用范围

距离测量的不同方法及其适用范围在日常生活和科学研究中,我们经常需要测量距离。

然而,在不同的场景下,测量距离的方法可能有很大的差异,并且适用范围也不尽相同。

本文将介绍几种常见的距离测量方法,并探讨它们的应用。

一、直接测量法直接测量法是最常用的一种距离测量方法。

它通过使用直尺、卷尺、测距仪等工具,直接测量出两点之间的实际距离。

这种方法适用于小范围的距离测量,如家具的尺寸、建筑物的大小等。

二、三角测量法三角测量法是基于几何原理的一种距离测量方法。

它利用三角形的几何关系,通过测量角度和已知边长,计算出未知边长的方法。

这种方法适用于无法直接测量的远距离或难以到达的地点。

例如,在地理测量和山地测量中,三角测量法被广泛应用。

三、雷达测距法雷达测距法是利用电磁波的反射原理来测量距离的一种方法。

它通过发射一束脉冲电磁波,然后接收反射回来的波来计算出目标物体与测距仪之间的距离。

雷达测距法适用于大范围、高精度的距离测量,如航空、导航等领域。

四、激光测距法激光测距法是利用激光束的传播速度和时间的关系来测量距离的一种方法。

它通过发射一束激光光束,然后测量光束从发射到返回所花费的时间,再根据光的速度计算出距离。

激光测距法适用于室内测距、建筑测量、制图等需要高精度的应用。

五、声波测距法声波测距法是利用声波的传播速度和时间的关系来测量距离的一种方法。

它通过发射一系列声波信号,然后测量声波从发射到返回所花费的时间,再根据声速计算出距离。

声波测距法适用于水下测距、深海勘探等领域。

六、卫星定位系统卫星定位系统是一种利用卫星和接收器之间的信号交互来确定位置和距离的方法。

它通过接收来自卫星的定位信息,计算出接收器与卫星之间的距离,并进一步确定位置。

卫星定位系统广泛应用于导航、地理测量等领域。

以上是几种常见的距离测量方法,它们各有优劣,并且适用范围也不同。

在选择合适的距离测量方法时,需要根据具体的需求和实际情况来综合考虑。

最后,需要注意的是,在进行任何距离测量时,都应该遵循相关的测量原则和方法,保证测量的准确性和可靠性。

测量的方法

测量的方法

测量的方法测量是科学研究、工程设计、生产制造和社会管理等各个领域中不可或缺的重要技术手段。

它是指通过比较、判断和计算等操作,确定物质、能量、信息等量的大小、形状、位置、速度、质量、温度、压力、电磁场等特征的过程。

测量的结果对于科学研究、工程设计、生产制造和社会管理的决策和实践具有重要的参考和指导作用。

本文将介绍常见的测量方法及其应用。

一、传统测量方法1. 直接测量法直接测量法是指通过观察和读数等手段,直接得出所需测量量的数值。

例如,使用尺子、卡尺等测量长度;使用电压表、电流表等测量电量;使用温度计、压力计等测量温度、压力等。

直接测量法的优点是简单易行,但精度受限于测量仪器的精度和人为误差。

2. 间接测量法间接测量法是指通过多个已知量的关系,推导出所需测量量的数值。

例如,使用勾股定理测量斜边长度;使用牛顿第二定律测量物体的质量;使用声速公式测量声速等。

间接测量法的优点是可以测量某些无法直接测量的量,但需要对已知量的关系进行准确的推导和计算,精度受限于推导和计算的准确程度。

3. 比较测量法比较测量法是指通过将所需测量量与已知标准量进行比较,确定所需测量量的数值。

例如,使用天平测量物体的质量;使用比色皿测量液体的浓度等。

比较测量法的优点是精度高,但需要准确的标准量作为比较基准,且需要消除比较过程中的误差。

二、现代测量方法1. 电子测量法电子测量法是指利用电子技术实现测量的方法。

例如,使用数字万用表、示波器等电子仪器测量电量、电压、电流等。

电子测量法的优点是精度高、稳定性好、自动化程度高,但需要专业的电子知识和设备。

2. 光学测量法光学测量法是指利用光学原理实现测量的方法。

例如,使用激光测距仪、光学显微镜等测量长度、直径、角度等。

光学测量法的优点是非接触式测量,不会对被测物体造成损伤,精度高,但需要光学知识和设备。

3. 激光测量法激光测量法是指利用激光技术实现测量的方法。

例如,使用激光测距仪、激光测速仪等测量距离、速度等。

测绘技术中常见的测量方法与技巧

测绘技术中常见的测量方法与技巧测绘技术作为一门应用科学,主要用于获取、处理和展示地理信息,对于国土规划、城市建设、资源管理等领域具有重要意义。

测绘工程的核心在于测量,而测绘的准确性又取决于测量方法与技巧的运用。

本文将介绍常见的测量方法与技巧,让我们一起来了解一下吧。

一、全站仪测量法全站仪是测绘工程中常用的测量仪器,它将高精度角度测量、距离测量和高程测量集于一体。

全站仪测量法具有高精度、高效率和多功能等特点,广泛应用于各类工程测量中。

在使用全站仪进行测量时,需要注意合理设置测站位置,保持测站间的视距通畅,以获得准确的测量结果。

二、电子经纬仪测量法电子经纬仪是一种用于测量方位角、高度角和距离的测量仪器,它主要用于测绘控制点、测量建筑物和地形的特征等。

电子经纬仪测量法通常分为导线测量和边角测量两种。

导线测量是通过测量已知控制点之间的距离和方位角,从而计算出未知点的坐标。

边角测量则是通过测量两个已知控制点与未知点之间的角度和距离,求解未知点坐标的过程。

三、GPS测量法全球定位系统(GPS)是一种利用卫星信号进行定位的测量技术,它广泛应用于测绘领域。

GPS测量法具有高精度、高效率和全天候等特点,能够获取大量准确的地理信息数据。

在进行GPS测量时,需要注意天线设置的稳定性和高程改正的正确性,以确保测量结果的准确性。

此外,由于GPS信号容易受到建筑物、树木等遮挡物的影响,因此应选择开阔的地理环境进行测量。

四、激光测距法激光测距法利用激光束的反射原理,通过测量激光束发射和接收的时间差,从而计算出目标物体与测量仪器的距离。

激光测距法常用于测量建筑物的高度、地形的起伏等。

在使用激光测距仪进行测量时,应注意测量时刻的大气条件、目标物体表面的反射系数和激光束的空间位置,以提高测量结果的精度。

五、相对定向测量法相对定向测量法主要用于航空摄影测绘,它通过测量不同摄影位置的重叠地物的影像,从而确定地物的三维坐标。

相对定向测量法包括像对几何法、三角几何法和束法等。

测量物体长度方法

测量物体长度方法测量物体长度是物理实验中经常进行的一项实验,它的目的是通过使用一些方法和工具来确定物体的尺寸。

在科学研究和工程领域,准确测量物体长度是非常重要的,因为这对于解决问题和制定适当的解决方案是至关重要的。

下面将介绍一些测量物体长度的方法。

一、直尺法:直尺法是最基本的测量长度方法之一。

它可以通过使用直尺来测量物体的尺寸。

然而,直接使用直尺测量有一定的局限性,因为直尺的刻度间距可能不够精细,而且直尺本身可能会有一些误差。

二、游标卡尺法:游标卡尺是常用的测量长度的工具,它可以通过读取刻度上的数字来测量物体的长度。

游标卡尺有一个游标和一条刻度。

游标可以滑动沿着刻度来调整和测量物体的长度。

它比直尺测量更准确,刻度间距更小,误差也较小。

游标卡尺通常用于测量较小的物体。

三、卷尺法:卷尺也是一种常用的测量长度的工具,它通常用于测量较长的物体。

卷尺的一端有一个卷盘,另一端有一个钩子。

将卷尺的钩子固定在物体的一端,然后将卷尺展开并沿着物体的长度拉直,通过读取刻度上的数字来确定物体的长度。

卷尺通常有不同的长度和精度,根据需要选择适合的卷尺来测量不同长度的物体。

四、光学显微镜法:光学显微镜法可以用于测量微小物体的长度。

通过将物体放在光学显微镜下,调节显微镜的焦距和放大倍数,然后使用刻度尺或放大器读取物体在显微镜中所占的刻度长度,从而计算出物体的实际长度。

五、激光测距法:激光测距法是一种比较精确的测量长度的方法。

它利用激光束的传播速度和传播时间来测量物体的长度。

激光测距仪会发射一个激光束,当激光束照射到物体上时,它会被反射回来。

激光测距仪会测量激光束的传播时间,并通过乘以光速来计算出物体的距离。

激光测距仪通常精确到几毫米甚至更小。

总结起来,测量物体长度有很多种方法,选择适合的方法取决于物体的大小、形状和测量精度的要求。

直尺法、游标卡尺法、卷尺法适用于常见的长度测量,而光学显微镜法和激光测距法适用于微小和精确测量。

常规具体测量方法

常规具体测量方法
以下是一些常规的测量方法:
1、直接测量法:直接测量指测量结果能与待测量的定义直接联系起来的测量方法。

例如,使用测量工具量度物体的长度。

2、间接测量法:间接测量法指为了得到被测量的定义,通过测得其他相关量来获取未知量的测量方法。

例如,通过测量物体的质量和体积来计算其密度。

3、零位法:零位法是利用处于标准状态的量值与被测参数的变化趋势相反的特点进行测量的方法。

例如,用平衡式原理测量位移零位原理是测量量程下限为零的计量器具。

4、比较测量法:比较测量法是利用已知其精确量值的量具与被测件进行比较来确定其尺寸大小的一种测量方法。

例如,用量块与被测件比较来确定其尺寸大小。

5、绝对测量法:绝对测量法是直接从计量器具的读数中获得被测几何量值的测量方法。

例如,用卡尺、千分尺等直接对零件的尺寸进行测量。

6、相对测量法:相对测量法是利用计量器具测出一个相对值的方法。

例如,用百分表、千分表等测量相对误差。

以上是常见的几种常规的测量方法,希望这些信息能对你有所帮助。

测量的方法有哪些

测量的方法有哪些测量是科学研究和工程技术中常用的一种手段,它是通过比较实物和已知标准的物理量,来确定实物的物理量大小。

测量的方法有很多种,下面将介绍几种常见的测量方法。

一、直接测量法。

直接测量法是指通过测量仪器直接获取被测量的数值,这种方法简单直接,常用于长度、面积、体积等物理量的测量。

例如,使用尺子测量长度,使用量规测量直径,使用容器测量液体的体积等。

二、间接测量法。

间接测量法是指通过数学关系和其他物理量的测量结果来推算出所需测量的物理量。

常见的间接测量法包括三角测量、比重法、位移法等。

例如,利用三角函数关系来计算不可直接测量的高度、距离等物理量。

三、电子测量法。

电子测量法是指利用电子仪器进行测量的方法,它具有高精度、高效率的特点。

常见的电子测量仪器包括示波器、万用表、频谱仪等。

这些仪器可以用来测量电压、电流、频率等电学量,也可以通过传感器转换成其他物理量的测量。

四、光学测量法。

光学测量法是指利用光学原理进行测量的方法,包括利用光学仪器测量长度、角度、形状等物理量。

常见的光学测量仪器包括显微镜、望远镜、激光测距仪等。

这些仪器可以用来测量微小的物体尺寸,也可以用来测量远距离的物体位置。

五、声学测量法。

声学测量法是指利用声学原理进行测量的方法,包括利用声音的传播特性测量距离、速度、密度等物理量。

常见的声学测量仪器包括声呐、声级计、频谱分析仪等。

这些仪器可以用来测量水下物体的位置、声音的强度、频率等。

六、化学分析法。

化学分析法是指利用化学反应原理进行测量的方法,包括利用化学试剂和仪器测量物质的成分、含量等物理量。

常见的化学分析仪器包括色谱仪、质谱仪、光谱仪等。

这些仪器可以用来测量物质的组成、浓度、质量等。

以上是测量的一些常见方法,不同的测量方法适用于不同的测量对象和测量要求。

在实际应用中,需要根据具体情况选择合适的测量方法,并结合实际情况进行准确、可靠的测量工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种测量方法一、轴径在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。

二、孔径单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。

三、长度、厚度长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。

四、表面粗糙度借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。

五、角度1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。

2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。

3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。

4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。

六、直线度用平尺(或刀口尺)测量间隙为0.5μm(0.5~3μm 为有色光,3μm 以上为白光)的直线度,间隙偏大时可用塞尺配合测量;用平板、平尺作测量基维,用百分表或千分表测量直线度误差;用直径0.1~0.2mm 钢丝拉紧,用V 型铁上垂直安装读数显微镜检查直线度;用水准仪、自准直仪、准直望远镜等光学仪器测量直线度误差;用方框水平仪加桥板测直线度;用光学平晶分段指示器检测精度高的直线度误差。

七、平面度用指示器(如百分表);用平尺结合指示器;用平面扫瞄仪、水平仪、自准直仪、准直望远镜、平晶等光学仪器测量工件的平面误差;用标准平板或平尺涂上颜料与被测平面平尺对研,以每25.4×25.4mm的面积内亮点的数目来表征平面度误差。

八、圆度用圆度仪测量,测量时仪器可将轮廓记录在纸上,用同心圆模板或按仪器给出的理想圆比较求出圆度误差,圆度仪有转轴式和转台式两种测量方式;用卡尺、千分尺等多测几个工件截面直径,以同截面最大值减最小值的1/2 作为该工件的圆度误差;将工件架在V 形铁上用上指示器多测几个截面,以最大差值的1/2 作为圆度误差值,取最大误差值作为工件的圆度误差;用光学分度头、万能工具显微镜的分度台作为测量圆度误差的回转分度机构,用电感测微仪、扭簧比较仪的指示机构来测量圆度、圆柱度误差;用圆分度仪在圆周上等份取若干测量点,被测件每转过一个角度从指示表上读取一个数值,然后在极坐标图上绘出误差曲线,得出圆度或圆柱度误差;将被测工件放置在有坐标装置仪器(三坐标测量机或有两坐标的万能工具显微镜等)的工作台上,调整被测件轴线与仪器工作台面垂直并基本上同轴,按选定截面被测圆周上等份测量出各点坐标值,取其中最大的误差值为评定的圆度误差。

九、圆柱度用圆度仪法测量若干个横截面圆度,按最小条件给出圆柱度误差,也可以通过记录各截面的圆度误差图形,用透明同心圆模板求圆柱度误差,还可以取若干个截面圆度误差中最大值为圆柱度误差;将工件放在平板上并靠紧方箱,用千分表测若干个截面的最大与最小读数,取所有读数中最大与最小读数差之半为该工件的圆柱度误差;将工件放在V 形块内(V 形块长度应大于被测工件长度),工件转动用千分表测出若干个截面的最大与最小读数,取各截面所有读数中最大与最小读数之半为该工件圆柱度误差;将工件轴线与三坐标测量装置的轴调至平行,测量工件外圆各点的坐标值,通过计算机按最小条件求圆柱度误差;用指示器法将零件顶在仪器的两顶尖上轴线定位,在被测圆柱面的全长上测量若干个截面轮廓,每个轮廓上可选取若干个等分点,得到整个圆柱面上各点的半径差值。

十、线轮廓度利用仿形(靠模)机床检测线轮廓度误差,要求仿形测头形状应与千分表测头形状相同;用制作精确的检验样板检测工件,测量样板与工件的间隙来确定工件线轮廓度误差;用万能工具显微镜,利用有分度装置的转台或精密镗床等测量工件轮廓的坐标值,求出线轮廓度误差;将工件放到投影仪上按放大图的倍数放大,将工件放大的轮廓投影与理论轮廓比较,检查工件轮廓是否超出极限轮廓,此方法适用于较小的薄形工件。

十一、面轮廓度线轮廓度的检测方法基本适用于面轮廓度的检测,但用样板光隙法检测时最好将样板做成框架结构。

十二、平行度将工件基准面放在平板上,用千分表测被测表面,读出最大与最小数值之差即为平行度误差,应将所测数据换算到工件实际长度上;将工件放到平板上,将基准面找平,水平仪用分别测出基准面与被测面的直线度后获得平行度误差。

十三、垂直度用直角尺或标准圆柱在平板(或直接放在工件的基准面)上,检查直角尺的另一面与工件被测面的间隙,用塞尺检查间隙的大小,应将所测数据换算到工件实际长度上;将工件基准面固定到直角座或方箱上,在平板上用测平行度的方法测垂直度误差;对于一些大型工件的垂直度测量,可使用自准直仪或准直望远镜和直角棱检查垂直度误差,也可以用方框水平仪检查大型工件的垂直度误差,使用此法测量垂直度误差时首先应将基准面找水平,测量结果数据处理时应排除工件基准面的形状误差;在工件上安装被测心轴和基准心轴,转动基准心轴,用固定在基准心轴的2个百分表测得两个位置上的读数,经计算得到线对线垂直度。

十四、倾斜度一般将被测要素通过标准角度块、正弦尺、倾斜台等转换成与测量基准平行状态,然后再用测量平行度的方法测量倾斜度误差。

倾斜度误差测量方法类同小角度测量方法。

十五、同轴度将工件在圆度仪上按基准要素找正,测被测要素若干个截面的圆度并绘出记录图,根据图形按定义求出同轴度误差,此法较适用于测小型零件的同轴度误差;将工件在测量台上找正,测量被测圆柱表面若干横截面轮廓点(所用仪器同轮廓度)的坐标,求被测圆柱实际轴线的位置,实际轴线与基准轴线间最大距离的两倍即为同轴度误差;用量(所用仪器见厚度)具直接测量壁厚均匀性,取厚度差最大值的1/2 为同轴度误差,该方法适用于板形、筒形工件内外圆同轴度测量;使用自准直望远镜,利用支架将目标放在孔的中心(靶心),用光学仪器找正基准孔后,测量靶心相对于光轴的偏移量,评定出被测轴线的同轴度误差,此方法适用于大型箱体等工件的孔系同轴度测量;将工件基准圆柱放在等高刃口形V 型架上,转动工件,读出千分表指针指示的最大与最小读数差的1/2 即为同轴度误差,若基准指定为中心孔,则测量时应将中心孔在中心架上测量,此方法适用于测量圆度误差较小的工件;此外,还有径向圆跳动替代法、同轴度量规法等检测同轴度误差的方法。

十六、跳动误差的检测方法可采用顶尖、心轴、套筒、V 形块等装置配合千分表进行测量,顶尖的定位精度明显优于V 形块和定位套,因此应尽量选用顶尖定位,测量端面圆跳动和全跳动中使用V 形块和定位套定位时,注意确保轴向定位的可靠性,测量前,顶尖、顶尖孔、V 形块、定位套等的工作面、被测件的支撑面等部位应清理干净。

十七、对称度测量方法将被测工件置于平板上,用百分表(或千分表)测量被测表面与平板之间的距离,将被测工件翻转,再测量另一被测表面与平板之间的距离,取各剖面内测得的对应点最大差值作为对称度误差;将被测件置于两块平板之间,以定位块模拟被测中心面,再分别测出定位块与两平板之间的2个距离,计算得到对称度误差;基准轴线由V 形块模拟,被测中心平面由定位块模拟,调整被测件,使定位块沿径向与平板平等,测量定位块与平板之间的距离,再将被测件翻转180°后,在同一剖面图上重复以上操作,计算得到对晨读误差;用综合量规,量规的两个定位块的宽度为基准槽的最大实体尺寸,量规直径为被测孔的实效尺寸,凡为量规能通过者为合格品;将零件的基准圆柱面用心轴支承在等高V形块上,将被测基准表面调整与平板平行,测出读数;在同一剖面内,将被测件旋转180°测量,百分表(或千分表)最大与最小读数之差则为该剖面对称度误差,再选其他剖面进行测量,各剖面所得测值的最大极限尺寸者,即为该零件的对称度误差。

十八、位置度测量方法调整被测件在专用支架上的位置,使百分表的读数差为最小,百分表按专用的标准件调至零位,在整个被测表面上按需要测量一定数量的测量点,将百分表读数绝对值的最大值乘以2,作为零件的面位置度误差;用综合量规检测,量规销的直径为被测孔的实效尺寸,量规各销的位置与被测孔的理论位置相同,量规的测量基面与被测件的基面重合,凡是能通过量规销的零件均为线位置度合格的产品;用心轴、坐标检测法,按基准调整被测件,使其与测量坐标方向一致,将心轴插入孔中,测量垂直方向上各2个点,测量点尽可能靠近被测件的平面,将被测件翻转,对其背面按上述方法进行测量,对每一面的测量结果分别计算坐标计算坐标尺寸,坐标尺寸分别减去相应的理论尺寸得到变化量,应用勾股定理计算得到线位置度误差;用综合检测线位置度,按基准调整被测件,使其轴线与分度装置回转轴线同轴,任选一孔,以其中心作径向定位,用千分表测出各孔的径向误差,计算得到其位置度误差,翻转被测件,按上述方法重复测量,取其中较大值作为该要素的位置度误差;将箱(壳)体置于千斤顶上,用心轴、角尺将基准要素找正,将心轴置于被测要素内,用百分表(或千分表)沿心轴轴向测量上母线读数,将最大、最小读数差换算到被测孔长度尺寸上,所得之值即为两轴线的位置度误差值;按基准调整被测件,使其与测量装置的坐标方向一致,测出被测点坐标值,分别和理论尺寸比较,得2个方向的变化量,计算出点位置度误差;被测件由回转定心夹头定位,再选择适宜直径的钢球,置于被测件球面坑内,以钢球球心模拟被测球面坑的中心,使用2个百分表,百分表先按标准调至零位,回转定心夹头一周,测得垂直方向变化量,以此计算出点位置度。

相关文档
最新文档