钢结构稳定性设计

合集下载

钢结构设计中的强度与稳定性分析

钢结构设计中的强度与稳定性分析

钢结构设计中的强度与稳定性分析钢结构作为一种重要的建筑构造形式,在现代建筑中得到了广泛的应用。

其独特的特点使其成为了建筑设计师们的首选,然而,正确理解和分析钢结构的强度与稳定性是确保其安全性和可靠性的关键。

本文将深入探讨钢结构设计中的强度与稳定性分析,以期对读者有所启发。

一、强度分析钢结构的强度分析是确保建筑结构能够承受正常和异常荷载的重要步骤。

在设计过程中,工程师需要考虑到以下几个关键因素。

1.1 材料强度钢材作为钢结构的主要构造材料,其强度参数决定了整个结构的抗力能力。

工程师需要详细了解所选用的钢材的性能指标,包括屈服强度、抗拉强度、弹性模量等,以确保设计结构的强度能够满足要求。

1.2 荷载计算在设计过程中,荷载计算是非常重要的一环。

工程师需要根据建筑的用途和具体情况,准确计算出可变荷载、恒载和地震荷载等,以保证设计的结构能够承受这些荷载。

当荷载不均匀分配时,还需要进行统一系数的计算。

1.3 结构稳定钢结构的稳定性是强度分析中不可忽视的一部分。

当结构受到垂直或水平方向的外力作用时,其稳定性要求结构能够保持稳定。

工程师需要根据实际情况,采用适当的稳定性分析方法,确保设计的结构能够满足要求。

二、稳定性分析稳定性分析是钢结构设计中非常重要的一环,它主要考虑结构在受荷时的稳定性能。

以下是一些常见的稳定性分析方法。

2.1 弯曲稳定性分析在弯曲稳定性分析中,工程师需要计算并分析结构受弯矩作用下的稳定性。

通过计算结构的屈曲系数和容许屈曲荷载,可以确定结构的弯曲稳定性是否得到满足。

2.2 屈曲稳定性分析屈曲稳定性分析主要考虑结构在压力作用下的稳定性。

工程师需要计算结构的临界荷载和理论强度,以保证结构在受压力作用时不发生屈曲。

2.3 应力稳定性分析应力稳定性分析是为了保证结构在受荷时不发生破坏。

工程师需要计算结构的应力集中系数和容许应力,以确保结构在实际使用条件下能够稳定且不发生破坏。

三、结构设计的实践在实际结构设计中,强度与稳定性分析是紧密相连的。

钢结构柱稳定性分析与设计

钢结构柱稳定性分析与设计

钢结构柱稳定性分析与设计钢结构的应用已经广泛应用于工业、民用、桥梁等各个领域。

其中,钢结构柱作为承载重要纵向荷载的主要构件之一,在结构设计中起着至关重要的作用。

本文将对钢结构柱的稳定性进行分析与设计,以确保其在使用过程中的安全可靠性。

1. 稳定性分析在进行钢结构柱的稳定性分析之前,首先需要了解柱的受力情况和设计参数。

柱的受力主要包括压力、弯矩和轴向力三个方面。

同时,还需要确定柱的几何参数,如截面形状、截面尺寸、材料等。

基于这些基本参数,可以进行稳定性分析。

1.1 基本理论:稳定系数与屈曲强度稳定性分析的核心理论是稳定系数和屈曲强度。

稳定系数是指柱在受力情况下的稳定性能,通常以稳定性安全系数来衡量,数值一般大于1。

屈曲强度是指柱在受力超过一定临界值时,发生屈曲破坏的承载能力。

1.2 欧拉公式欧拉公式是钢结构柱稳定性分析中最常用的公式之一,公式表达如下:Pcr = (π² × E × I) / L²其中,Pcr为柱的临界压力,E为钢材的弹性模量,I为截面二阶矩,L为柱的长度。

1.3 弯扭和细长柱对于弯扭和细长钢结构柱,需要引入额外的参数进行分析。

弯扭柱的主要特点是在受力过程中不仅产生弯曲,还会发生扭转变形。

细长柱则是指其长径比较大,易产生扭转屈曲失稳。

针对这两种特殊情况,需要进行详细的计算和分析。

2. 柱的设计在进行钢结构柱的设计时,需要根据结构的实际需求和使用条件,综合考虑稳定性、经济性和施工性等因素。

2.1 确定截面形状和尺寸根据实际情况和设计要求,选择合适的截面形状和尺寸。

常见的截面形状包括矩形、圆形、H型等,不同形状有其各自的优缺点。

同时,根据受力情况和设计参数,确定截面的尺寸。

2.2 材料选择钢结构柱的材料选择与整个结构的设计息息相关。

常见的钢材种类包括普通碳素钢、低合金高强度钢等,根据实际的使用情况和设计要求,选用合适的材料。

2.3 考虑稳定性安全系数在设计过程中,需要合理考虑稳定性安全系数的取值。

钢结构设计原理稳定性整体.pptx

钢结构设计原理稳定性整体.pptx

第4页/共32页
实腹式压弯构件面外实用计算公式
N txMx f y A bW1x
第5页/共32页
tx取值:
﹡面外有支承的构件,应根据两相邻支承点间构件 段内的荷载和内力情况确定:
① 所考虑构件段无横向荷载作用时,
tx=0.65+0.35M2/M1;
② 所考虑构件段有端弯矩和横向荷载同时作用时,
绕z轴的惯性矩满足 Iz 3h0tw3
第24页/共32页
纵向加劲肋截面绕y轴的惯性矩应满足:
Iy 1.5h0tw3
a/h0 0.85
Iy (2.5 4.5a / h0 )a / h0 2 h0tw3 a/h0 0.85
• 短加劲肋要求:
外伸宽度: 取横向加劲肋的0.7~1.0倍
厚度:
ts bs /15
横隔(每个单元不少于2个,间距不大于8m)
第30页/共32页
﹡翼缘的稳定与梁相同
不考虑塑性,
b1 / t 15 235 fy
部分考虑塑性,
b1 / t 13 235 fy
第31页/共32页
感谢您的观看。
第32页/共32页
• 型钢加劲肋:不小于上述对钢板加劲肋的惯性
矩的要求
• 加劲肋端部切角;与上翼缘刨平顶紧(焊接);
中间加劲肋下端留50~100mm空隙
第25页/共32页
第26页/共32页
※支承加劲肋计算
*稳定计算
*承压强度计算(刨平顶紧): =N/Ab fce
第27页/共32页
压弯构件的板件稳定
﹡腹板的稳定
第13页/共32页
②翼缘宽厚比
b1 10 0.1 235
t
fy
! 为两个方向长细比的较大值 取值范围30≤≤ 100

钢结构稳定性设计原则及关键要点

钢结构稳定性设计原则及关键要点

钢结构稳定性设计原则及关键要点1前言在建筑工程技术漫长的发展历程中,钢结构占据重要地位,目前,作为一种主流的建筑结构形式,被广泛应用于各类建筑设计中,尤其是在厂房、桥梁、机场、剧院、超高层等大型建筑结构中。

在上世纪,由于钢材冶炼技术并不发达,建筑用钢材含碳量较高,其韧性和耐腐蚀性等缺点使得钢结构在建筑设计领域并不受重视,一度被边缘化,几乎淘汰。

近几年以来,随着金属冶炼科技的不断进步,高强度、高韧性、耐腐蚀的建筑用钢材被广泛生产,钢结构又重新受到建筑设计师的青睐,被越来越多地使用在各种工程建造中,在减轻建筑物总体结构重量,提高建筑物整体安全性方面起到了积极作用。

[1]随着建筑技术的不断发展,钢结构的使用也越来越广泛,各种复杂的使用条件对其稳定性提出了严峻的考验,本文将详细分析钢结构稳定性的设计在建筑工程使用的要点和原则,并总结相关经验和不足。

2钢结构的概念钢结构顾名思义就是以钢材作为结构搭建的主要原材料,通过钢梁、钢板、钢柱等不同的钢制组件,采用焊接、铆接等连接手段进行拼接组装,进行大型建筑物搭建的建筑结构类型。

钢结构以各类钢材作为主要材料,与普通混凝土等建筑材料不同,钢材具备重量轻,韧性强等特点,能够承受更大的力,因此在大中型建筑物设计中经常采用钢结构设计。

钢结构构造稳定,不易变形,能够为建筑物提供良好的安全稳定性。

但是,在某些特殊情况下也有可能出现钢结构失稳的情况,常见的有以下两种情况:一种是过大的压力直接作用在受力平衡点上,造成结构整体受力不均导致失稳。

[2]另一种是钢结构构件由于长期使用,导致内部结构发生金属疲劳等问题,内部结构失去支撑作用,导致整体结构失稳。

在进行钢结构设计之前,有必要明确这种结构的稳定性特点,才能在设计过程当中有的放矢,避免结构弱点,发挥钢结构的优势,使得建筑物中的钢结构发挥更好的作用。

3钢结构提高设计稳定性的原则钢结构的稳定性是进行钢结构设计过程当中最重要的因素,在长期的工程实践和理论研究中,工程技术人员总结出了三条提高钢结构稳定性的设计原则。

钢结构稳定的概念设计

钢结构稳定的概念设计

首先,我们来了解一下钢结构稳定设计的基本概念。钢结构稳定设计主要是 研究结构在受到外力作用下的稳定性,防止结构发生失稳或屈曲的现象。失稳是 指结构在受到外力作用后,没有发生整体变形,而是出现了局部弯曲或扭曲的现 象。屈曲则是指结构在受到外力作用后,发生了整体变形,并且这种变形是不可 恢复的。因此,钢结构稳定设计的主要目标是防止这两种现象的发生。
2、稳定安全系数:稳定安全系数是指在荷载作用下,结构所能承受的最大 应力与极限应力的比值。在钢结构稳定设计中,需要综合考虑各种因素的影响, 确定合理的稳定安全系数。
五、实际工程中的钢结构稳定设 计案例及设计原则解释
以某桥梁工程为例,该桥梁为钢箱梁结构形式,跨度为30米。在桥梁设计中, 需要考虑到车辆通行、风载、地震等多种荷载因素的影响。为保证桥梁的稳定性, 设计时采用了以下措施:
1、杆件强度:选用高强度钢材作为桥梁的主要构件材料,以提高其承载能 力和稳定性。
2、支座形式:采用四氟板式橡胶支座作为桥梁的支撑形式,以减小支座对 结构稳定性的影响。
3、荷载分布:通过对桥面进行合理的配重和分布设计,使桥梁在不同荷载 作用下的稳定性得到保证。
4、长细比控制:在设计中严格控制桥梁的截面尺寸和长细比,使其符合规 范要求,以保证结构的稳定性。
二、钢结构稳定的定义及相关概 念
在钢结构稳定分析中,通常需要考虑两种类型的稳定问题:平面稳定和空间 稳定。平面稳定是指结构在某一平面内的稳定性,而空间稳定则是指结构在三个 维度上的稳定性。
1、简支梁:简支梁是一种常见的简单结构形式,其稳定性是钢结构稳定分 析中的重要内容之一。简支梁的稳定性主要受到荷载作用位置和支撑条件的影响。
2、固支梁:固支梁是一种两端固定支撑的结构形式。在固支梁的稳定性分 析中,需要考虑支撑条件和荷载作用位置的影响。

建筑工程中钢结构设计的稳定性原则及设计

建筑工程中钢结构设计的稳定性原则及设计

建筑工程中钢结构设计的稳定性原则及设计摘要:在建筑工程中,钢结构设计的稳定性原则是确保结构在受力条件下不会发生失稳和破坏。

为此,设计人员需要考虑结构的整体稳定性、局部稳定性和变形控制等因素,并采取相应的设计措施,如设置剪力墙、调整构件尺寸、加强节点设计等,以保证钢结构的稳定性和安全可靠性。

关键词:建筑工程;钢结构设计;稳定性原则引言钢结构在建筑工程中具有广泛的应用,其高强度、轻质化和可塑性等特点使其成为一种优秀的结构材料。

然而,在钢结构设计过程中,稳定性是一个至关重要的考虑因素。

稳定性问题可能导致结构失效和破坏,对人身安全和财产造成巨大威胁。

1.结构稳定性的重要性和影响因素1.1结构稳定性的重要性(1)人身安全保障建筑结构稳定性的确保是为了保护人们在其内部生活、工作和活动的安全。

如果结构失去稳定性,会导致部分或整个建筑发生破坏或倒塌,对居民和工作人员的生命安全构成严重威胁。

(2)财产保护建筑物往往是人们重要的资产之一,如果结构不稳定,会导致房屋损毁、财产损失,给住户和业主带来经济上的重大损失。

(3)建筑品质和功能保证:稳定的结构设计可以保证建筑物长时间内保持原有的形态和功能,并具备正常使用条件。

只有结构稳定,建筑才能耐久、安全地发挥其所需的功能。

1.2结构稳定性影响因素(1)结构几何形状结构的几何形状对其稳定性有重要影响。

一般来说,更高、更狭长、更不规则的结构更容易受到稳定性问题的困扰。

(2)材料特性材料的强度和刚度也对结构的稳定性产生影响。

材料的抗压、抗拉、抗弯等特性决定了结构在受力时的稳定性。

(3)荷载类型和施加位置结构在受到不同类型荷载的作用下,其稳定性表现会有所不同。

例如,水平荷载(如风荷载和地震荷载)会产生横向推力,而垂直荷载(如重力荷载)会产生压缩力。

荷载施加的位置也会对结构稳定性产生重要影响。

(4)支撑和连接方式结构中支撑和连接的方式对稳定性起到重要作用。

适当的支撑和合理的连接设计可以增加结构的稳定性。

钢结构稳定设计pdf

钢结构稳定设计pdf

钢结构稳定设计pdf
钢结构的稳定设计是确保结构在受力时不会发生失稳或倒塌的重要工作。

以下是钢结构稳定设计的一般步骤:
1. 确定结构的几何形状和尺寸:根据设计要求和使用目的,确定结构的几何形状和尺寸。

2. 确定边界条件:考虑结构所受的外部载荷和约束条件,如风荷载、地震荷载、温度变化等,确定适当的边界条件。

3. 分析结构的内力:利用结构分析方法,计算出结构在各种载荷情况下的内力。

4. 计算结构的稳定系数:根据结构的几何形状和尺寸以及内力分析结果,计算结构的稳定系数。

常用的稳定系数计算方法有屈曲分析和稳定性极限分析。

5. 检查稳定性要求:根据相应的设计规范和标准,检查结构的稳定性是否符合要求。

常见的稳定性要求包括控制结构的屈曲和位移。

6. 优化结构设计:如果结构的稳定性不符合要求,可以通过调整结构的几何形状、尺寸或材料等,进行优化设计。

7. 绘制结构施工图和详细设计:根据稳定性设计结果,绘制结构的施工图和详细设计图纸,明确结构的各个部分的尺寸和连接方式等。

需要注意的是,在钢结构稳定设计过程中,还需要考虑材料的强度、刚度和连接方式等因素,以确保整体结构的安全和可靠
性。

GB50017钢结构稳定性设计规范

GB50017钢结构稳定性设计规范

GB50017钢结构稳定性设计规范
本文档旨在概述GB钢结构稳定性设计规范的主要内容和要求。

1. 引言
GB钢结构稳定性设计规范是中国建筑设计标准化委员会发布
的国家标准,适用于各类钢结构的稳定性设计。

稳定性设计是确保
钢结构在荷载作用下不发生失稳的关键,对于保证建筑结构的安全
和可靠性具有重要意义。

2. 适用范围
本规范适用于各类钢结构的稳定性设计,包括但不限于工业厂房、桥梁、高层建筑等。

钢结构包括钢框架、钢桁架、钢管脚手架等。

3. 主要内容
本规范主要包含以下内容:
3.1 稳定性设计方法
规范提供了基于等效梁法、模型分析法等的稳定性设计方法,用于计算钢结构稳定性的强度和刚度。

3.2 抗侧扭设计
规范要求钢结构在设计中考虑抗侧扭的能力,以防止结构的失稳和破坏。

3.3 钢构件连接设计
规范对钢结构的连接件进行了设计规定,包括焊接连接、螺栓连接等,以确保连接的强度和稳定性。

3.4 弹性稳定性分析
规范要求进行弹性稳定性分析,以评估钢结构在弹性阶段的稳定性和刚度。

3.5 稳定性验算
规范要求进行稳定性验算,以校核钢结构在荷载作用下的稳定性能力。

3.6 建设施工要求
规范对钢结构的建设施工要求进行了规定,包括焊接工艺、除锈处理、防腐处理等。

4. 结论
GB钢结构稳定性设计规范是确保钢结构稳定和安全的重要标准。

在设计和施工过程中,需要严格按照规范的要求进行稳定性设计和验算,以保证钢结构在荷载作用下的稳定性能力。

---
注意:以上内容为简要概述,具体内容请参阅GB50017钢结构稳定性设计规范原文。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析钢结构稳定性设计
摘要:本文阐述了钢结构设计的原则及钢结构稳定设计的主要特点,对钢结构主要构件设计方法进行了介绍。

关键词:钢结构;稳定性设计
钢结构稳定问题区别于强度问题。

本文提出了刚结构主要构件的设计,随着新型结构的出现,设计人员对其性能认识的不足,从而导致构件的失稳,只有深入了解,与时俱进,才会使得钢结构稳定理论设计不断地完善。

1 钢结构设计的原则
根据稳定问题在实际设计中的特点提出了以下三项原则并具体阐明了这些原则,以更好地保证钢结构稳定设计中构件不会丧失稳定。

1.1 结构整体布置必须考虑整个体系以及组成部分的稳定性要求
目前结构大多数是按照平面体系来设计的,如桁架和框架都是如此。

保证这些平面结构不致出平面失稳,需要从结构整体布置来解决,亦即设计必要的支撑构件。

这就是说,平面结构构件的出平面稳定计算必须和结构布置相一致。

1.2 结构计算简图和实用计算方法所依据的简图相一致
目前设计单层和多层框架结构时,经常不作框架稳定分折而是代之以框架柱的稳定计算。

在采用这种方法时,计算框架柱稳定时用到的柱计算长度系数,自应通过框架整体稳定分析得出,才能使柱
稳定计算等效于框架稳定计算。

然而,实际框架多种多样,而设计中为了简化计算工作,需要设定一些典型条件。

在实际工程中,框架计算简图和实用方法所依据的简图不一致的情况还可举出以下
两种,即附有摇摆拄的框架和横梁受有较大压力的框架。

这种情况若按规范的系数计算,都会导致不安全的后果。

所以所用的计算方法与前提假设和具体计算对象应该相一致。

1.3 设计结构的细部构造和构件的稳定计算必须相互配合,使二者有一致性。

结构计算和构造设计相符合,一直是结构设计中大家都注意的问题。

对要求传递弯矩和不传递弯矩的节点连接,应分别赋与它足够的刚度和柔度,对桁架节点应尽量减少杆件偏心这些都是设计者处理构造细部时经常考虑到的。

但是,当涉及稳定性能时,构造上时常有不同于强度的要求或特殊考虑。

例如,简支梁就抗弯强度来说,对不动铰支座的要求仅仅是阻止位移,同时允许在平面内转动。

然而在处理梁整体稳定时上述要求就不够了。

支座还需能够阻止梁绕纵轴扭转,同时允许梁在水平平面内转动和梁端截面自由翘曲,以符合稳定分析所采取的边界条件。

2 钢结构稳定设计的主要特点
钢结构由于其高强度和良好的抗震性在建筑中得到了越来越广
泛的应用,钢结构不仅能够节省空间,而且还能降低工程成本,但是稳定性是钢结构的一个突出问题。

钢结构中的稳定问题是钢结构设计中以待解决的主要问题,一旦出现了钢结构的失稳事故,不但
对经济造成严重的损失,而且会造成人员的伤亡,是目前亟待解决的首要问题。

2.1 失稳和整体刚度:现行规范通用的轴心压杆的稳定计算法是临界压力求解法和折减系数法。

2.2 稳定性整体分析:杆件能否保持稳定牵涉到结构的整体稳定。

稳定分析必须从整体着眼。

2.3 稳定计算的其它特点:在弹性稳定计算中,除了需要考虑结构的整体性外,还有一些其他特点需要引起重视。

首先要做的就是二阶分析,这种分析对柔性构件尤为重要,这是因为柔性构件的大变形量对结构内力产生了不能忽视的影响;其次,普遍用于应力问题的迭加原理,在弹性稳定计算中不能应用。

这是因为迭加原理的应用应以满足材料变形服从虎克定律,应力和应变成正比,结构的变形很小等两个条件为前提。

而弹性稳定计算一般均不能满足结构变形很小的条件,非弹性稳定计算则两个前提都不符合。

了解了在钢结构设计中应该明确的一些基本概念,有助于我们在设计中更好地处理稳定方面的问题,随着新型钢结构体系的不断发展,我们对稳定问题的研究要求也必须不断地提高,之所以在设计中出现结构失稳问题,另一个重要原因就是我们对新型结构稳定知之甚少,这也是目前钢结构稳定研究中存在的问题。

3 钢结构主要构件设计方法
3.1 柱
钢结构住宅一般为大开间,框架柱在两个方向都承受较大的弯矩,同时应该考虑强柱弱梁的要求。

而目前广泛使用的焊接h型钢或i字热轧钢截面,强弱轴惯性矩之比3~10,势必造成材料浪费。

因此对于轴压比较大,双向弯矩接近,梁截面较高的框架柱采用双轴等强的钢管柱或方钢管混凝土柱是适宜的。

对于方钢管混凝土柱,不仅截面受力合理,同时可以提高框架的侧向刚度,防火性能好,而且结构破坏时柱体不会迅速屈曲破坏。

因此,尽管平面受力结构中,选用h型钢或i字钢在受力上还是合理的但总体上,箱形钢管柱尤其是方钢管混凝土柱应得到广泛应用。

方钢管混凝土柱将是钢结构住宅发展的主要方向,但由于缺乏相应的规范、规程,目前在住宅中应用还很少。

尤其钢管砼梁、柱的连接较为复杂,不利于工厂制作和现场施工,应加大力度开发研究。

3.2 楼盖
在多层轻钢房屋中,楼盖结构的选择至关重要,它除了将竖向荷载直接分配给墙柱外,更主要的作用是保证与抗侧力结构的空间协调作用;另外从抗震角度来看,还应采用相应的技术和构造措施减轻楼板自重。

常用的楼盖结构有:压型钢板-现浇混凝土组合楼板,现浇钢筋混凝土板以及钢-混凝土叠合板,而以第一种最为常用。

目前,在多层轻钢房屋整体分析时,还普遍不考虑楼盖与钢梁的组合作用,即使设置抗剪键,也偏保守地假设钢结构承受全部荷载,这样不仅增加材料用量和结构自重,反而会造成强梁弱柱的不利情况。

有一6层算例,考虑楼盖组合作用对梁刚度以及结构整
体刚度的影响。

算例表明,考虑组合作用后主梁的刚度大大增加,使得梁的挠度和地震作用下柱顶的侧移大为减少,此考虑组合作用应予关注。

为使楼层高度减到最小,提供更大的空间,组合扁梁楼盖也成为一种趋势。

3.3 支撑体系
支撑分轴交支撑和近年发展起来的偏交支撑两种,前者耐震能力较差,后者在强震作用下具有良好的吸能耗能性能,而且为门窗洞的布置提供了有利条件,目前国内用的还很少,建议在高烈度区首选偏交支撑。

常用的ebf偏交支撑形式此所示。

剪切型耗能梁段,加劲肋按以下公式设计:a=29tw-d/5,(γp=±0.09rad)(1)
a=38tw-d/5,(γp=±0.06rad)(2)a=56tw-d/5,(γp=±0.03rad)(3)式中,a―加劲肋间距,d―梁高,tw―腹板厚度,γp―塑性转角;弯曲型耗能梁段还需在梁段端点外1.5bf处加设加劲肋。

3.4 节点抗震计
框架梁柱节点一般采用两种连接方法,根据“常用设计法”,即翼缘连接承受全部弯矩,梁腹板只承受全部剪力的假定进行设计。

震害表明,这种设计不能有效满足”强节点弱杆件”的抗震要求,在高烈度区隐患很大。

改进框架节点设计,在梁端上下翼缘加焊楔形盖板或者将梁端上下翼缘局部加宽盖板面积或加大的翼缘截面
面积主要由大震下的验算公式确定:式中:为基于极限强度最小值的节点连接最大受弯承载力,全部由局部加大后的翼缘连接承担;为梁件的全塑性受弯承载力;为基于极限强度最小值的节点连接最
大受剪承载力,仅由腹板的连接承担;为梁的净跨;为梁在重力荷载代表值作用下按简支梁分析的梁端截面剪力设计值。

参考文献:
[1]龚海龙,侯舒兰.钢结构稳定性设计的研究与分析[j].科技传播,2010,(13).
[2]郭明明,付永峰.关于钢结构稳定设计的探讨[a].土木建筑学术文库(第13卷)[c],2010.
[3]魏震南,宝金良.浅谈钢结构设计的步骤[j].民营科技,2011,(02).
[4]陈绍蕃.钢结构设计原理[m].科学出版社,2008.。

相关文档
最新文档