保险精算学第三章练习题
保险精算3

永续年金
永续年金:每期收付款1单位元,而收付款的 次数没有限制,永远持续的年金。 期初付永续年金现值:每期初收付款1单位元的 永续年金在初始时刻的现值。
a 1 v v ...
2
..
1 1 = 1 v d
期末付永续年金
a v v 1 v v v ... 1 v iv i
2 3
永续年金与定期年金的关系式
an a v a
n
永续年金积累值是否存在?
课堂练习13
例:某单位在20年内每年初存入银行5000元建 立职工奖励基金。从存入最后一笔款后的第二 年起,每年初提取固定金额奖励一名有突出贡 献的职工,这种奖励形式持续下去。假设利率 为8%,求每次能够提取的最大金额。
课堂练习11
在t=0时刻,小王存了625元到A账户, 以6%的单利记息;在第2年末,小李存 了400元到B账户,以δt=1/(6+t) ,t ≥2记 息。两个账户在n年末相等,求n为多少? a 23 b 24 c 25 d 26 e 27 (d)
课堂练习12
资金A账户按以下方式记息。前4年,按 单利为2%记息,后4年,按δ t= 0.2/(1+0.2t) 记息,后4年,按δ t= 0.4记 息 ,在第10年末,账户共有资金1000元, 求: (1)账户初期本金是多少? (2)第9年初账户资金为多少? (3)i9为多少?
v
n
v(1 v ... v v an a n (1 i )an
.. ..
n2
v
n 1
)
延期m年支付的期初付年金
m
| an v v
保险精算习题

1.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
2.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
3.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
4. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。
5.某银行推出2年期存单,年利率为9%,存款者若提前支取则面临两种可供选择的惩罚方式:变为活期存款,年利率为7%;损失3个月的利息。
某存款人拥有这种存单但要在第18个月末时支取,试问该人该选择哪种惩罚方式?第二章:年金练习题1.证明()n mm n v v i a a -=-。
√2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。
年计息12次的年名义利率为8.7% 。
计算购房首期付款额A 。
√3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。
√4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。
年利率为10%,计算其每年生活费用。
√5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。
年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知1012v =,计算K 。
保险精算第3章(3)

s(x t)
t px
1 ty px t px
1
pxt y pxt
1
p
y x
y p xt pxy
26
例:在常数死力下求: q5 75.25
l75 56799 l76 54239 l80 43180 l81 40208
p 5 75.25 p 0.75 75.25 4 p76 0.25 p80
5 p20 0.2 p25 (10.8 p25.2 2 p26 0.6 p28 )
l25 l20
(1
0.2q25 )[1
(1
0.8q25 1 0.2q25
)
l28 l26
(1
0.6q28 )
0.00248
24
二、年龄内常数死力假设(几何插值法)
还可以怎么写?
• 令: s(x t) s(x)1t s(x 1)t 0 t 1
p0.75 75
l80 l76
p 0.25 80
0.75545
q5 75.25 0.24455
27
三、调和插值法(Balducci假设)
• 令: 1 1 t t
s(x t) s(x) s(x 1)
0t 1
• 生存函数:
t
px
s(x t) s(x)
1 1t t s(x) s(x 1)
0 t 1
1.t qx
lx
lxt lx
td x lx
tqx
2.t px
lxt lx
lx tdx lx
1 tqx
3. y qxt
lxt
lxt y lxt
yd x lx tdx
yqx 1 tqx
21
保险精算第三章2

18/25
[例3.2.6] 已知40岁的死亡率为0.04,41岁的死亡率为0.06, 而42岁的人生存至43岁的概率为0.92。如果40岁生存人数为 100人,求43岁时的生存人数。
83.0208(人)
生命表的特点 构造原理简单、数据准确(大样本场合)、不依赖总体分 布假定(非参数方法)
4/25
3.2.2 生命表的内容
在生命表中,首先要选择初始年龄且假定在该年龄生存的一 个合适的人数,这个数称为基数。一般选择0岁为初始年龄, 并规定此年龄的人数,通常取整数如10万、100万、1000万 等。 在生命表中还规定最高年龄,用w表示,满足lw+1=0。 一般的生命表中都包含以下内容: (1) x: 年龄. (2)lx: 生存数,是指从初始年龄至满x岁尚生存的人数。 例:l25表示在初始年龄定义的基数中有l25人活到25岁。 1) lx表示自出生至满x岁时尚存活人数的期望值。 2) lx为连续函数,随年龄x增加而递减。但生命表中则以
1/25
学习目标
掌握生命表中生存数的表示方法,含义。 掌握死亡数,死亡率的含义,计算。 掌握生存率的含义,计算。 掌握n年内生存概率,n年内死亡概率的计算公式, 掌握平均余命或生命期望值的计算。 掌握完全平均余命的计算
2/25
§ 3.2 生命表
生命表是寿险精算的科学基础,它是寿险费率和责任准备金 计算的依据,也是寿险成本核算的依据。
生存函数s(x)在20岁、21岁和22岁的值。
5.
如果
x
2 2 x 1 100
x
,0
x
100
若 l0 10000 则
保险精算习题

1.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
2.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
3.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
4. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。
5.某银行推出2年期存单,年利率为9%,存款者若提前支取则面临两种可供选择的惩罚方式:变为活期存款,年利率为7%;损失3个月的利息。
某存款人拥有这种存单但要在第18个月末时支取,试问该人该选择哪种惩罚方式?第二章:年金练习题1.证明()n m m n v v i a a -=-。
√2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。
年计息12次的年名义利率为8.7% 。
计算购房首期付款额A 。
√3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。
√4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。
年利率为10%,计算其每年生活费用。
√5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。
年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知1012v =,计算K 。
保险精算习题及答案

第一章:利息的基本概念练习题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+=∵2.(1)假设A(t)=100+10t,试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A −−−======(2)假设()()100 1.1nA n =×,试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A −−−======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为110%i =,第2年的利率为28%i =,第3年的利率为36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎞⎜⎟=+=⎜⎟⎜⎟⎝⎠6.设m >1,按从大到小的次序排列()()m m d d i i δ<<<<。
保险精算习题

1.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
2.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
3.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
4. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。
5.某银行推出2年期存单,年利率为9%,存款者若提前支取则面临两种可供选择的惩罚方式:变为活期存款,年利率为7%;损失3个月的利息。
某存款人拥有这种存单但要在第18个月末时支取,试问该人该选择哪种惩罚方式?第二章:年金练习题1.证明()n mm n v v i a a -=-。
√2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。
年计息12次的年名义利率为8.7% 。
计算购房首期付款额A 。
√3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。
√4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。
年利率为10%,计算其每年生活费用。
√5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。
年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知1012v =,计算K 。
寿险精算基础智慧树知到课后章节答案2023年下山东大学

寿险精算基础智慧树知到课后章节答案2023年下山东大学山东大学绪论单元测试1.寿险精算是以概率论和数理统计为工具,研究人寿保险中的寿命分布规律、寿险赔付规律、保险费率厘定、责任准备金的计提、保险现金价值的计算等问题的一门学科。
()答案:对第一章测试1.现在存入一储蓄账户3万元,第2年底存入1万元,第四年末账户累积到5万元,求此账户实质利率()答案:6.54%2.下列选项中,已知按季度换算的的年名义利率6%,那么5000元在3年末的积累值为()元。
答案:5467.23.下列选项中,基金A按实际利率6%计息,基金B按年利率8%计息,在20年的年末两个基金之和为10000,在第10年底基金B金额是基金A的两倍,求第5年底时两个基金账户的价值和为()答案:3451.54.下列选项中,与按季度换算的年贴现率等价的(每4年换算一次的年名义利率)=()答案:5.下列选项中,向基金A投资5000元,按积累,基金Y也投资5000元,前3年按照半年换算的年名义利率8%计息,三年以后按年实际利率i计息。
4年末时两个基金账户值相同,求i=( )答案:0.0786.下列选项中,已知,求 =()0.05717.下列选项中,年金A月末支付8总共支付3年,年金B每月末支付10共支付1.5年,假设月实际利率为i,两个年金现值相同,求i=()答案:8%8.下列选项中,永续年金A每年底支付15,等差递增型永续年金B每年末支付1、2、3、…,年金A和B采用相同的年利率i计息,且现值相同,求i=()答案:7.1%9.张先生从银行贷款20万元,计划每半年还款一次,等额偿还,4年还清。
采用按半年换算的年名义利率7%计息,求每次还款的金额为()元。
答案:2909510.对于利率为i,已知,则i=()。
答案:第二章测试1.已知()答案:0.0012.已知(x)剩余寿命T服从密度函数为的分布,求=()。
答案:3.已知()答案:4.下列选项中,假设非整数年龄服从Balducci调和加权平均假设,的正确表达式是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章:生存模型与生命表
1、已知 。在Balducci,UDD和常数死亡力三种假设下对 排序。
2、给定 ,在每一年龄年UDD假设成立,计算 。
3、给定 求 和 。
4、给定 ,在年龄段[x,x+1]Balducci假设成立, 。计算 。
5、给定生存函数 ,则求 。
6、已知生存分布 计算 ,以及(x)的பைடு நூலகம்来生存时间的中位数。
7、设 ,给定 计算K+L。
8、死亡力遵从de Moivre法则, ,计算var(T(16))。
9、如果 ,0≤x≤100,求 =10 000时,求该生命表中1岁到4岁之间的死亡人数。
10、已知20岁的生存人数为1 000人,21岁的生存人数为998人,22岁的生存人数为992人,求 。