液体动压滑动轴承油膜压力分布和摩擦特性曲线

合集下载

实验三 动压滑动轴承实验

实验三 动压滑动轴承实验

实验三动压滑动轴承实验一、实验目的1.验证动压滑动轴承油膜压力分布规律,了解影响油膜压力分布规律的因素,并根据油膜压力分布曲线确定端泄影响系数K b;2.测定动压滑动轴承的摩擦特征曲线,并考察影响摩擦系数的因素。

二、实验设备及仪器1.HZS-1型动压滑动轴承试验台图1 HZS-1型动压滑动轴承实验台图1为试验台总体布置,图中件号1为试验的轴承箱,通过联轴器与变速箱7相联,6为液压箱,装于底座9的内部,12为调速电动机,通过三角带与变速箱输入轴相联,8为调速电机控制旋钮,5为加载油腔压力表,由減压阀4控制油腔压力,2为轴承供油压力表,由减压阀控制其压力,油泵电机开关为10,主电机开关为11,试验台的总开关在其正面下方。

图2为试验轴承箱,件号31为主轴,由一对D级滚动轴承支承,32为试验轴承,空套在主轴上,轴承内径d=60mm,有效宽度=60mm。

在轴承中间横剖面上,沿周向开7个测压孔,在120°范围内的均匀分布,测压表21~27通过管路分别与测压孔相联。

距轴承中间剖面L/4(15mm)处,轴承上端有一个测压孔,表头28与其相联,件号33为加载盖板,固定在箱体上,加载油腔在水平面上的投影面积为60cm2在轴承外圆左侧装有测杆35,环34装在测杆上以供测量摩擦力矩用,环34与轴承中心的距离为150mm,轴承外圆上装有两个平衡锤36,用以在轴承安装前做静平衡。

图2 实验轴承箱箱体左侧装有一个重锤式拉力计如图3所示,测量摩擦力矩时,将拉力计上的吊钩与环34联接,即可测得摩擦力矩。

测杆通过环34作用在拉力计上的力F,由重锤予以平衡,其数值可由αsin1RWLF=求得。

式中R为圆盘半径,W为重锤之重量,L1为重锤重心到轴心之距离,α为圆盘之转角,圆盘转角α通过齿轮放大,可使表头指针转角放大10倍,表头刻度即为F的实际值,单位为克。

JZT型调速电动机的可靠调速范围为120~1200转/分,为了扩大调速范围,试验台传动系统中有一个两级变速箱,当手柄向右倾斜,主轴与电机转速相同;当手柄向右倾斜,主轴为电机转速的1/6。

实验7 液体动压滑动轴承油膜压力与摩擦仿真及测试分析分解

实验7 液体动压滑动轴承油膜压力与摩擦仿真及测试分析分解

3)转速对油膜压力的影响 转速越高,单位时间通过载荷作用面的润滑 油就越多,产生的摩擦力就越大,油膜压力就越 大,特别是当转速达到一定值使流体的流动由层 流变为紊流时,承载力会得到显著提高。在转速 升高的同时会使润滑油的温度上升,运动粘度下 降,使油膜压力降低承载能力下降。相比而言, 油温升高带来的油膜压力降低比转速上升带来的 油膜压力升高要小得多。 4)液体动压滑动轴承设计的结构、尺寸,制造 精度,材料选择对动压油膜的产生和压力的大小 都有直接的影响。
实验7 液体动压滑动轴承油膜压 力与摩擦仿真及测试分析
7.1 实验目的
通过在 HSB 型试验台上,对液体动压 轴承进行径向和轴向油膜压力分布及大小的 测量和仿真,对摩擦特性曲线进行测定及仿 真,了解影响液体动压滑动轴承油膜建立及 影响油膜大小各项因素之间的关系。
7.2 实验原理
利用轴承与轴颈配合面之间形成的楔形间
3、滑动轴承油膜压力仿真与测试分析界面
4、滑动轴承摩擦特征仿真与测试分析界面
7.8 实验内容
1.液体动压轴承油膜压力周向分布测试分析
该实验装置采用压力传感器、A/D板采集该 轴承周向上七个点位置的油膜压力,并输入计 算机通过曲线拟合作出该轴承油膜压力周向分 布图。通过分析其分布规律,了解影响油膜压
传感器采集的实时数据。
注:此键仅用于观察和手动纪录各压力传感器采集的数据,软件所
需数据将由控制系统自动发送、接收和处理。
7.7软件界面操作说明
1、由计算机桌面“长庆科教”进入启动界面
2、在图7-7启动界面非文字区单击左键, 即可进入滑动轴承实验教学界面。


[实验指导]: 单击此键,进入实验指导书。 [进入油膜压力分析]: 单击此键,进入油膜压力及摩擦特性分析。 [进入摩擦特性分析]: 单击此键,进入连续摩擦特性分析。 [实验参数设置]: 单击此键,进入实验参数设置。 [退出]: 单击此键,结束程序的运行,返回WINDOWS界面。

液体动压润滑向心滑动轴承实验

液体动压润滑向心滑动轴承实验

3’
4’
5’
2’
F
3
45
6’
6
2 1’
1
7 7’
端泄影响系数
Pm
2’ 1’
3’ 4’
5’ 6’ 7’
12 3
4 5 67
七、实验报告要求
数据记录
压力表号 p1
p2
p3
p4
p5
p6
p7
p8 (轴向)
压力
江苏大学工业中心
七、实验报告要求
绘制油膜的轴向和周向压力分布曲线
3’
µl
=
0.001 m mm
5’
江苏大学工业中心
四、实验设备
动力装置 油压测试装置
加载装置
1-直流电动机 2-三角带 3-传感器 4-螺旋加载杆 5-弹簧片 6-测力计(百分表) 7-压力表(径向7只,轴向一只) 8-主轴瓦 9-主轴 10-主轴箱
江苏大学工业中心
五、实验步骤
实验条件:W=70kgf,n=500r/min。 1、打开电源。 2、将转速调至500r/min左右。 3、加载,外载荷为70Kg.f。 4、等待油压表稳定后读出P1-P8的数据,记录在表格中。
稳定后再进行数据记录。
江苏大学工业中心
分组实验
2’
F
3
4 5
6’
µP
MPa
= 0.01
mm
4’
8’
8’
2
1’ 1 20o
6 7’ 7
30o
30o
0
0
B/4
d
B/2
B
n
周向压力分布曲线
轴向压力分布曲线
江苏大学工业中心
七、实验报告要求

动压滑动轴承实验

动压滑动轴承实验

动压滑动轴承实验一.实验目的1.观察滑动轴承动压润滑油膜的形成过程,验证动压油膜在径向和轴向的压力分布规律,测定绘制油膜压力分布曲线。

2.观察载荷和转速改变时油膜压力的变化情况。

3.了解液态摩擦系数的测量方法,测定并绘制滑动轴承的摩擦特性曲线,并分析影响液态摩擦系数的因素。

二.实验设备及工作原理1.主要技术参数:油号:N32,动力粘度 (Pa.S):0.028,摩擦力标定系数K:0.098N/格,摩擦力力臂L:120mm,轴承直径d:70mm,轴瓦长度B:125mm,轴瓦组件自重W0:4Kg,室温C :2.动压油膜压力的测量滑动轴承实验台的核心部分为由轴径和轴瓦(半轴瓦)组成的滑动回转付,为了测量轴与轴瓦之间润滑油膜的压力,在各测试点对应的轴瓦上沿径向钻有小孔,通过这些小孔外接油压表,指示这些测试点的油膜压力;这些小孔在轴瓦上的分布位置为:在轴瓦长度方向1/2处横剖面上,沿半圆周方向,在120°范围内,以中间对称均匀分布7个小孔(接1-7# 油压表),用以指示轴承中间剖面径向油膜压力分布情况。

在轴瓦长度方向1/4处横剖面上的半圆周中间沿径向开1个小孔(接8# 油压表),该小孔与中间剖面上的7个小孔中的中间小孔(接4# 油压表)一起来指示布曲线。

3.油膜形成(摩擦状态)指示装置在实验台控制面板上,设有1个油膜指示灯;油膜指示灯电路通过轴径和轴瓦连成回路(如图所示)。

当轴不转动时,轴径和轴瓦直接接触,油膜指示灯电路接通,灯泡很亮;当轴低速转动时,润滑油进入轴和轴瓦之间形成很薄的油膜,2.打开电源前,应先将外载荷W卸掉,以避免因带载启动而造成轴瓦磨损。

3.接通电源,①通过载荷调零旋钮将载荷显示器调零;②将测力百分表调零。

4.启动电动机并调速至400r/min,分别加40Kg力、60Kg力外载荷,测量油膜压力分布数据;然后把电动机调速至300r/min,读出对应的百分表示数∆,再把电动机转速每次下调50转至250r/min、200r/min、150r/min、100r/min、50r/min,读出对应的百分表示数∆,用于计算摩擦系数f。

液体动压润滑径向轴承油膜压力和特性曲线

液体动压润滑径向轴承油膜压力和特性曲线

精品资料推荐液体动压润滑径向轴承油膜压力和特性曲线(二) HZS —I型试验台一.实验目的1. 观察滑动轴承液体动压油膜形成过程。

2. 掌握油膜压力、摩擦系数的测量方法。

3. 按油压分布曲线求轴承油膜的承载能力。

二.实验要求1. 绘制轴承周向油膜压力分布曲线及承载量曲线,求出实际承载量。

2. 绘制摩擦系f与轴承特性的关系曲线。

3. 绘制轴向油膜压力分布曲线三•液体动压润滑径向滑动轴承的工作原理当轴颈旋转将润滑油带入轴承摩擦表面,由于油的粘性作用,当达到足够高的旋转速度时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层中产生压力。

当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。

这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于液体摩擦润滑状态。

因此这种轴承摩擦小,寿命长,具有一定吸震能力。

液体动压润滑油膜形成过程及油膜压力分布形状如图8-1所示。

滑动轴承的摩擦系数f是重要的设计参数之一,它的大小与润滑油的粘度(Pas)、轴的转速n (r/min)和轴承压力p (MPi)有关,令nP (7)式中:一轴承特性数观察滑动轴承形成液体动压润滑的过程,摩擦系数f随轴承特性数的变化如图8-2所示。

图中相应于f值最低点的轴承特性数c称为临界特性数,且c以右为液体摩擦润滑区,c以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。

因此f值随减小而急剧增加。

不同的轴颈和轴瓦材料、加工情况、轴承相对间隙等,f—曲线不同,c也随之不同。

四.HZS-1型试验台结构和工作原理1•传动装置如图8-7所示,被试验的轴承2和轴1支承于滚动轴承3上,由调速电机6通过V带5 带动变速箱4,从而驱动轴1逆时针旋转并可获得不同的转速。

精品资料推荐(9)21 —轴2—试验轴承3—滚动轴承 4 —变速箱5 — V 带传动6—调速电机图8-7传动装置示意图2.加载装置该试验台采用静压加载装置,如图图8-8所示。

滑动轴承实验报告

滑动轴承实验报告

液体动压滑动轴承实验报告一、 实验目的1、测量轴承的径向和轴向油膜压力分布曲线。

2、观察径向滑动轴承液体动压润滑油膜的形成过程和现象。

3、观察载荷和转速改变时的油膜压力的变化情况。

4、观察径向滑动轴承油膜的轴向压力分布情况。

5、测定和绘制径向滑动轴承径向油膜压力曲线,求轴承的承载能力。

6、了解径向滑动轴承的摩擦系数f 的测量方法和摩擦特性曲线λ的绘制方法。

二、 实验设备及工具 滑动轴承实验台 三、 实验原理1、油膜压力的测量轴承实验台结构如图1所示,它主要包括:调速电动机、传动系统、液压系统和 实验轴承箱等部分组成。

在轴承承载区的中央平面上,沿径向钻有8个直径为1mm 的小孔。

各孔间隔为22.50,每个小孔分别联接一个压力表。

在承载区内的径向压力可通过相应的压力表直接读出。

将轴径直径(d=60mm )按比例绘在纸上,将1~8个压力表读数按比例相应标出。

(建议压力以1cm 代表5kgf/cm 2)将压力向量连成一条光滑曲线,即得到轴承中央剖面油膜压力分布曲线)。

同理,读出第4和第8个压力表示数,由于轴向两端端泄影响,两端压力为零。

光滑连结0‘,8’,4‘,8’和0‘各点,即得到轴向油膜压力分布曲线。

2、摩擦系数的测量图1 轴承实验台结构图1、操纵面板2、电机3、三角带4、轴向油压传感器接头5、外加载荷传感器6、螺旋加载杆7、摩擦力传感器测力装置8、径向油压传感器(8只)9、传感器支撑板 10、主轴 11、主轴瓦 12、主轴箱径向滑动轴承的摩擦系数f 随轴承的特性系数λ(λ=ηn/p )值的改变而改变。

在边界摩擦时,f 随λ值的增大而变化很小,进入混合摩擦后,λ值的改变引起f 急剧变化,在刚形成液体摩擦时f 达到最小值,此后,随λ值的增大油膜厚度亦随之增大,因而f 亦有所增大。

摩擦系数f 之值可通过测量轴承的摩擦力矩而得到。

轴转动时,轴对轴瓦产生周向摩擦力F ,其摩擦力矩为Fd2,它能使空套在轴上的轴瓦随轴转动,由于在轴瓦的外表面上固定一个测力杆,测力杆一端与轴瓦连接,另一端与弹簧片接触。

动压滑动轴承实验指导书

动压滑动轴承实验指导书

动压滑动轴承实验指导书一、实验学时本实验2学时。

二、实验目的1. 观察油膜的形成与破裂现象、分析影响动压滑动轴承油膜承载能力的主要因素;2. 测量轴承周向及轴向的油膜压力、绘制其油膜压力分布曲线;3. 测定轴承的摩擦力、绘制轴承特性(λ−f )曲线;4. 掌握动压滑动轴承试验机的工作原理及其参数测试方法。

(1) 油膜压力(周向和轴向)的测量; (2) 转速的测量;(3) 摩擦力及摩擦系数的测量;三、实验机的构造及参数测试原理直流电机 2-V 形带 3-箱体 4-压力传感器 5-轴瓦 6-轴7-加载螺杆8-测力杆 9-测力传感器 10-载荷传感器 11-操作面板 图1 1.传动装置直流电机1通过V 带2驱动轴6旋转。

轴6由两个滚动轴承支承在箱体3上,其转速由面板11上的电位器进行无级调速。

本实验机的转速范围3~375转/分,转速由数码管显示。

2.加载方式由加载螺杆7和载荷传感器10组成加载装置,转动螺杆7可改变外加载荷的大小。

载荷传感器的信号经放大和A/D 转换后由数码管显示其载荷数值。

加载范围0~80㎏,不允许超过100㎏。

3. 油膜压力的测量在轴瓦5中间截面120°的承载区内(见图2左图)钻有七个均布的小孔,分别与七只压力传感器4接通,用来测量径向油膜压力。

距正中小孔的B/4轴承有效长度处,另钻一个小孔连接第八只压力传感器,用来测量轴向压力。

图2压力传感器的信号经放大、A/D 转换分别由数码管显示轴承径向油膜压力和周向油膜压力。

4. 摩擦系数的测量在轴瓦外圆的后端装有测力杆8(见图1),测力杆紧靠测力传感器9,轴旋转后,轴承间的摩擦力矩应由力臂作用于测力传感器所产生的摆动力矩相平衡。

即302F 2M L Fc D L Fc L F D F C M ⋅=⋅=⋅=⋅故 摩擦系数(3)式中:F — 轴承外载荷 (N) F=外加载荷 + 轴承自重=750 N 30FL Fc F f ⋅==F M L -力臂长度 (mm ) F M — 轴承的摩擦力 (N) F C — 测力传感器读数四、实验数据处理及绘制有关曲线为消除载荷对机械系统变形引起测量的误差,通常在载荷不变的情况下,分级改变转速,测量各级转速下有关参数,然后进行计算处理和绘制有关曲线。

滑动轴承的摩擦特性曲线和油膜压力分布

滑动轴承的摩擦特性曲线和油膜压力分布

验证性实验指导书实验名称:滑动轴承的摩擦特性曲线和油膜压力分布实验简介:液体动压润滑径向滑动轴承的工作原理是通过轴颈旋转将润滑油带入轴承摩擦表面,因轴颈与轴承具有径向间隙,从而在轴与轴瓦的配合面之间产生楔形间隙,当轴回转时,会带动附在轴上的油层,由于油中分子之间存在附着力(粘度),这一油层也会带来邻近的油层,于是当轴达到足够的回转速度时油就被挤入楔形间隙里。

通过本实验对滑动轴承的摩擦特性及油膜压力分布情况进行验证,进一步巩固所学知识,同时拓宽学生的知识面。

适用课程:机械设计实验目的:A绘出周向和轴向油膜压力分布曲线,以验证其理论分布规律;B绘出轴承摩擦特性曲线,了解在液体润滑状态下摩擦系数与转速、压力之间的关系;C学习测量方法和掌握实验技能。

面向专业:机械类实验项目性质:验证性(课内必做)计划学时: 2学时实验分组:3人/组《机械设计》课程实验实验三滑动轴承的摩擦特性曲线和油膜压力分布液体动压润滑径向滑动轴承的工作原理是通过轴颈旋转将润滑油带入轴承摩擦表面,因轴颈与轴承具有径向间隙,从而在轴与轴瓦的配合面之间产生楔形间隙,当轴回转时,会带动附在轴上的油层,由于油中分子之间存在附着力(粘度),这一油层也会带来邻近的油层,于是当轴达到足够的回转速度时油就被挤入楔形间隙里。

由于通过间隙各径向截面的油量不变(流体连续条件),而间隙的界面逐渐减小,因此在油层中必然产生液体动压力,它总是力图楔开配合面,当油层中压力的大小能够平衡外载荷时,轴就好像浮动一样,这时在轴与轴瓦之间形成了稳定的油层,轴的中心相对轴瓦中心有一个偏距。

液体动压滑动油膜的形成过程及油膜压力分布形状如图3-1所示。

摩擦系数f是设计动压滑动轴承的重要参数之一,它的大小与润滑油粘度η(Pa•S)、轴的转速n(r/min)和轴承压力P(MPa)有关,通常令:λ=η•n/P称λ为轴承特性数。

观察滑动轴承形成液体动压润滑的过程,摩擦系数f随轴承特性数λ的变化如图3-2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计基础(Ⅲ)实验报告 班级姓名液体动压滑动轴承油膜压力分布和摩擦特性曲线 学号一、 概述液体动压滑动轴承的工作原理是通过轴颈的旋转将润滑油带入摩擦表面,由于油的粘性(粘度)作用,当达到足够高的旋转速度时油就被挤入轴与轴瓦配合面间的楔形间隙内而形成流体动压效应,在承载区内的油层中产生压力,当压力的大小能平衡外载荷时,轴与轴瓦之间形成了稳定的油膜,这时轴的中心对轴瓦中心处于偏心位置,轴与轴瓦间的摩擦是处于完全液体摩擦润滑状态,其油膜形成过程及油膜压力分布如图6-1所示。

图6-1 建立液体动压润滑的过程及油膜压力分布图滑动轴承的摩擦系数f 是重要的设计参数之一,它的大小与润滑油的粘度η(Pa.s)、轴的转速n(r/min)和轴承压强p(Mpa)有关,令pnηλ=式中,λ——轴承摩擦特性系数。

图6-2 轴承摩擦特性曲线观察滑动轴承形成液体摩擦润滑过程中摩擦系数变化的情况,f-λ关系曲线如图6-2所示,曲线上有摩擦系数最低点,相应于这点的轴承摩擦特性系数λkp称为临界特性数。

在λkp以右,轴承建立液体摩擦润滑,在λkp以左,轴承为非液体摩擦润滑,滑动表面之间有金属接触,因此摩擦系数f 随λ减小而急剧增大,不同的轴颈和轴承材料、加工情况、轴承相对间隙等,λkp也随之不同。

本实验的目的是:了解轴承油膜承载现象及其参数对轴承性能的影响;掌握油膜压力、摩擦系数的测试及数据处理方法。

二、 实验要求1、在轴承载荷F=188kgf 时,测定轴承周向油膜压力和轴向油膜压力,用坐标纸绘制出周向和轴向油膜压力分布曲线,并求出轴承的实际承载量。

在轴承载荷F=128kgf 时,测定轴承周向油膜压力和轴向油膜压力,用计算机进行数据处理,得出周向和轴向油膜压力分布曲线及轴承的承载量。

2、测定轴承压力、轴转速、润滑油粘度与摩擦系数之间的关系,用计算机进行数据处理,得出轴承f-λ曲线。

三、 实验设备及原理本实验使用 HZS-1型液体动压轴承实验台,它由传动装置、加载装置、摩擦系数测量装置、油膜压力测量装置和被试验轴承和轴等所组成。

1、传动装置:如图6-3所示,被试验的轴承2和轴1支承于滚动轴承3上,由调速电机7通过三角带6及变速箱5带动轴1旋转并可获得不同的转速。

图6-4为试验台的总体布置图。

图6-3 轴承试验台传动示意图 图6-4 试验台总体外观图1— 轴;2—试验轴承;3—滚动轴承;4—联轴器; 1—试验轴承箱;2—供油压力表;3—减压阀; 5—变速箱;6—三角带传动装置;7—调速电机 4—加载油腔压力表;5—溢流阀;6—油箱;7—总开关;8—变速箱;9—带传动;10—转速表;11—转速调节旋钮;12—油泵开关;13—主电机开关;14—调速电机;15—转速控制开关2、加载装置:如图6-5所示,图中4为静压加载板,它位于被测轴承上部,并固定在箱体上,当输入压力油至加载板的油腔内时,轴承即获得载荷,此载荷是施加在轴承壳体上的,轴承载荷为)(81.900G A p F +=, N (6-1)式中 0p —加载板供油腔供油压强(kgf/cm 2);A —加载板油腔的投影面积,A=60 cm 2;G 0—轴承自重,G 0=8 kgf (包括压力表及平衡重)。

图6-5 静压加载装置 图6-6 轴承油膜压力测量装置1—轴;2—轴承;3—测力杠杆; 1—压力表(七个,120°内周向分布); 4—加载板;5—拉力测力计; 2—压力表(一个,轴向B/4处); 6—平衡重;7—卡板 3—主轴;4—试验轴承3、摩擦系数测量装置:摩擦系数是通过测量轴承摩擦力矩而得到的,图6-5中测力杆3是与轴承2联接为一体的,当轴旋转后,作用在轴承上的摩擦力矩是通过测力杆由测力计5平衡的,因此QL dfF =⨯2(6-2)式中 f----轴承摩擦系数;L----测力杆力臂距离,L=150㎜; d----轴颈直径,d=60㎜; F----轴承载荷,NQ----测力计力的读数,gf,(克力)。

将L 、d 之数值带入式(6-2),并化简得FQf 049.0= (6-3) 4、油膜压力测量装置:与图6-1不同的是承载区是在轴承上半部,为了测量油膜压力,在轴承上半部中间即轴承有效宽度B/2处(图6-6)的剖面上沿圆周120°内钻有七个均匀分布的小孔,并联接七只压力表(测周向压力),在轴承轴向有效宽度B/4处也钻有一个小孔,并联接一只压力表(可测轴向压力)。

这样通过压力表可以读出相应位置的油膜压力值,从而得到轴承的周向和轴向压力分布曲线。

使用计算机辅助实验时,试验轴承小孔上安装有电阻式压力传感器,油膜压力信号经由传感器将压力值转换为电信号,并经放大及A/D 转换,输入计算机后进行数据处理并打印全部实验结果。

5、试验机的主要参数及性能试验轴承: 直径d=60㎜;有效宽度B=60㎜; 材料ZQSn6-6-3;表面粗糙度Ra 0.8µm(▽7) 相对间隙:=ϕ 1.17‰(直径间隙△=0.07㎜); 润滑油:10号机械油;加载范围:0-300kgf(调节溢流阀实现无级可调);调速范围;20-1200r/min(低速档20-200 r/min ,高速档120-1200 r/min)。

四、 实验方法及步骤1、油膜压力分布的测定:先用卡板7(图6-5)卡住测力杆3,以免拉力测力计损坏,开启油泵,调节溢流阀,使轴承供油压力约在0.5-1 kgf/㎝2内,将变速箱变速手柄放在低速档上,调速旋钮旋至低速位置,开启调速电机及转速控制开关,指示红灯亮,转动调速旋钮,使转速读数在100-200 r/min 之间,再将变速手柄扳到高速档,逐渐调高转速至600 r/min ,调节溢流阀手柄,将加载供油压力调到规定的数值,例如0p =3 kgf/㎝2(轴承载荷 F=188 kgf ),运转几分钟待各压力表数值稳定后自左至右依次记录七只压力表及轴向B/4处压力表读数。

重新调节加载供油压力0p =2kgf/㎝2(轴承载荷F=128 kgf ),待稳定后记录各压力表数值于表6-1中。

使用计算机辅助实验时,可将一种载荷下(例如F=188 kgf )的压力数据通过传感器直接输入计算机进行测试和数据处理。

2、摩擦系数及特性系数λ的测定特性系数λ的获得主要是测定η、p 、及n 各项参数。

粘度η主要根据轴承平均工作温度m t 来决定。

压力p 可根据轴承载荷确定,本实验轴承载荷可保持不变,转速n 则可用转速计测得。

或从试验台上的转速表上读得。

实验时,使加载供油压力0p =3kgf/㎝2保持不变,将卡板7打开,使测力杆3可以自由转动,依次将主轴转速调至600、500、400、300、200、100、50、30 r/min …等(临界值附近可依具体情况选择),记录各转速时的拉力计读数,并相应测定轴承进油温度t 1(与静压加载板油温相同),根据t 1与轴承平均工作温度 t m 关系公式(6-4),可相应计算得到t m 值,再根据粘温曲线(图6-7)可查得润滑油粘度η值,将各数据记录于表6-2中。

数据测试完毕,应注意先卸载,并降低转速,然后停车。

3、轴承平均工作温度m t 及粘度η的确定由于测定轴承的工作温度比较困难,因此采用测定轴承入口油温t 1方法,然后由发热条件,根据实验得出的经验公式计算出轴承平均工作温度m t 。

185.032.9t t m += (6-4) 式(6-6)适用条件为轴承采用10号机械油润滑.实际测量t 1是测量静压加载板油腔温度,因它与试验轴承是使用同一油路,其油温与轴承入口油温相同。

根据轴承平均工作温度m t ,可由图6-7粘温曲线查得轴承的工作粘度η值。

油膜压力分布、f-λ曲线等各项实验结果记录表格见表6-1、6-2。

.图6-7 10号机械油粘度温度关系曲线五.数据处理图6-8 周向油膜压力分布曲线 图6-10 轴承摩擦特性曲线1、绘制周向、轴向油膜压力分布曲线并计算实际承载量。

将轴承孔按1:1比例绘制在16开坐标纸上,并将七个测压孔位置 1、2、……7相应标出(1~7之间每个间隔20°,1和7与水平中心线各成30°角)。

通过各点沿半径延长方向按一定比例尺(建议取1㎝=2 kgf/㎝2)标出所测得的相应压力表读数,将各压力向量末端连成一光滑曲线,即得轴承中间剖面油膜压力分布曲线。

曲线起末两点由曲线光滑连接定出。

(图6-8)。

由油膜压力分布曲线可求得轴承中间剖面上的平均单位压力,将圆周上各点0,1,2……7,8投影到一水平直线上(图6-8下部),在相应点的垂线上标出对应的压力值,将其端点0′,1′,2′……7′,8′联接成一光滑曲线,用数方格方法或用求积仪近似求出此曲线所围的面积,然后取m p 使其0′8′所围矩形面积与所求得的面积相等,此m p 值即为轴承中间剖面上的平均单位压力(应按原比例尺换算出压力值)。

轴承端泄对油膜压力在宽度方向的影响系数BdP Fk m(6-5) 式中 F —轴承载荷,N ;m p —轴承中间剖面上的平均压力,Mpa ; B —轴承有效宽度,㎜; d —轴承孔直径, ㎜。

一般认为轴向油压近似二次抛物线规律分布,k ≈0.67,将求得的k 值与此值加以比较分析。

用坐标纸绘制轴向油膜压力分布曲线,画一水平线取长度为B=60㎜,在中点的垂线上按前比例尺标出该点的压力为P 4(端点为4′),在距两端B/4=15㎜处沿垂线方向各标出压力P 8(即压力表8的读数),由对称关系,轴承轴向压力各点依次为0,8′,4′,8′,0五点可连成一光滑曲线,如果轴向压力符合抛物线分布规律,根据理论分析,则max 843p p ≈,其中4max p p =,将实测之8p 与443p 进行分析比较。

2、绘制轴承摩擦特性曲线根据实测及记录的数据,f 值可由式(6-3)算出,λ值为p n /ηλ= (6-6) 式中 η—润滑油动力粘度,Pa ·s,由轴承平均工作温度t m 查出; n —轴的转速,r/min; p —轴承压强,dBFp =, MPa. 五、 计算机辅助实验本实验台与计算机联接,在滑动轴承周向、轴向承载区安装压力传感器,经电压放大器,A/D 转换装置,采集有关油膜压力分布的实验数据,输送到计算机中。

对于滑动轴承摩擦特性实验的数据,采用“人机对话”方式输入实验数据。

然后,利用微机进行计算,数据处理,包括在屏幕上显示实验曲线、用打印机打印实验报告等。

实验装置的方框图如下图所示:实验基本原理为:当试验轴承形成液体动压后,油膜压力通过压力传感器转换成电压(mv )输出,再经滑动轴承数据采集仪(采集仪通过电压放大装置将电压放大,并将放大后的电压信号通过A/D 转换板进行模/数转换),转换后的信号存入计算机中。

相关文档
最新文档